
Learning to Speed Up Evolutionary Content
Generation in Physics-based Puzzle Games
Leonardo T. Pereira and

Claudio Toledo
Institute of Mathematics and Computer Science

University of São Paulo
São Carlos, Brazil

{leonardop,claudio}@icmc.usp.br

Lucas N. Ferreira
Augmented Design Lab.

University of California, Santa Cruz
Santa Cruz, CA, USA

lferreira@ucsc.edu

Levi H. S. Lelis
Departamento de Informática

Universidade Federal de Viçosa
Viçosa, Brazil

levi.lelis@ufv.br

Abstract—Procedural content generation (PCG) systems are
designed to automatically generate content for video games. PCG
for physics-based puzzles requires one to simulate the game
to ensure feasibility and stability of the objects composing the
puzzle. The major drawback of this simulation-based approach
is the overall running time of the PCG process, as the simula-
tions can be computationally expensive. This paper introduces
a method that uses machine learning to reduce the number
of simulations performed by an evolutionary approach while
generating levels of Angry Birds, a physics-based puzzle game.
Our method uses classifiers to verify the stability and feasibility
of the levels considered during search. The fitness function is
computed only for levels that are classified as stable and feasible.
An approximation of the fitness that does not require simulations
is used for levels that are deemed as unstable or unfeasible by
the classifiers. Our experiments show that naively approximating
the fitness values can lead to poor solutions. We then introduce
an approach in which the fitness values are approximated with
the average fitness value of the levels’ parents added to a penalty
value. This approximation scheme allows the search procedure to
find good-quality solutions much more quickly than a competing
approach—we reduce from 43 to 25 minutes the running time
required to generate one level of Angry Birds.

INTRODUCTION

Procedural content generation (PCG) for games is used
since the early days of the video games industry. For example,
the 80’s games of Rogue and Elite use algorithms to generate
dungeons and planets during gameplay. The initial motivation
to automatic content generation was the memory limitation
imposed by the machines of that time. By using PCG the
games would have to store only a few lines of code to be able
to generate a very large number of game components such
as dungeons and planets. In addition to reducing the memory
requirements, this dynamic approach to content generation can
enhance the players’ enjoyment by offering them a possibly
different experience each time they play the game. The ability
to enhance the player experience is what motivated modern
games such as Minecraft and Spelunky to also use PCG.

Another motivation for using PCG methods is their sup-
port to the generation of user-tailored content, which can be
achieved by collecting data during game sessions. This data is
then used to adapt the content generated for future sessions [1].
PCG has also been used as tools to assist game developers to
produce content more quickly. For example, the development

of the game Borderlands was assisted by a tool for generating
models of weapons. This tool allowed the developers to create
approximately 17 millions unique weapons for the game [2].

PCG methods have to consider expressivity and feasibility
aspects of the content generated [3]. Often PCG methods use
simulations with artificial agents to ensure feasibility of the
content generated. For example, in the work of Liapis et al. [4]
dungeons are generated by a genetic algorithm and evaluated
by an artificial agent that verifies if the dungeons are passable.

A recent problem in PCG is the generation of levels for
physics-based puzzle games, where simulations are critical
for evaluating feasibility [5]. Several works studied the level
generation problem in the context of the game of Angry Birds
(AB) [6]–[12]. In AB the player’s goal is to destroy pigs by
throwing birds with a slingshot placed on the left-hand side
of the level. Pigs are distributed on the level altogether with
blocks that can be piled up to form structures. A screenshot
of a typical level of a clone of AB is shown in Figure 1.

Level generation for games such as AB poses several
challenges to PCG algorithms such as choosing a set of objects
to compose the level (blocks, pigs, and birds) and placing the
objects in a way that it will be challenging and interesting to
play. While choosing and placing the set of objects, one has
to ensure that the level is feasible and stable. In the context
of AB, we say that a level is feasible if there is a sequence of
shots that will result in a level clear of pigs, and it is stable if
no objects fall unless as a result of a shot. This paper builds
upon the evolutionary algorithm presented by Ferreira [8],
which handles these two problems through simulations.

The major problem of a simulation-based approach to PCG
is the system’s resulting running time, as simulations can
be computationally expensive. For example, simulations are
responsible for approximately 97% of the running time of the
evolutionary approach described by Ferreira [8].

In this paper we introduce a method that uses machine
learning to reduce the number of simulations performed by
Ferreira’s evolutionary approach while generating AB levels.
Our method uses classifiers to verify stability and feasibility
of the levels considered during search. The fitness function
is computed only for levels that are classified as stable and
feasible. An approximation of the fitness that does not require

simulations is used for levels that are classified as unstable
or unfeasible. Our experiments on a clone of the game of
AB [7] show that naively approximating the fitness values
can lead to poor solutions. We then introduce an approach
in which the fitness values are approximated with the average
fitness value of the levels’ parents added to a penalty value.
This approximation scheme allows the search procedure to
find good-quality solutions much more quickly than Ferreira’s
method. Namely, we reduce from 43 to 25 minutes the running
time required to generate one level of AB.

RELATED WORK

This paper relates to PCG methods that use simulations to
evaluate the quality or feasibility of the content generated.
This paper also relates to works that use machine learning to
enhance the search procedure of evolutionary algorithms.

Simulations have been used to evaluate the quality of
content in several games. For example, [13] presents an
evolutionary approach for generating racing tracks that can
provide a large degree of diversity while also being adequately
challenging. In that work, the fitness of a track is calculated
based on the track’s curvature and speed profile, which is
calculated by artificial agents that test the tracks generated.

Another genre in which simulation-based PCG was em-
ployed is First Person Shooters (FPS). Cardamone et al. [14]
proposed an evolutionary approach to generate maps of FPS
games. The maps’ quality was measured by the average
playing time. This metric assumes that the map’s quality is
directly linked to the playing time. By maximizing the average
playing time, the PCG system tends to generate larger maps,
which is intuitively good as very small maps do not leave
enough space for the placement of weapons and spawning
locations. A level’s average playing time is approximated with
a 10-minute match simulation that uses artificial agents.

Board games can be automatically designed by the method
proposed by Browne and Maire [15], which evaluates the
games with a Minimax search. A number of metrics are
extracted from investigating the performance of the Minimax
search on the game, including how long it takes to finish the
game, how often the game ends in a draw, and how many
game rules are used. These values are combined in a weighted
sum of the metrics where the weights are based on empirical
investigations of the properties of successful board games.

Generation of levels for physics-based games has been
recently explored in the context of Angry Birds, which is a
game with simple mechanics but that supports the study of
complex problems such as the stability of stacked blocks, the
presence of noise in simulation-based fitness functions, and
the development of intelligent agents for solving physics-based
puzzles. In this context, Stephenson and Renz [11] presented
a level generator which can create stable structures using a
variety of objects. The proposed algorithm creates levels con-
sisting of various self-contained structures placed throughout
a 2D area. The authors argue that once they have access to all
the physical attributes of the objects composing the level, it is
possible to verify whether the level is stable or not by solving

a system of linear equations [16]. However, since physics
engines are usually imprecise due to simplifications, levels
that are theoretically stable might collapse when simulated in
an engine. Thus, Stephenson and Renz also use a simulation
to evaluate the stability of the generated levels.

Another level generator of Angry Birds levels that uses
simulations is presented by Ferreira and Toledo [7]. This
generator is based on a genetic algorithm where the fitness
function penalizes unstable levels and tries to generate levels
with at least one pig and an amount of birds desired by the
user. This algorithm was extended by Ferreira [8], where an
encoding scheme allowed the evolutionary approach to better
control the number of birds in the levels generated. Also, a
novel fitness function was proposed where levels which are
deemed as unfeasible by an artificial agent are penalized. We
describe Ferreira’s algorithm in detail below.

The idea of using machine learning to improve the perfor-
mance of evolutionary algorithms was also explored by others.
For example, Handoko et al. [17], [18] use a support vector
machine classifier to enhance a constrained memetic algorithm
by helping it locate the objective function’s global optimum.

Machine learning has been used in several contexts in
computer games. For example, Weber and Mateas [19] applied
machine learning algorithms to learn and predict enemies’
strategies; Weber et al. [20] modeled player experiences during
gameplay to support content creation. Lanzi et al. [21] used
data mining algorithms to discover interesting design patterns,
flaws, and opportunities to improve a mobile game with few
hours of play-testing. A machine learning algorithm proposed
by Fink et al. [22] correctly predicts non-player character be-
haviors in the game of Pong with minimum game knowledge.

ORIGINAL EVOLUTIONARY APPROACH

In the present section we review the evolutionary approach
of Ferreira and Toledo to automatically generate Angry Birds
levels [7], [8]. First, we present their level encoding and then
we discuss the fitness function they employ.

Level Encoding

We review Ferreira and Toledo’s level encoding with an
example. Consider in Figure 1 an AB level, its encoding
(in evolutionary computation terms a level is referred as an
individual and in this paper we use the words level and
individual interchangeably) accounts for the number of birds
and sequences of stacked-up blocks. Each block is defined as
a pair of integers (x, y), where x represents the type of block
and y ∈ {0, 1} indicates whether a block is duplicated (1)
or not (0) in the stack. A block is duplicated when a stack
contains two blocks of a given type side by side, as shown by
Stack 2 in Figure 1. We refer the reader to the work of Ferreira
and Toledo for details regarding the block types. The encoding
also allows for empty spaces in between stacks; empty spaces
are marked with an “X” in Figure 1.

(31, 0) (31, 0)
(31, 0) (13, 0) (13, 0)
(13, 0) (28, 0) (28, 0)
(12, 0) (29, 1) (29, 0)
(13, 1) (10, 1) (31, 0) (15, 0) (31, 0)

4 (11, 0) (24, 1) X (18, 0) X (25, 1) X (18, 0)
Birds Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6 Stack 7 Stack 8

Fig. 1. An example of an Angry Birds level and its representation [8].

Fitness Function

Another key component in Ferreira and Toledo’s approach
is the fitness function employed, which the evolutionary opti-
mization procedure tries to minimize. For a given set of objects
O defining an individual, O’s fitness value is defined as,

F (O) = |Bu−Bd(O)|+ |Lu−Ld(O)|+Pl(O)+V (O) . (1)

Here, Bu and Lu are input parameters defined by the user
representing the desired number of birds and the number of
blocks the generated level must have, respectively. All the
other variables in Equation 1 have their values defined by
a simulation with an artificial agent that plays O (refer to
[8] for details on the strategy employed by the agent to play
the game). Bd(O) returns the number of birds thrown by an
artificial agent during the simulation and Ld(O) returns the
amount of blocks in the level before the simulation. Thus, the
first term of F penalizes O if the artificial agent does not use
all Bu birds specified by the user. The second term penalizes
O if it does not have the desired number of blocks Lu.

If the artificial agent finishes the level by throwing fewer
bids than Bd, then the individual is penalized by the first term
of F . If the artificial agent does not finish the level even after
throwing all birds (i.e., there are pigs left in the level), then the
individual is penalized by the third term of F , Pl(O), which
is the number of pigs remaining in the level by the end of
the simulation. Finally, the last term of F measures the level
stability: V (O) is the sum of the average speed of all objects
in O before the first bird is shot. If the level is stable, then
V (O) = 0. However, in practice, due to imprecisions of the
physics simulator, we consider a level stable if

∑
o∈O vo <

10−5, where vo is the average speed of object o.

The EA approach of Ferreira and Toledo also includes a
mutation and a crossover procedure for inserting diversity
to the process. We refer the reader to their original work
for details of these operations [7]. For the current work it
is important to highlight that in order to compute the F -
value of a given individual, one has to employ an artificial
agent to play the game to verify the level’s feasibility and a
physics simulator to verify the level’s stability. Since the EA
approach has to compute F for all individuals evaluated during
the optimization procedure, the resulting level generation
process can be very slow. On average, it takes Ferreira and
Toledo’s approach 43 minutes to generate an AB level, and
approximately 97% of this time is spent on simulations.

LEARNING TO SIMULATE

We now describe our approach to decrease the running time
of Ferreira and Toledo’s evolutionary approach to AB level
generation. Instead of simulating gravity to verify stability and
executing an artificial agent to estimate feasibility, we train two
classifiers to bypass, when possible, these two computationally
expensive steps. The first classifier approximates the level’s
stability, and the second the level’s feasibility.

We use connected structures instead of complete AB levels
to train the stability classifier. We define a connected structure
as follows. Let G = (V,E) be a graph describing an AB level
O, where every vertex v ∈ V represents an object in O, and
there is an edge (v1, v2) ∈ E between vertices v1 and v2 if the
objects represented by v1 and v2 are in physical contact. We
say that a subset V ′ ⊆ V is a connected structure if for any
pair of vertices v1, v2 ∈ V ′, there is a path between v1 and v2.
Figure 1 shows four connected structures. From left to right,
the first connected structure holds two pigs, and the other three
connected structures hold one pig each. We train our classifier
on connected structures instead of complete AB levels because
we believe the task of learning stability of smaller structures
to be easier than the task of learning the stability of more
complex structures.

In order to train the stability and the feasibility classifiers
we generated two training sets. The stability dataset was
generated by using the original EA described above to generate
5,567 connected structures. The labels of the dataset (stable
or unstable) were computed through simulations; 71.2% of
the connected structures in the dataset were unstable. The
feasibility dataset was also generated by the original EA and
contained 4,553 levels. The labels (feasible or unfeasible)
were computed through simulations with Ferreira and Toledo’s
artificial agent; 76.7% of the levels were unfeasible.

We note that we disregard the time spent in the process of
generating these datasets of levels and connected structures.
This is because this step is performed only once and its
computational cost can be amortized by using the trained
classifiers to generate a large number of AB levels.

Also aiming at facilitating learning, we modify the EA
encoding proposed by Ferreira and Toledo. In the original
encoding different levels could have different representation
sizes. Since the differences in level size could be a problem

TABLE I
ENCONDING OF THE LEVEL SHOWN IN FIGURE 1 USING OUR MATRIX

REPRESENTATION

-1 -1 -1 -1 -1 -1 · · · -1
· ·
-1 -1 31 -1 -1 -1 · · · -1
31 -1 13 -1 -1 -1 · · · -1
13 -1 28 -1 -1 -1 · · · -1
12 -1 29 29 -1 -1 · · · -1
13 13 10 10 31 -1 · · · -1
11 -1 24 24 18 -1 · · · -1

to supervised learning algorithms, we use a matrix M of fixed
size as an encoding scheme to AB levels. An entry (i, j) of M
corresponds to a position of a block in the level and the value
stored in (i, j) corresponds to the type of the block occupying
that position. If object o1 occupies position (i, j) and object
o2 occupies position (i+ 1, j) in M, then o2 is on top of o1

in the level. Similarly, if object o1 occupies position (i, j) and
object o2 occupies position (i, j + 1) of M, then o2 is on the
right-hand side of o1 in the level. If a given position is empty,
then that entry has value of -1. Our matrix has size M ×N ,
where M is the maximum number of blocks one can place
on top of each other, and N is the maximum number of side-
by-side objects a level can have. For the feasibility classifier
we add an integer to the encoding to specify the number of
birds the level has. As an example, Table I shows the matrix
representation of the level shown in Figure 1.

EMPIRICAL EVALUATION OF CLASSIFIERS

In this section we empirically test the accuracy of four
supervised learning algorithms for the task of classifying stable
and feasible AB levels. We test the following algorithms:
Decision Trees (J48), Bayesian Network (BN), Radial Basis
Function Neural Network (RBF), and Random Forests (RF).
The input parameters of each algorithm is chosen in a 10-
fold cross validation process. We present in Table II the cross
validation results for the best set of input parameters for each
algorithm. The results are presented in terms of accuracy
(percentage of levels or structures correctly classified) and
mean absolute error (MAE). The best results are highlighted
in bold; the numbers are truncated to two decimal places.

The tree-based approaches performed better than BN and
RBF in our experiments, with the RF yielding better results
overall for both the feasibility and the stability classification
tasks. The accuracy of RF is above 90% in both tasks, which
indicates the potential of employing these classifiers as part of
the PCG process for generating AB levels.

We recall that RF’s accuracy of 97% in the feasibility task is
with respect to an approximation to the actual feasibility of the
levels tested. This is because the labels (feasible or unfeasible)
of our training data was obtained by approximating the levels’
feasibility with a simple artificial agent. If our artificial agent
classifies a given level O as feasible, then O is certainly
feasible as the agent was able to complete O. However, if
the agent classifies O as unfeasible, O could still be feasible
but the agent was not able to complete the level.

TABLE II
RESULTS FROM THE CREATION OF THE FEASIBILITY CLASSIFIER MODELS

WITH A BASE CONTAINING 4,553 INDIVIDUALS AND THE STABILITY
CLASSIFIER MODELS WITH A BASE CONTAINING 5,567 INDIVIDUALS

Feasibility Results
J48 BN RBF RF

Accuracy (%) 95.94 78.32 81.92 97.27
MAE 0.05 0.22 0.29 0.08

Stability Results
J48 BN RBF RF

Accuracy (%) 86.62 67.27 66.70 91.93
MAE 0.16 0.35 0.43 0.13

Algorithm 1 Classifier-Based Evolutionary Approach
Require: Maximum number of generations E, maximum

number of generations without improvement I , stability
Cs and feasibility Cf classifiers, desired number of birds
Bd, desired number of blocks Ld, and penalty value λ.

Ensure: One Angry Birds level
1: Generate a population Γ of 100 random individuals with

at most 5 birds and at most 100 blocks.
2: e← 0
3: while number of generations without improving the F -

value has not exceeded I , e has not exceeded E, and did
not find an individual O with F (O) = 0 do

4: Initialize next population Γ′ ← ∅
5: while |Γ′| < |Γ| do
6: Randomly select individuals O1 and O2 from Γ.
7: if F (O1) < F (O2) then
8: P1 ← O1

9: else
10: P1 ← O2

11: Repeat previous step to select P2.
12: Reproduce P1 with P2 generating children O′1 and O′2

(crossover rate of 95% and mutation rate of 10%).
13: Compute F (O′1) and F (O′2) using Algorithm 2.
14: Γ′ ← Γ′ ∪ {O′1, O′2}
15: Γ← Γ′

16: e← e+ 1
17: return argminO∈Γ F (O)

Since RF was able to perform best in our experiments, RF
is the method we use in the EA PCG system described next.

CLASSIFIER-BASED EVOLUTIONARY APPROACH

Our evolutionary approach to AB level generation follows
Ferreira and Toledo’s approach, with the difference that we
employ two RF classifiers to reduce the number of simulations
required to compute the fitness values during search. Our
approach is described in Algorithms 1 and 2.

Algorithm 1 receives as input the maximum number of
generations E the EA is allowed to create, and the maxi-
mum number I of generations the EA is allowed to create
without improving the F -value of the fittest individual in
the population; the algorithm returns an AB level. Our EA
approach initially generates a population Γ of 100 random

individuals with at most 5 birds and 100 blocks. These values
were chosen empirically in preliminary experiments. Variable
e counts the number of generations (line 2); the counter for
generations without improvement is not shown explicitly in
the pseudocode. The stopping condition of our EA approach
is shown in line 3 of Algorithm 1. We stop the procedure
(i) after completing E generations; (ii) after completing I
generations without improving the best F -value within the
current population; (iii) or after finding an optimal solution
(i.e., F -value of zero).

In each generation (denoted by an iteration of the outer loop
of Algorithm 1) we create a new population Γ′ with the same
number of individuals of the current population Γ. We generate
two individuals O′1 and O′2 with a tournament selection
approach. That is, we randomly select two individuals O1 and
O2 from Γ and select the one with lowest F -value to be parent
P1; we repeat the same process to select a parent P2. Next, P1

reproduces with P2 generating individuals O′1 and O′2, which
are added to Γ′ (see lines 6–14 in Algorithm 1).

We compute the F -values for all individuals generated
(line 13) according to Algorithm 2. Note that for the initial
random population we compute the F -values according to
Equation 1 directly as the individuals in that population do
not have parents, which is required as input in Algorithm 2.

In addition to individual O and its parents Op1 and Op2 ,
Algorithm 2 requires the stability Cs and feasibility Cf

classifiers as input. Cs(O) and Cf (O) return true if O is stable
and feasible, respectively. Algorithm 2 also receives as input
the desired number of birds Bd and blocks Ld, which are
chosen by the user, and a penalty value λ.

If both Cs and Cf return true (line 1), we compute F (O)
with Equation 1 directly. That is, we run the stability sim-
ulator to obtain V (O) and the feasibility simulator through
the artificial agent to obtain Lu(O) and Pl(O) (lines 2–4).
Our method does not compute the actual value of F (O) if
according to the classifiers O is either unstable or unfeasible.
Instead, Algorithm 2 returns the average of O’s parent added
to the penalty λ. The value of λ reduces the chances of
O winning a tournament and passing its genes to the next
generation of the evolutionary approach. Note, however, that
it might be important to be able to distinguish amongst
different unstable individuals and amongst different unfeasible
individuals. This is because, for example, there could be two
unstable individuals where one of them is much closer to being
stable than the other (i.e., a small modification to the near-
stable individual would make it stable). By using the average
F -value of O’s parents added to λ as O’s F -value we expect
to distinguish near-stable individuals from far-from-stable ones
and near-feasible individuals from far-from-feasible ones.

EMPIRICAL RESULTS

We are primarily interested in comparing the running time
of our proposed approach with that of the original method
(Original). In order to show that we are able to reduce the
running time while generating levels with similar quality, we

Algorithm 2 Classifier-Based Fitness Function
Require: Individual O and its parents Op1 and Op2, stability

Cs and feasibility Cf classifiers, desired number of birds
Bd, desired number of blocks Ld, and penalty value λ.

Ensure: Fitness value of O.
1: if Cs(O) ∧ Cf (O) then
2: Obtain Lu(O) and Pl(O) with artificial agent
3: Obtain V (O) with physics simulator
4: return |Lu(O)−Ld|+ |Bu(O)−Bd|+Pl(O) +V (O)
5: else
6: return F (Op1)+F (Op2)

2 + λ

Running Time

se
co

nd
s

0

600

1,200

1,800

2,400

Original F-N S-N F-C S-C Full-C

1,5651,488
1,8111,826

2,166
2,396

Fig. 2. Average running time of each approach.

also show the average fitness value of the level generated by
each approach.

In addition to Original and the approach described in
Algorithms 1 and 2, which we name Full-C, we also test the
following Full-C variants: a method that uses only the stability
classifier in line 1 of Algorithm 2 (S-C) and a method that uses
only the feasibility classifier in line 1 of Algorithm 2 (F-C).
We also test naive versions of S-C and F-C in which we use
λ instead of the average fitness value of O’s parents added
to λ as the fitness value of O when the expression of line 1
of Algorithm 2 returns false. We call such naive variants S-N
and F-N, for S-C and F-C, respectively.

All results presented are averages over 10 independent runs
of each method. Also, all runs were executed in the same
machine. Each approach was tested with the same set of
parameters: |Γ| = 100, E = 25, I = 10, λ = 100, Bd = 5,
and Ld = 100, crossover and mutation rates of 95% and 10%.

The results for running time are presented in Figure 2. All
proposed approaches but F-N present a substantial reduction in
running time compared to Original. A Pearson correlation test
suggests that the running time data is likely to be independent
(correlation of 0.051); Levene’s test for homoscedasticity sug-
gests that the hypothesis that the variables have equal variance
cannot be discarded (p > 0.05); finally, Anderson-Darling
suggests that normality cannot be discarded (p > 0.05).
Thus, we apply the parametric ANOVA test which yields
p = 0.008, suggesting a significant difference between the
average running time of different systems. Then, we use
Fisher’s test for pairwise comparisons to discover that both S-
C and Full-C are significantly faster than Original (p < 0.05).

The results for the average fitness value of the individual

Quality
be

st
 fi

tn
es

s
va

lu
e

0.00

0.25

0.50

0.75

1.00

Original F-N S-N F-C S-C Full-C

0.100.100.11

0.90

0.71

0.21

Fig. 3. Average fitness value of the individual returned by each approach.

returned by each approach are shown in Figure 3. The average
fitness values do not satisfy the three criteria to apply a
parametric test. Thus, the non-parametric Friedman test is
applied instead. The Friedman test yields p = 0.165, showing
that no statistical difference was found.

DISCUSSION

The running time results shown in the previous section
demonstrated that our proposed approach is able to substan-
tially and significantly reduce the running time of the original
evolutionary approach to level generation in the game of
AB. Namely, S-C and Full-C reduced from 2,396 seconds to
1,488 and 1,565 seconds, respectively, the running of the PCG
procedure. The naive approach which employs only the sta-
bility classifier (S-N) was also able to substantially reduce the
running time—from 2,396 seconds to 1,826 seconds. However,
the average fitness values of the individuals returned by the
naive approaches were much worse than the original method.
That is, while the original method returns individuals with
fitness value of 0.21 on average, the naive approaches return
individuals with fitness values of 0.71 and 0.90 on average.
Thus, although the naive approaches have better running time
than Original, they produce levels of lower quality.

By contrast, F-C, S-C, and Full-C have substantially better
running time than Original and they generate levels of similar
quality. This result shows that the strategy of using the average
fitness value of the parents of an individual added to the
penalty λ instead of only λ allows the evolutionary approach to
generate solutions of much better quality. We conjecture that,
by returning only λ as the fitness value of the individuals for
which the classifier returns false, F-N and S-N are unable to
distinguish the near-stable and near-feasible levels from those
that are far from becoming stable or feasible. We believe that
being able to distinguish these levels is specially important
in the early stages of the evolutionary procedure. This is
because the initial random population Γ is composed almost
solely by unstable and unfeasible levels. This way, in the naive
approaches, all individuals in the early populations have the
same F -value, which might misguide the search procedure to
poor solutions.

Another approach that could be used to reduce the running
time of our evolutionary approach is the employment of an
exact and fast method such as Blum et al.’s [16] to verify the
stability of a given level. The drawback of such an approach

is that the physical engine in which the levels are going
to be played only approximates the real-world physics and
are imperfect. This way, a level that is theoretically stable
according to Blum et al.’s method might be unstable once
simulated in the physics engine. Our method learns even the
imperfections of the physics engine.

We believe there are other ways of further improving the
running time of our evolutionary approach. One interesting
direction of future work is to test other forms of evolutionary
operations that do not require the computation of the F -value
for all individuals in Γ as is currently done by our approach.

CONCLUSIONS

The presented work employs machine learning techniques
to reduce the running time of a procedural content generation
system used to generate levels of the physics-based puzzle
game of Angry Birds. The original approach for generating
content for Angry Birds heavily relies on simulations to
evaluate both the stability and the feasibility of the levels
during the search procedure. The drawback of solely using
simulations is the resulting computational cost of the fitness
function used to guide the search. In our approach we only
use simulations if two classifiers predict that the level is both
stable and feasible. This way we are able to substantially
and significantly reduce the running time of the original
evolutionary approach to generate Angry Birds levels.

We also showed that naively applying a penalty value
to the individuals which are classified as either unstable or
unfeasible can lead the search procedure to poor solutions. To
overcome this problem, instead of using a penalty value as
the individual’s fitness, we use the average fitness value of the
parents of the individual added to a penalty value. This way
the search procedure is able to distinguish the near-stable and
near-feasible levels from those with worse quality. As a result
of our strategy, our system is able to find good solutions much
more quickly than the original approach.

ACKNOWLEDGMENTS

Financial support for this research was in part provided by
CAPES/CNPq Science Without Borders program, FAPEMIG,
and Gapso. Lucas N. Ferreira acknowledges financial support
from CNPq Scholarship (200367/2015-3).

REFERENCES

[1] G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147–161, 2011.

[2] G. Smith, E. Gan, A. Othenin-Girard, and J. Whitehead, “Pcg-based
game design: enabling new play experiences through procedural content
generation,” in Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games. ACM, 2011, p. 7.

[3] A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty
search: A study on game content generation,” Evolutionary computation,
vol. 23, no. 1, pp. 101–129, 2015.

[4] A. Liapis, C. Holmgård, G. N. Yannakakis, and J. Togelius, “Procedural
personas as critics for dungeon generation,” in European Conference
on the Applications of Evolutionary Computation. Springer, 2015, pp.
331–343.

[5] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content
for cut the rope through a simulation-based approach.” in AIIDE,
G. Sukthankar and I. Horswill, Eds. AAAI, 2013. [Online]. Available:
http://dblp.uni-trier.de/db/conf/aiide/aiide2013.html#ShakerST13

[6] L. Ferreira and C. Toledo, “Generating levels for physics-based
puzzle games with estimation of distribution algorithms,” in
Proceedings of the 11th International Conference on Advances
in Computer Entertainment, ser. ACE’14, 2014. [Online]. Available:
http://www.lucasnferreira.com/papers/2014/ace-edaab.pdf

[7] L. Ferreira and C. Toledo, “A search-based approach for generating
angry birds levels,” in Proceedings of the IEEE International Conference
on Computational Intelligence in Games, 2014.

[8] L. N. Ferreira, “An evolutionary approach for procedural generation of
levels in physics-based puzzle games,” Master’s thesis, University of
Sao Paulo, Sao Carlos, Sao Paulo, Brasil, 2015.

[9] Y. Jiang, M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas,
“Procedural generation of angry birds levels using building construc-
tive grammar with chinese-style and/or japanese-style models,” arXiv
preprint arXiv:1604.07906, 2016.

[10] R. Lara-Cabrera, A. Gutierrez-Alcoba, and A. J. Fernández-Leiva, “A
spatially-structured pcg method for content diversity in a physics-based
simulation game,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2016, pp. 653–668.

[11] M. Stephenson and J. Renz, “Procedural generation of complex stable
structures for angry birds levels,” in IEEE Computational Intelligence
and Games Conference, 2016.

[12] M. Stephenson and J. Renz, “Procedural generation of levels for angry
birds style physics games,” in The AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2016.

[13] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track genera-
tion for high-end racing games using evolutionary computation,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 245–259, 2011.

[14] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi, “Evolving
interesting maps for a first person shooter,” in European Conference on
the Applications of Evolutionary Computation. Springer, 2011, pp.
63–72.

[15] C. Browne and F. Maire, “Evolutionary game design,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 2, no. 1, pp.
1–16, 2010.

[16] M. Blum, A. Griffith, and B. Neumann, “A stability test for configura-
tions of blocks,” 1970.

[17] S. D. Handoko, K. C. Keong, and O. Y. Soon, “Using classification for
constrained memetic algorithm: A new paradigm,” in Systems, Man and
Cybernetics, 2008. SMC 2008. IEEE International Conference on, Oct
2008, pp. 547–552.

[18] S. D. Handoko, C. K. Kwoh, and Y. S. Ong, “Feasibility structure
modeling: An effective chaperone for constrained memetic algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 14, no. 5, pp.
740–758, Oct 2010.

[19] B. G. Weber and M. Mateas, “A data mining approach to strategy
prediction,” in 2009 IEEE Symposium on Computational Intelligence
and Games, Sept 2009, pp. 140–147.

[20] B. G. Weber, M. Mateas, and A. Jhala, “Using data mining to model
player experience,” in FDG Workshop on Evaluating Player Experience
in Games, ACM. Bordeaux, France: ACM, 06/2011 2011.

[21] P. L. Lanzi, D. Loiacono, E. Parini, F. Sannicoló, D. Jones, and
C. Scamporlino, “Tuning mobile game design using data mining,” in
2013 IEEE International Games Innovation Conference (IGIC), Sept
2013, pp. 122–129.

[22] A. Fink, J. Denzinger, and J. Aycock, “Extracting npc behavior from
computer games using computer vision and machine learning tech-
niques,” in 2007 IEEE Symposium on Computational Intelligence and
Games, April 2007, pp. 24–31.

