
A Computational Model based on Symmetry for Generating
Visually Pleasing Maps of Platform Games

Julian R. H. Mariño and Levi H. S. Lelis
Departamento de Informática

Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

Abstract
In this paper we introduce a computational model based on
the concept of symmetry to generate visually pleasing maps
of platform games. We cast the problem of generating sym-
metrical maps as an optimization task and propose a heuris-
tic search algorithm to solve it. A user study using a plat-
form game shows the advantage of our method over other ap-
proaches in terms of visual aesthetics and enjoyment. Another
user study shows that our method is able to generate maps as
visually pleasing as maps created by professional designers.

Introduction
Automatic content generation is a major challenge in Ar-
tificial Intelligence (AI). That is, how can AI systems cre-
ate stories, game maps, and sport commentaries with quality
similar to those created by professional designers?

A common problem in content generation is to place a set
of objects to form a game map.1 For example, in physical-
based games such as Angry Birds (Ferreira and Toledo
2014), how should one place a set of objects to form an in-
teresting and visually pleasing level of the game? We call the
problem of placing objects to form a game level the object
placement problem (OPP). Although OPP is general and ap-
pears in application domains outside computer games (e.g.,
construction of graphical user interfaces), in this paper we
focus on solving OPPs to create visually pleasing levels of
2D platform games such as Super Mario Bros. (SMB).

Our work is inspired by the works of Ngo et al. (2000;
2003) and Bauerly and Liu (2006). Ngo et al. proposed vi-
sual aesthetics metrics rooted at theories of graphical de-
sign (e.g., symmetry) for analyzing graphical user interfaces.
Bauerly and Liu showed empirically that the symmetry of
objects composing an image could positively correlate with
people’s perceived visual aesthetics – people tended to per-
ceive as visually pleasing images that were symmetrical.

In this paper we formalize the problem of generating sym-
metrical solutions to OPP as an optimization problem and
present a heuristic search approach to solve it optimally.
That is, for a given set of input objects, our approach gener-
ates a solution to the OPP that is as symmetrical as possible
according to our definition of symmetry.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We use the terms level and map interchangeably in this paper.

We evaluate our algorithm with two user studies. In the
first user study we employ our system to create levels of
Infinite Mario Bros (IMB), a clone of SMB, and compare the
participants’ perceived visual aesthetics of the levels created
by our system with those created by other approaches. Our
results suggest that our system is competitive with a system
that accounts for human input while creating IMB levels,
and is superior to another system. The results of our second
study suggests that our system is able to generate levels as
visually pleasing as levels created by professional designers.

Related Works
Approaches for automatic content creation are known as
Procedural Content Generation (PCG) systems. PCG ap-
proaches to platform games include those presented by
Smith et al. (2010), Sorenson et al. (2011), Snodgrass and
Ontañón (2014), among others – see Togelius et al. (2011),
Hendrikx et al. (2013), and Shaker et al. (2015) for reviews.

Other researchers have also built on the work of Ngo
et al. (2000; 2003), and Bauerly and Liu (2006). Lai et
al. (2010) evaluated Bauerly and Liu’s metrics with text-
overlaid images. Lai et al. did not observe in their exper-
iment a correlation between symmetry and visual appeal,
which suggests that symmetry might be an ineffective proxy
to human’s perceived visual aesthetics in some domains. De-
spite Lai et al.’s result, we show that symmetry can be used
to successfully guide a search algorithm to create visually
pleasing game maps. Salimun et al. (2010) tested some of
Ngo et al.’s metrics in graphical interface layouts to find that
people preferred symmetrical interface layouts.

In the domain of PCG for games, Liapis et al. (2012;
2014) presented evolutionary approaches to create space-
ships and maps for real-time strategy games that use sym-
metry as a visual aesthetic metric. By contrast, we present
exact algorithms to find symmetrical solutions to the OPP.

Problem Formulation
The level generation problem is divided into two problems.
First, one chooses a set of rectangle-shaped objects G =
{o1, o2, · · · , om}. Then, one solves G’s OPP. That is, one
has to define the objects’ x and y coordinates in a grid space
of size L×k ·W (L rows and k ·W columns). We assume G
is provided as input, and our goal is to find visually pleasing
solutions to the OPP.

UL UR

LRLL

Figure 1: An example of a symmetrical placement of objects

Some objects composing a level can be placed on “top
of each other” by occupying the same cells in the grid. For
example, in SMB multiple mountains may occupy the same
cell, while blocks must not. We assume that there is enough
space in the grid to place all m objects.

We transform the problem of generating a level of size
L × k ·W into the problem of generating k smaller levels
of size L ×W . Then, the k smaller levels are concatenated
into a level of size L × k ·W with a method similar to the
one introduced by Reis et al. (2015) (described below).

Symmetry as Objective Function
In this section we describe the objective function we opti-
mize while placing objects in a grid of size L×W . The grid
is divided into four regions of equal dimensions by a verti-
cal and a horizontal line, as illustrated by the dashed lines
in Figure 1. The regions are named Upper Left (UL), Up-
per Right (UR), Lower Left (LL), and Lower Right (LR),
as shown in Figure 1. Figure 1 also shows the placement of
four objects (gray rectangles), one in each of the regions.
Intuitively, the object placement shown in Figure 1 results
in a perfectly symmetrical image: there are identical objects
on both sides of the vertical dashed line, as well as on both
sides of the horizontal dashed line. We define next an objec-
tive function that captures this intuitive notion of symmetry.

We define as GUL, GUR, GLL, and GLR the set of objects
in regions UL, UR, LL, and LR, respectively. Note that
an object o can be placed simultaneously in more than one
region. For example, half of a rectangle o could fall in LL
and the other half in LR. If this happens, we replace o by
two objects o1 and o2, where o1 is in LL and o2 in LR.

We define a symmetry value of a level in terms of
functions X(·), Y (·), and A(·), where, X(GLL) =∑

o∈GLL
dx(o). Here, dx(o) is the distance between the

center of the rectangle-shaped object o and the vertical line.
Y (GLL) is the sum the values of dy(o) (the distance be-
tween the center of o and the horizontal line), and A(GLL) is
the sum of the values of a(o) (the area of o), for all o ∈ GLL.

The Vertical Symmetry Function (Sv)
One formulation of symmetry we use is defined in terms of
Xv(G), Yv(G), and Av(G), where,

Xv(G) = |X(GUL)−X(GUR)|+ |X(GLL)−X(GLR)| .

Yv(G) and Av(G) are defined analogously, but using func-
tions Y (·) and A(·) instead of X(·), respectively. We define

Sv(G) = Xv(G) + Yv(G) + Av(G). Sv(G) accounts for
the symmetries across the vertical line, i.e., the differences
in terms of dx, dy, and a-values between regions UL and
UR, and between regions LL and LR.

The All Symmetries Function (Sa)
Another objective function we consider is defined in terms
of Xa(G), Ya(G), and Aa(G), where,

Xa(G) = |X(GUL)−X(GUR)|+ |X(GLL)−X(GLR)|
+ |X(GUL)−X(GLL)|+ |X(GUR)−X(GLR)|
+ |X(GUL)−X(GLR)|+ |X(GUR)−X(GLL)| .

Ya(G) and Aa(G) are defined analogously, but using func-
tions Y (·) and A(·) instead of X(·), respectively. We define
Sa(G) = Xa(G)+Ya(G)+Aa(G). In addition to the sym-
metries accounted by Sv , Sa accounts for horizontal (be-
tween UL and LL, and UR and LR) and radial symmetries
(between UL and LR, and UR and LL).

Images that are intuitively symmetrical, such as the one
shown in Figure 1, have the desired property of having their
values of Sv and Sa equal to zero. In this paper we test the
hypothesis that by minimizing the values of Sv and Sa one
is able to generate visually pleasing solutions to OPP in the
context of map generation for 2D platform games.

The Symmetry Problem
In the symmetry problem one receives as input a set of ob-
jects G and integers L and W defining the grid’s size. We
assume that the height and width of the objects in G are no
larger than L and W , respectively. The task is to place on the
grid the objects in G while minimizing S(G), where S could
be either Sv or Sa. In IMB, the application domain we test
the algorithms we introduce in this paper, we assume that the
grid has the bottom row occupied by the game’s “ground”,
which is not accounted for in the symmetry formulas.

We define the symmetry problem as a state-space search
problem and present a brute-force search algorithm to solve
it. Then, we introduce a branch-and-bound (B&B) search
procedure that is able to prune unpromising nodes in the
search tree while still finding optimal solutions.

Brute-Force Search (BFS)
Each level of the search tree of the symmetry problem de-
fines the assignment of the x and y coordinates of one of the
objects in G. The root of the tree is an empty partial solution
to the problem, i.e., no objects have their coordinate values
assigned yet. Each child of the root accounts for one pos-
sible position on the grid for a given object in G. Each leaf
node of this search tree represents a solution to the symmetry
problem. We are interested in finding an optimal solution.

We consider a set of domain-specific constraints while
placing the objects on the grid. The constraints reduce the
search tree branching factor by reducing the number of dif-
ferent positions one can place the objects. For IMB, some
objects such as pipes, cannons, and mountains cannot be
aloft (i.e., the object has to be placed on the ground or on top

of another object). Also, every aloft object can be at most at
a distance of four grid cells from another object or the level’s
ground to ensure that the player can interact with all objects
placed on the level.

The brute-force search (BFS) algorithm traverses the
search tree in a depth-first manner and returns a solution
with lowest symmetry value.

Branch and Bound (B&B) Search
Our B&B algorithm performs a depth-first search in the
search tree described above and uses a heuristic function
H(n) to decided whether node n can be pruned. H(n) pro-
vides an estimate of the symmetry value of a complete solu-
tion obtained from partial solution n. H is called admissible
if it never overestimates the lowest symmetry value encoun-
tered amongst all leaf nodes in the subtree rooted at node n,
for all n. Let B be the symmetry value of the best incum-
bent solution encountered by B&B. If H is admissible and
H(n) ≥ B, then node n can be safely pruned as solutions
reachable from n are no better than B. B&B returns an op-
timal solution if employing an admissible heuristic.

Heuristic Function
In this section we describe a heuristic function H(n) for the
objective function Sa. For node n, we denote as Pn ⊆ G
the set of objects already placed on the grid (objects that had
their x and y coordinates assigned by the search procedure).
The set of objects yet to be placed is defined as Mn = G−
Pn. A lower bound on the symmetry value of n is computed
as follows.

H(n) = Sa(Pn)− 3×
(
|Mn| ×

(
W

2
+

L

2

)
+
∑

o∈Mn

a(o)

)
,

where a(o) is the area of the rectangle-shaped object o, W
2

is an upper bound on the largest possible distance from the
center of an object to the vertical line, and L

2 is an upper
bound on the largest possible distance from the center of an
object to the horizontal line. The term Sa(Pn) is the sym-
metry value of the objects already placed on the grid. H(n)
considers that the remaining objects Mn can be placed in
a way that they decrease the symmetry value of the partial
solution n by at most the negative term of H(n).

Note that H could be negative, and since Sa(G) ≥ 0,
H(n) is trivially set to zero if it becomes negative.

The following theorem states that H is admissible.
Theorem 1. Let a symmetry problem be defined by a grid of
size L×W and a set of rectangle-shaped objects G, where
the height and the width of all o ∈ G are at most W and
L, respectively. Also, let n be a partial solution to the sym-
metry problem where the set of objects Pn, with Pn ⊆ G,
are already placed on the grid. There is no placement of
Mn = G− Pn that yields Sa(G) < H(n).

Proof. Our proof works by showing that when placing one
object on the grid one is able to reduce the partial symmetry
value Sa(G) by at most 3×

(
W
2 + L

2 + a(o)
)
.

A rectangle-shaped object can be placed completely in-
side one of the four regions (UL, UR, LL or LR), par-
tially in two regions, or partially in all four regions. If o is

placed partially in more than one region, then we treat o as
though it was replaced by multiple objects, one for each re-
gion it was placed on. For example, if o is placed partially
in two regions, then we replace o by objects o1 and o2 with
a(o) = a(o1) + a(o2). The area a(o) of an object o en-
tirely placed in one of the four regions is accounted for in
three terms of Aa. Thus, when o is placed on the grid, a(o)
can reduce Aa by at most 3 × a(o). This is true even if o is
placed in two or four regions, since o is replaced by objects
with total area of a(o).

Since the grid is W wide, each region is W
2 wide. Any

object o fully placed in one of the regions reduces Sa by
at most 3 × W

2 in terms of Xa as the center of o cannot
be placed farther than W

2 from the vertical line and dx(o) is
accounted for three times in Xa. If o is placed in two regions
and o has width D, then o is replaced by two objects, one
with width p and another with width q such that D = p+ q.
Since the center point of the objects have distance p

2 and q
2

from the vertical line, the two objects can reduce at most
3 · p2 + 3 · q2 = 3 · D2 from Xa. Since D ≤ W , an object
placed in two regions can decrease Xa by at most 3× W

2 .
If o is placed in all four regions, o is replaced by ob-

jects o1 ∈ UL, o2 ∈ UR, o3 ∈ LL, and o4 ∈ LR.
Again let o have width D = p + q. Since o is rectangle-
shaped, then o1 and o3 have the same width p and o2 and
o4 have the same width q. Note that dx(o1) cancels out with
dx(o3) and dx(o2) cancels out with dx(o4) in Xa. Thus, Xa

can be written considering the four non-cancelled terms as
4· (|p−q|)2 = 2·|p−q|, which is maximized when p = W

2 and
q = 0 yielding W . Thus, 3 × W

2 is an upper bound on how
much Xa can be reduced by placing o in all four regions.

The proof for the term 3× L
2 is analogous to the proof just

shown for 3× W
2 when placing an object o.

Object and Region Orderings
Since B&B prunes all nodes n for which H(n) ≥ B, it will
tend to prune more nodes if H provides values that are closer
to perfect (i.e., larger values if H is admissible). We now
describe how the order in which the objects are placed on
the grid might affect the accuracy of the H-values.

The negative term of H(n) accounts for the area of the ob-
jects yet to be placed, Mn. Thus, if B&B places the objects
with larger a-values early in search, it reduces the negative
term of H thus increasing the H-value of nodes at deeper
levels of the tree. Aiming at obtaining more accurate heuris-
tic estimates, in our implementation of B&B we sort the ob-
jects in G according to their areas and place larger objects
before smaller ones.

Another factor that affects how much pruning B&B is able
to perform is the cost of the incumbent solution B. Intu-
itively, B&B is able to prune larger portions of the search
tree if it quickly finds an optimal or near-optimal solution to
the symmetry problem. This is because smaller B-values al-
low more nodes n to be pruned by satisfying the H(n) ≥ B
condition. In addition to defining an ordering of objects to
improve the estimates returned by H , we define an ordering
of regions to try to reduce the B&B search tree size.

Once the search procedure defines which object o is going
to be placed next during search, B&B verifies which region
R ∈ {UL,UR,LL,LR} has the smallest sum X(GR) +
Y (GR)+A(GR). B&B tries to place o in R before any other
region. The intuition is that B&B tries to keep all regions
with similar X , Y , and A-values, so that the values cancel
out and B&B finds good solutions early in search.

Node Expansion and Time Experiment
We ran experiments with BFS and B&B using H and the
object and region ordering strategies described above with
sets G of sizes 4, 5, 6, 7, 8 and 9. We used 20 different sets G
of each size and grids of size 15×15. The objects used in our
experiment had their areas chosen randomly from 1 grid cell
to 225 grid cells. We compared B&B’s and BFS’s number
of nodes expanded and running time. The detailed results
of this experiment are omitted for space; in this section we
highlight our main findings.

Our experiment showed that B&B expands on average
from 2.54 (|G| = 9) to 13.87 (|G| = 4) times fewer nodes
than BFS. In terms of running time, B&B is 5.53 times faster
than BFS for |G| = 4 and 1.83 times faster than BFS for
|G| = 9. We observed a larger difference between B&B and
BFS in terms of nodes expanded than in terms of running
time because B&B’s time-per-node is more expensive than
BFS’s due to B&B’s heuristic computation. As an example
of running time, for |G| = 5 B&B takes 3.13 seconds on
average to find an optimal solution, while BFS takes 12.14
seconds on average for sets of the same size.

The difference in running time of B&B and BFS is impor-
tant because we envision our system being used to generate
content in real time as the player goes through the level. This
way our system could account for player’s preferences in ad-
dition visual aesthetics metrics.

Representative Small Levels
In this section we show a few representative small levels
generated by our approach while minimizing Sv and Sa. In
this experiment we use four different sets G. The results are
shown in Figures 2 and 3, for Sv and Sa, respectively. Ene-
mies and coins were added by following simple rules: ene-
mies were placed randomly and coins were placed on top of
some of the objects composing the level.

Often the search procedure outputs exactly the same small
level for both Sv and Sa for a given set G; see the images
on the left-hand side of Figures 2 and 3 for a representative
case. We also observed that the search procedure tends to
place more objects in the upper part of the level when mini-
mizing Sa than when minimizing Sv; see the images on the
right-hand side of Figures 2 and 3 for a representative case.
When minimizing Sa the search procedure tries to balance
the objects that must be placed in the lower part of the level
(e.g., mountains have to be placed on the ground) by placing
objects in the upper part of the level.

Generating Complete Game Maps
B&B can be used to generate small symmetrical game lev-
els. Next, we explain how one can generate complete game

maps out of small levels by using an approach similar to the
one introduced by Reis at al. (2015). We name the PCG sys-
tem described in this section as Symmetry.

We generate a complete level of a platform game by con-
catenating small levels together according to a mathematical
function called tension arc. A tension arc receives as input
the position j of a small level within the complete level and
returns the difficulty value of the small level occupying the
j-th position. For example, for j = 1 (i.e., the first small
level composing the complete level) the tension arc might
return a difficulty value indicating that the first small level
composing the full-sized level must be an easy one.

Reis et al. use human computation to label a set of small
levels according to people’s perceived visual aesthetics, en-
joyment, and difficulty. Then, they use a tension arc and the
labels provided by humans to construct complete levels of
a platform game. Instead of using human computation to
select small levels with good visual aesthetics for a given
value of difficulty, we use our B&B procedure to generate
a set of small symmetrical levels L, and the metric of le-
niency (Smith and Whitehead 2010) to replace the human-
rated difficulty values. The leniency values of levels in L are
normalized to values between 1 and 7, where levels with le-
niency value of 1 are expected to be much more difficult than
levels with leniency value of 7. We use the tension arc de-
fined by the following ordered set: {7, 6, 5, 4, 4, 3, 3, 4, 5},
which states, for example, that the first small level compos-
ing the complete level has a leniency value of 7 and the last
has a leniency value of 5.

Comparison with Other Systems
We use three different IMB PCG systems in our ex-
periment: Symmetry, Human-Computation Tension Arc-
Based (HCTA) with a parabolic tension arc, as described
by Reis et al. (2015), and Occupancy-Regulated Extension
(ORE) generator (Mawhorter and Mateas 2010).

We chose to use HCTA and ORE in our experiment
because the former was shown to outperform other ap-
proaches (Reis, Lelis, and Gal 2015) and the latter was the
winner of the 2011 Mario AI Competition.2

In addition to a Turing test, the systems are evaluated ac-
cording to the following criteria: enjoyment, visual aesthet-
ics, and difficulty. Each participant was asked whether they
agreed, in a 7-Likert scale, with the following sentences:
“This level is enjoyable to play”; “this level has good vi-
sual aesthetics”; “this level is difficult”; “this level was de-
veloped by a machine”. A score of 1 for enjoyment and vi-
sual aesthetics means that the participant strongly agrees that
the level played is enjoyable and has good visual aesthetics;
a score of 1 for difficulty means that the participant strongly
agrees that the level is difficult; a score of 1 for the Turing
criterion means that the participant strongly agrees that the
level was designed by a machine.

Subjects were instructed about the controls of the game
and played one practice level before playing one level gen-
erated by each system. After playing each level, the subjects

2see http://www.marioai.org/LevelGeneration.

Figure 2: Representative small levels generated while minimizing Sv .

Figure 3: Representative small levels generated while minimizing Sa.

SYM HCTA ORE
enjoyment 2.70 ± 1.69a 2.97 ± 1.68a 3.89 ± 2.01b

aesthetics 2.72 ± 1.69a 2.78 ± 1.72a 3.36 ± 1.79b

difficulty 3.74 ± 1.85a 4.06 ± 1.78a 3.29 ± 2.12a

Turing 3.06 ± 1.83a 3.95 ± 2.12b 2.31 ± 1.93c

Table 1: Lower values are better for enjoyment and (visual)
aesthetics; larger values are better for Turing. Different let-
ters in a given row indicate statistically significant results.

gave scores according to the criteria described above. In ad-
dition to the scores, the subjects could inform us of technical
issues they might have had during the experiment. At the end
of the experiment the subjects filled a questionnaire inform-
ing their age, gender, and if they had played SMB before.

Our within-subject experiment considered only the data
of participants who finished playing all levels. Considering
those, the experiment had 47 participants: 43 males and 4
females with an average age of 27.53 and standard devia-
tion of 5.59. All participants had played SMB before. The
experiment was carried out online: our system was made
available in the Internet and our experiment advertised in
different mailing lists. Participation was anonymous.

Since all participants played one level generated by each
system, we used a balanced Latin square design to coun-
teract possible ordering effects. The tested levels were gen-
erated during the experiment by the evaluated systems – we
did not pre-select a set of levels to be tested. All systems gen-
erated levels of 160× 15. The systems were manually tuned
to generate levels with similar difficulty. Our experimental
design follows the one suggested by Mariño et al. (2015).

The mean results and standard deviations are shown in
Table 1. Different letters in a given row indicate statistical
significance. Shapiro-Wilk tests showed that our data is un-
likely to be normally distributed (p < .01). Thus, we used
the non-parametric Friedman test which showed significant
differences in all criteria but difficulty (p < .01).

We used Wilcoxon signed-rank tests to perform pairwise
comparisons of the results. We present the effect size of the
comparisons (r-values) in addition to p-values. Symmetry
generates levels that are significantly more enjoyable to play
than those generated by ORE (p < .001, r = 0.50). HCTA
also generates levels that are significantly more enjoyable to
play than those generated by ORE (p < .01, r = 0.42).
There is no statistical difference between the levels gener-
ated by Symmetry and HCTA with respect to enjoyment.

Pairwise comparisons on visual aesthetics showed that
Symmetry and HCTA generate levels with significantly
better visual aesthetics than those generated by ORE (p <
.05, r = 0.37 for Symmetry and p < .01, r = 0.39
for HCTA). There is no statistical significance between
Symmetry and HCTA in terms of visual aesthetics.

Pairwise comparisons on Turing showed that the levels
HCTA generates trick more people into thinking they were
generated by human designers than the levels generated by
Symmetry (p < .05, r = 0.30) and by ORE (p < .0001,
r = 0.56). Also, the levels Symmetry generates trick more
people into thinking they were generated by human design-
ers than the levels generated by ORE (p < .05, r = 0.31).

All pairwise comparisons reported as significant have ef-
fect sizes around the medium size mark of 0.3, indicating
substantial differences among the systems. Some of the pair-
wise comparisons show large effect sizes (r-values > 0.50).

Our results suggest that Symmetry generates levels that
are as enjoyable and as visually pleasing as those gener-
ated by HCTA. HCTA is a method that uses human workers
to select the set of small levels composing the IMB level.
Symmetry does not use any sort of human input: it solely
relies on the quality of the symmetrical levels generated by
our B&B approach.

The only criterion that Symmetry and HCTA differ is
Turing. This shows that although the levels generated by
both systems have comparable visual appeal, the participants
were able to notice that the levels generated by Symmetry
were created by a computer program.

(a) Original. (b) Sa (c) Sv (d) Random.

(e) Original. (f) Sa (g) Sv (h) Random.

(i) Original. (j) Sa (k) Sv (l) Random.

Figure 4: Representative sets of objects G used in our user study.

Finally, Symmetry was able to generate levels that are
significantly and substantially more enjoyable, and more vi-
sually pleasing than those generated by ORE, a system that
also does not account for human input while creating levels.

Comparison with Human Designers
In this section we compare the visual aesthetics of levels
generated by our system with those created by professional
designers for fixed sets of objects G.

We reproduced in IMB 10 chunks of original SMB levels
of size 15 × 15. These small levels were arbitrarily chosen
from an online repository of game maps.3 We collected the
set of objects G in each small SMB level and provided it
as input to B&B. B&B then produced levels, also of size
15× 15, with the same set of objects as the original ones.

We ran a user study in which we presented images of the
original small levels side by side with those generated by our
B&B procedure while minimizing Sa and Sv . In addition to
the small levels created by professional designers and those
generated by our system, we also displayed images of levels
created by randomly placing the objects but accounting for
the domain-specific constraints used with B&B.

In contrast with the IMB game, the images of the levels
were presented to the participants with a blue background to
ensure that the random background generated by the game
would not bias the participants’ perceived visual aesthetics.
Figure 4 shows three representative sets of objects G.

3http://ian-albert.com/games

Sa Sv Original Random
3.26 ± 1.74a 3.08 ± 1.91a 3.08 ± 1.85a 5.04 ± 1.96b

Table 2: Lower values are better. Different letters in a given
row indicate statistically significant results.

Each participant visualized all four images at once: one
created by a professional designer (Original), two generated
by our system (Sa and Sv), and one generated by the random
approach (Random). The participants answered for each im-
age if they agreed with the statement “This level has good
visual aesthetics” in a 7-Likert scale. After evaluating all 4
images, the participant could choose to either quit the ex-
periment or to evaluate another set of images. Each partici-
pant could evaluate from 1 to 10 sets G. In order to account
for ordering effects, we randomized the order in which the
sets G and the images were presented. Our experiment was
performed online. At the end of the experiment the subjects
filled a questionnaire informing their age, gender, and if they
had played SMB before. Our within-subject experiment had
23 participants: 19 males and 4 females with an average age
of 26.38 and standard deviation 3.81. The 23 participants
evaluated 215 sets G. They all had played SMB before.

Table 2 shows the average score and standard deviation
of each approach. Lower values mean that the participants
agreed more strongly that the levels have good visual aes-
thetics. Different letters indicate that two means are signifi-
cantly different. A Shapiro-Wilk test showed that our data

is unlikely to be normally distributed (p < .0001). The
non-parametric Friedman test showed a significant differ-
ence on the means (p < .0001). Pairwise comparisons with
Wilcoxon signed-rank tests showed statistical difference be-
tween Random and all the other approaches (p < .0001
and r > 0.50 for all comparisons). There was no statisti-
cal difference between the levels generated by our system
and those created by professional designers.

Our system often generated levels that were similar to
those created by professionals (see Figure 4 for examples).
The user study results suggest that our system using either
Sa or Sv is able to generate small levels as visually pleas-
ing as those created by professionals, and that have far better
visual aesthetics than those generated by Random.

These results support our hypothesis that our system is
able to generate visually pleasing game maps.

Conclusions
In this paper we introduced a computational model based
on the concept of symmetry for generating visually pleasing
game maps. We cast the problem of generating symmetrical
maps as an optimization task and propose a B&B approach
to solve it. We tested our approach with two user studies. In
the first user study the participants evaluated the levels gen-
erated by our system as enjoyable and as visually pleasing
as the levels created by a system that requires human input,
and more enjoyable and more visually pleasing than the lev-
els generated by another system. In the second user study we
compared the visual aesthetics of the small levels generated
by our system with those created by professional designers.
The participants rated the levels generated by our approach
as visually pleasing as those created by the professionals.

Although we applied our method to game design, we be-
lieve that our computational model and search procedure are
general and applicable to other domains such as the place-
ment of buttons and icons in graphical user interfaces.

Acknowledgements
The authors gratefully thank Claudio Toledo, Leonardo
Pereira, Lucas Ferreira, and Sandra Zilles for their construc-
tive comments on an earlier version of this paper. Financial
support for this research was provided by Brazil’s CAPES
(Science Without Borders), FAPEMIG, and CNPq.

References
Bauerly, M., and Liu, Y. 2006. Computational modeling
and experimental investigation of effects of compositional
elements on interface and design aesthetics. International
Journal of Human-Computer Studies 64(8):670–682.
Ferreira, L., and Toledo, C. F. M. 2014. A search-based ap-
proach for generating angry birds levels. In Proceedings of
the Conference on Computational Intelligence and Games.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup,
A. 2013. Procedural content generation for games: A sur-
vey. ACM Transactions Multimedia Computing, Communi-
cations. Applications 9(1):1:1–1:22.

Lai, C.-Y.; Chen, P.-H.; Shih, S.-W.; Liu, Y.; and Hong, J.-S.
2010. Computational models and experimental investiga-
tions of effects of balance and symmetry on the aesthetics
of text-overlaid images. International Journal of Human-
Computer Studies 68(1):41–56.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2012. Adapt-
ing models of visual aesthetics for personalized content cre-
ation. Transactions on Computational Intelligence and AI in
Games 4(3):213–228.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. De-
signer modeling for sentient sketchbook. In Proceedings of
the Conference on Computational Intelligence and Games.
Mariño, J. R. H.; Reis, W. M. P.; and Lelis, L. H. S. 2015. An
empirical evaluation of evaluation metrics of procedurally
generated Mario levels. In Proceedings of the Conference on
Artificial Intelligence and Interactive Digital Entertainment,
44–50.
Mawhorter, P. A., and Mateas, M. 2010. Procedural level
generation using occupancy-regulated extension. In Pro-
ceedings of the Conference of Computational Intelligence
and Games, 351–358.
Ngo, D. C. L.; Samsudin, A.; and Abdullah, R. 2000. Aes-
thetic measures for assessing graphic screens. Journal of
Information Science and Engineering 16(1):97–116.
Ngo, D. C. L.; Teo, L. S.; and Byrne, J. G. 2003. Modelling
interface aesthetics. Information Sciences 152:25–46.
Reis, W. M. P.; Lelis, L. H. S.; and Gal, Y. 2015. Human
computation for procedural content generation in platform
games. In Proceedings of the Conference of Computational
Intelligence and Games, 99–106.
Salimun, C.; Purchase, H. C.; Simmons, D. R.; and Brew-
ster, S. 2010. Preference ranking of screen layout princi-
ples. In Proceedings of the BCS Interaction Specialist Group
Conference, 81–87. British Computer Society.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2015. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.
Smith, G., and Whitehead, J. 2010. Analyzing the expressive
range of a level generator. In Proceedings of the Workshop
on Procedural Content Generation in Games, 1–7. ACM.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tana-
gra: a mixed-initiative level design tool. In Proceedings of
the International Conference on the Foundations of Digital
Games, 209–216. ACM.
Snodgrass, S., and Ontañón, S. 2014. A hierarchical ap-
proach to generating maps using Markov chains. In Pro-
ceedings of the Conference on Artificial Intelligence and In-
teractive Digital Entertainment, 59–65.
Sorenson, N.; Pasquier, P.; and DiPaola, S. 2011. A generic
approach to challenge modeling for the procedural creation
of video game levels. IEEE Transactions on Computing In-
telligence and AI in Games 3(3):229–244.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.

