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Abstract—One of the major challenges in procedural con-
tent generation in computer games is to automatically evaluate
whether the generated content has good quality. In this paper
we describe a system which uses human computation to evaluate
small portions of levels generated by an existing system for the
game of Infinite Mario Bros. Several such evaluated portions are
then combined into a full level of the game. The composition
of the small portions into a full level is done by accounting for
the human-annotated information and the mathematical model
of tension arcs used in interactive drama and storytelling. We
tested our system with human subjects and the results show
that our approach is able to generate levels with better visual
aesthetics and that are more enjoyable to play than other existing
approaches.

I. INTRODUCTION

In procedural content generation (PCG) one is interested
in using computer systems to automatically generate content
for specific problem domains. For example, when applied to
computer games, PCG systems automatically produce levels,
rules, textures, and other contents traditionally generated by
human professional designers. PCG in computer games has
drawn a lot of attention in the recent years—see [1], [2], [3]
for surveys. One of the reasons PCG systems have attracted so
much attention in the games community is that these systems
can be used to reduce the cost and time required for producing
computer games. Moreover, PCG can be a way of generating
content tailored to specific players [4], [5] and also to increase
the replayability of the games [6].

One of the major challenges in PCG is to automatically
evaluate whether the generated content has good quality. In
the context of computer games it is important to be able
to evaluate whether the generated content is rated highly by
users with respect to different measures such as visual aes-
thetics, enjoyment, and satisfaction. Researchers have aimed
at understanding the concept of enjoyment to develop methods
to automatically evaluate content in computer games. For
example, Togelius et al. [7] use a player’s behavior to generate
race tracks which are more fun to the player; Liapis et al., [8]
introduce general evaluation functions which are applicable to
different games; Sorenson et al. [9] learn a model of enjoyment
based on levels generated by professional designers. Such
works are usually motivated by the fact that it is not possible
to have humans evaluating content produced by machines. For
example, Shaker et al. [10] stated that “because of the large
amount of content that can be generated, it is not feasible to
humanly judge the results, and automatic evaluation becomes
a necessity”.

A. Our Contributions

In this paper we show that human computation [11] is a
valid alternative to evaluate content generated by PCG systems
for the game of Infinite Mario Bros (IMB) [12]. That is, we
rely on human workers to measure whether particular content
is of good or bad quality. Human evaluations can be quickly
obtained in environments such as the Amazon Mechanical
Turk (AMT) for a modest price. When using environments
such as the AMT we do not need to ask (and perhaps bother)
the player about their preferences as we can have human
workers evaluating the content generated.

Our system uses human computation to quickly evaluate
small portions of the game generated by an existing PCG
system. In this paper we refer to these small portions of the
game as small levels. Human workers provide annotations
about the visual aesthetics, enjoyment, and difficulty of the
small levels. Several annotated levels are then combined into
a full level of IMB (we also refer to the full levels as larger
levels). The composition of the small levels into larger levels
is done by accounting for the human-annotated information
and the mathematical model of tension arcs used in interactive
drama and storytelling [13].

In this paper we perform two experiments. In the first
experiment human workers annotated a collection of almost
2,000 small levels of the game of IMB. In the second exper-
iment human subjects evaluated our proposed approach and
other approaches encountered in the literature. Our quantitative
and qualitative results on the second experiment show that
the levels generated by our method can be more enjoyable
to play and can have better visual aesthetics than the levels
generated by other schemes. Our results show that the human-
computation scheme is practical and thus a good alternative
approach to generate good-quality content for the game of
IMB.

II. RELATED WORK

Here we describe how our work differentiates from a few
other PCG works in platform games. For a thorough literature
review we refer the reader to [1], [2], [3].

Smith et al. [14] presented Tanagra, a system for devel-
oping levels for 2D platform games such as IMB. Tanagra
allows the game designer to specify parts of the level and
the system completes the level while respecting the designer’s
decisions. Sorenson et al. [9] presented a system which uses
the idea of rhythm groups introduced by Smith et al. [15] to



define a computational model of player enjoyment to evolve
levels of IMB. Our idea of applying tension arcs to generate
full levels of IMB is somewhat similar to the rhythm groups.
The main difference between the tension arcs (as we define in
this paper) and the rhythm groups is that the former are based
on human-annotated content while the latter are based on a
mathematical model for approximating the player’s anxiety.
Moreover, rhythm groups capture the low-level challenges of
the game. By contrast, as we explain later in this paper, tension
arcs aim at controlling the player’s tension by controlling the
high-level challenges of the game.

Shaker et al. [4] describe a system for generating player-
specific content for IMB which directly asks questions to the
players about their preferences. By contrast, as our system
is not designed to generate player-specific content, we do
not ask questions to players directly, we ask questions to
human workers as a pre-processing step instead. In another
work, Shaker et al. [16] showed how to extract features to
learn predictive models of the player’s experience in IMB. By
contrast, we use the annotations provided by humans to directly
generate levels of IMB—we assume that human annotations
can be quickly obtained, therefore we do not learn a model
to generalize the annotated data. Another difference is that we
introduce a novel method for connecting the small levels to
generate a large level of the game of IMB.

The systems mentioned above are orthogonal to the ideas
we introduce in this paper. That is, one could use any PCG
system for IMB in conjunction with our system by having them
generating small levels which are then evaluated by human
workers and combined by our tension arc-based system into a
full level of the game.

The mathematical model of tension arcs we use for
composing the IMB levels have been successfully used in
interactive drama [13] and storytelling [17]. We show that
such model can also be effective in PCG for platform games.
Recently, algorithms using human computation have become
a good alternative for solving tasks which are hard for com-
puters to solve. For example, reCAPTCHA [18] uses human
computation to digitalize words that computer programs are
not able to accurately recognize. In this paper we show that
human computation is a viable approach for evaluating the
content generated by computational intelligence methods.

III. THE PROBLEM DOMAIN OF MARIO BROS

In this paper we are interested in the problem of automati-
cally generating levels of the game of IMB, a game which has
been used by other researchers to evaluate PCG systems—for
more details on the use of IMB in research please refer to the
work of Togelius et al. [19]. The advantage of using IMB in
our experiments is that we are able to compare the quality of
the content generated by our system with that of other systems
found in the literature.

A screenshot of IMB is shown in Figure 1. The player
controls Mario (on the center of screen). Mario’s goal is to
reach the rightmost spot of the level. In order to succeed, Mario
has to avoid enemies and other challenges. The IMB levels are
grid spaces containing a set of objects such as mountains and
enemies. Figure 1 depicts part of a level which contains four
mountains of different widths and heights, several enemies,

Fig. 1: Screen shot of the game of Infinite Mario Bros.

and a few boxes which Mario can break to collect power-
up items. Every object is associated with a location on the
grid (x and y coordinates) and some of the objects such as
mountains and pits can have different heights and widths—
boxes, a few enemies, and the small version of Mario himself
occupy a single cell on the grid. In this paper all full levels
are represented as a grid of size 160× 15.

Let L = {o1, o2, · · · , on} be a level of IMB where
o1, o2, · · · , on are the n objects composing L. The PCG
problem for IMB is to choose the set of objects in L as well
as the objects’ x and y coordinates. For some of the objects
such as pits and mountains we also need to define their height
and width values. Our goal is to generate a level L which is
both visually appealing and enjoyable to play.

IV. THE HUMAN COMPUTATION APPROACH TO PCG

In this section we describe our approach for automati-
cally generating levels of IMB. We call our system Human-
Computation Tension Arc-Based (HCTA) level generator. A
high-level description of HCTA is as follows.

1) A PCG system generates a collection Γ of levels of
IMB with grid size of 20× 15.

2) Workers annotate each l ∈ Γ with respect to three
measures: enjoyment, visual aesthetics, and difficulty.

3) Different levels of Γ are concatenated to form a full
level of larger size.

The central idea behind HCTA is to have human workers
quickly annotating a large number of small levels (of size
20 × 15) of IMB. Then, these small levels are combined in
different ways to generate an even larger number of different
IMB levels of larger size. It is important to note that HCTA
does not assume that the human workers are professional game
designers. HCTA uses the annotation provided by anyone able
to play IMB.

A large number of annotated small levels can be quickly
obtained for a modest cost in environments such as AMT.
Another option is to make our system available online and
ask for volunteers to annotate the levels. In this paper we use
the latter. HCTA assumes that the workers’ perceived visual



aesthetics and enjoyment on the small levels will be similar to
those of people playing the resulting larger level. Also, while
we recognize that different players might enjoy different styles
of gameplay, we expect HCTA to produce levels with good
aesthetics and which are enjoyable to play on average. Another
observation is that HCTA does not disrupt the gameplay as it
asks questions to human workers as a preprocessing step and
not to the players. We believe that asking questions to the
players could break their gameplay immersion.

In the next sections we describe each of the steps of HCTA
mentioned above. First, we describe the basic PCG system
used to generate the library Γ, then the experiment in which
volunteers annotated the small levels in Γ, and finally, we
explain the method we introduce to concatenate small levels
into full-sized levels of IMB.

V. BASIC SYSTEM FOR LEVEL GENERATION

The system we use for generating Γ is referred as the Notch
Level Generator (which we abbreviate as NLG) after the game
designer Markus “Notch” Persson. NLG receives as input a
difficulty value d for stochastically determining the number of
enemies and other challenges to be placed in the level. The
levels NLG generates will tend to be harder for larger values
of d. NLG starts with an empty level—in our case an empty
grid of size 20×15—and it iteratively adds objects to the grid
according to the value of d. NLG follows simple heuristics for
adding objects to the levels. For example, when adding a hill,
NLG limits the hill’s height to a value that Mario is able to
reach by jumping from the ground or from some other hill.

We use NLG to generate more than 2,000 levels of size
20 × 15 with values of d selected uniformly at random to
ensure a collection of levels Γ with different difficulty.

VI. HUMAN-ANNOTATED LEVELS

The NLG system follows a set of hardcoded rules to
stochastically create levels of IMB. Although simple, the levels
NLG generates can have good visual aesthetics and be enjoy-
able to play. Unfortunately, however, due to the stochasticity
of the generator and the lack of a systematic evaluation, NLG
also produces levels which are not visually appealing and are
not necessarily enjoyable to play.

In HCTA human workers play all levels in Γ and annotate
each of the levels with respect to three measures: enjoyment,
visual aesthetics, and difficulty. We note that the value of d
provided by the NLG system offers a good indication of the
player’s perceived difficulty of the level. However, we noticed
in preliminary experiments that sometimes a level l has a large
number of enemies and challenges (determined by a large value
of d) but l is not necessarily a difficult level to play. This
happens because there could be alternative paths the player
can choose in order to avoid facing all challenges posed by
the level. Thus, workers also evaluated the difficulty of the
levels in Γ.

We made our system available for download and invited
undergraduate and graduate students in the Departamento de
Informática, at Universidade Federal de Viçosa, in Brazil to
play the levels in Γ. The students voluntarily and anonymously
played the levels. Before playing the levels the volunteers were

instructed that the levels played would be much smaller than
regular levels of the game of IMB. We assumed that most of
the volunteers had played the game of Mario before and we
did not want them to be disappointed by the reduced size of
the levels. After playing each level the volunteers provided a
score from 1 to 9 to each of the following criteria: enjoyment,
visual aesthetics, and difficulty.

A score of 1 for enjoyment, visual aesthetics, and difficulty
means that the level is enjoyable, is visually appealing, and is
difficult, respectively. Similarly, a score of 9 for enjoyment,
visual aesthetics, and difficulty, means that the level is not
enjoyable, is not visually pleasing, and offers no challenge to
the player, respectively.

The order in which the volunteers annotated the levels in
Γ was random, and every level l in Γ could be annotated
only once by each volunteer. By using such an approach the
volunteers annotated most of the levels in Γ, and some of the
levels were annotated more than once by different volunteers.
We use the average score given by different volunteers in case
a level was annotated more than once. We removed from Γ
the levels that were not annotated by any volunteer.

Since the levels could be played in a few seconds, a
few minutes of work was worth several annotated levels. We
counted 1,928 annotated levels in our server 30 days after we
advertised our system in our department’s mailing list.

A. Representative Annotated Levels

We now present a few annotated levels from our experiment
with human workers. First we show the scores of a few
representative levels (quantitative results), then we report a few
comments provided by the workers (qualitative results).

1) Quantitative Results: Figure 2 shows a few representa-
tive human annotated levels from our experiment. The numbers
in parenthesis show the value in a scale from 1 to 9 of
enjoyment, visual aesthetics, and difficulty, respectively. While
the evaluation is subjective and the volunteers do not explain
the scores provided, we now try to interpret the evaluation
scores of the levels shown in Figure 2.

The level shown in Figure 2 (a) shows a level with no
challenge—there are no enemies or pits. Moreover, the objects
are oddly placed on the screen. That is, the platform of blocks
on the top of the screen has no purpose since it is not reachable
by Mario. These reasons support the score of (9, 9, 9) provided
by the worker to the level.

The levels shown in (b) and (c) are similar to each other:
both have a pit and thus offer some challenge to the player.
However, the volunteer who annotated (c) found the level very
easy and marked its difficulty as a 9, while the volunteer who
annotated (b) decided to give a 7 to the level. It is expected
to see some variance on the scores provided by the workers.
However, we note that the scores for difficulty for both (b) and
(c) are somewhat similar. We also notice in these two levels
that the score of aesthetics is 9 for (b) and 7 for (c). This is
justified by the unreachable mountain above the green pipe in
(b) which deteriorates the visual aesthetics of the level. The
level shown in (d) has a better aesthetics score than (a), (b), and
(c), which is reasonable since all objects are well distributed
on the screen and are all reachable by Mario.



(a) (9, 9, 9) (b) (8, 9, 7) (c) (8, 7, 9)

(d) (8, 6, 9) (e) (6, 3, 1) (f) (4, 3, 5)

(g) (1, 1, 4) (h) (6, 5, 7) (i) (3, 3, 4)

Fig. 2: A few representative human evaluations for levels in Γ. The numbers in parenthesis show the value of enjoyment, visual
aesthetics, and difficulty, respectively in a scale from 1 to 9. For example, a level with values (9, 9, 9) mean that the level is not
enjoyable, it has bad visual aesthetics, and it is not challenging.

The level shown in (e) is considered more difficult (dif-
ficulty of 1) than level (h) (difficulty of 7), despite the fact
that (h) has more enemies than (e). This is because in (h)
the player has an alternative path going through the top of the
mountain while in (e) the player must act quickly before being
caught by three flying enemies. Similarly, (f) is considered
more difficult than (h) because the flying turtle comes from
the top of the mountain after Mario while in (h) the player
can safely stay on the top of the mountain. However, (f) is
considered easier than (e) probably because of the reduced
number of enemies and because in (f) Mario can hide from
the flying turtle below the blocks in the center of the level.
These examples clearly illustrate the fact that simply counting
the number of enemies on the screen can be ineffective in
determining the actual difficulty of the level.

Finally, levels (g) and (i) pose interesting challenges which
could make the levels more enjoyable to play. In (g) Mario
has to dodge bombs while crossing the level and collecting

the power-up item available in the question-mark block on the
center of the level; in (i) Mario has to face several enemies to
reach the other side of the screen.

Interestingly, we noticed a high positive correlation be-
tween enjoyment and visual aesthetics in the levels annotated
by the volunteers—coefficient of 0.72 amongst all evaluations.
This result suggests an interesting relation of visual aesthetics
and enjoyment: levels with well-placed objects tend to be
more enjoyable to play. Enjoyment and difficulty are also
correlated (coefficient of 0.67). The relation between difficulty
and enjoyment is well known. Namely, Piselli et al. [20]
showed that the Yerkes-Dodson law [21] applies to computer
games in the sense that pleasure will be maximum somewhere
in between the largest and the smallest challenge. That is,
enjoyment increases with difficulty up to some point, where
the level gets too difficult to be enjoyable.

The smallest correlation coefficient is between aesthetics



and difficulty (coefficient of 0.47). Clearly these two metrics
can be very uncorrelated. For example, there can be levels
which are too difficult due to a large number of enemies and
also have bad aesthetics due to the poor placement of objects
on the screen.

2) Qualitative Results: We also allowed the volunteers to
optionally enter comments on the levels played. One of the
volunteers stated that the levels were too small to be enjoyable,
specifically they wrote: “After playing 5 levels I noticed that
they were too short to be fun”. Such a comment is an indication
that the enjoyment on the small level could differ from the
enjoyment on the same level on a larger context. Nonetheless,
other volunteers apparently enjoyed playing some of the small
levels as they wrote comments such as “Perfect!” and “This
level is very good!”.

B. Relation of Level Size and Enjoyment

The qualitative results shown above can be worrisome
as it shows that people’s enjoyment while playing the small
levels (Fun-Small) could differ from people’s enjoyment while
playing the larger levels (Fun-Large). One solution for making
Fun-Small being closer to Fun-Large is to increase the size of
the small levels. For example, instead of using levels of size
20×15, one could use levels of size 40×15, which are closer
to the actual full level size. However, using larger levels in the
human computation process will imply in an increase in the
time required to evaluate each individual level and also in an
increase on the number of levels evaluated in order to have a
collection of levels with good quality, as we now explain.

Let p be the probability of the NLG system generating a
small level of size 20 × 15 with good visual aesthetics and
which is enjoyable to play. In order to have one level of
this size with good visual aesthetics and enjoyment in our
collection of levels, one has to generate and humanly evaluate
1
p levels on average. If the evaluated levels are twice as large
(size of 40× 15), then NLG has to generate two small levels
of size 20×15 in a row with good aesthetics and enjoyment. It
is reasonable to assume that NLG generates such a level with
probability of p2. Thus, one has to generate approximately 1

p2

levels of size 40× 15 on average to have a single small level
with good visual aesthetics and enjoyment in our collection.

To illustrate the reasoning above, let p = 0.01. On average
we would need to generate 100 levels of size 20× 15 to have
one good level in our collection. By contrast, we would need
approximately 10,000 levels on average to have one good level
of size 40× 15 in our collection—we would have to evaluate
two orders of magnitude more levels when doubling the size
of the levels. We believe there is a compromise between the
relation of Fun-Small and Fun-Large and the number of levels
the workers have to evaluate to create a collection of levels
containing good-quality levels. We believe that the size of
20×15 offers a good tradeoff between the human computation
effort and relation of Fun-Small with Fun-Large. Previous
works also used levels of size similar to our small levels. For
example, the rhythm groups in Sorenson et al.’s system [9] and
Tanagara’s beats [14] have sizes similar to our small levels.

Fig. 3: Tension arc used in our experiments. The difficulty
values are obtained with human computation, and the values
on the x-axis denote the tension arc’s ordering.

VII. TENSION-ARC BASED SMALL LEVEL COMBINATION

The human computation procedure described above outputs
a collection of small annotated levels. In this section we
describe how HCTA combines such levels into a full IMB
level. For doing so we borrow the idea of tension arcs used
in interactive drama [13] and story writing [17]. Vogler [17]
argues that in storytelling, either in books, movies or TV
shows, the story usually follows a pattern in which the tension
builds up to a climax and it drops before concluding. In HCTA
we use similar idea to try to control the player’s tension
throughout a full level of IMB as we now explain.

Algorithm 1 Tension-Arc Concatenation

Require: Collection of annotated small levels Γ, tension arc
T = {d1, d2, · · · , dM}, quality parameter k.

Ensure: ∇ = {l1, l2, · · · , lM}
1: for i = 1 to M do
2: choose at random a small level l in Γ with difficulty di

which is at same time in the set of k levels with highest
visual aesthetics score and in the set of k levels with
highest enjoyment score.

3: append l to ∇
4: end for

Let a ∇ = {l1, l2, · · · , lM} be a totally ordered set with
∇ ⊆ Γ and each level l ∈ ∇ with size x × y. ∇ represents
a level of size x ·M × y formed by the concatenation of the
levels l ∈ ∇ according to some ordering O. ∇ is the final
output of HCTA.

In HCTA a tension arc defines the ordering O. A tension
arc T is a sequence of difficulty values {d1, d2, · · · , dM} where
d1 is the difficulty of the first small level composing ∇, d2 is
the difficulty of the second small level, and so on. Figure 3
shows a tension arc as a function of the levels in ∇ and their
difficulty value. The numbers on the x-axis from left to right
define the ordering O of the small levels composing ∇. Such
a tension arc follows the idea of building up the tension by
increasing the difficulty of the level as the player evolves into



the game, until reaching the climax (small levels 5 and 6 in
∇) and dropping on small levels 7 and 8.

For a given collection of annotated levels Γ, tension arc
T , and integer k, HCTA builds ∇ as shown in Algorithm 1.
HCTA selects a level l in Γ for each difficulty value d in T
and appends l to ∇. The parameter k controls ∇’s quality
by allowing HCTA to select only the levels amongst the k
with highest scores for visual aesthetics and enjoyment. For
small values of k ∇ will be composed only by small levels
from Γ with the highest human perceived visual aesthetics
and enjoyment, but the levels produced by HCTA might be
repetitive—larger values of k allow for less repetition but for
a likely loss in quality. In our experiments we use k = 50.

HCTA can guarantee level playability by generating
playable small levels and connecting them with “safe walking
areas”, as explained by Smith et al. [22]. However, we did
not implement such areas in our system as we did not ob-
serve the generation of non-playable levels in our preliminary
experiments with NLG as the generator of the small levels.

One can easily notice that our proposed approach can be
implemented in ways different than the one we describe in
this paper. For example, instead of using a tension arc with
growing tension, one could try to use a constant difficult value
throughout, or even random values. Moreover, instead of using
NLG to generate the collection Γ one could use any other PCG
system. Also, instead of using human computation, one could
also use other measures (e.g., the metrics introduced in [23]).

VIII. EMPIRICAL EVALUATION

In this section we present our empirical evaluation of the
HCTA system with human subjects.

A. Methodology

1) Systems Tested: We evaluate four different systems:
HCTA with the tension arc shown in Figure 3 (HCTA+P, where
the P stands for “parabolic”, the shape of the tension arc),
HCTA with a random tension arc (HCTA+R), the Occupancy-
Regulated Extension generator (ORE) [24] which was the
winner of the 2011 Mario AI Competition (MAIC), and NLG.
We wish we could evaluate more systems in our experiment
(e.g., other entries of the MAIC), but that would substantially
increase the time required to run the experiment and would
also require more subjects. We chose to use ORE because it
was the 2011 MAIC winner and its code was available online.1

2) Evaluated Metrics: The systems were evaluated accord-
ing to the following criteria: enjoyment, visual aesthetics,
difficulty, and Turing. The Turing criterion was meant to
measure whether the participant thought that the level played
was designed by a human or machine. In the beginning of the
experiment we stated that the participants could be playing
levels generated either by humans or by machines.

Each participant was asked to answer how much they
agreed or disagreed, in a 7-likert scale, with the following:

1) This level is enjoyable to play.
2) This level has good visual aesthetics.

1see http://www.marioai.org/LevelGeneration for details.

3) This level is difficult.
4) This level was developed by a machine.

A score of 1 for enjoyment and visual aesthetics mean that
the participant strongly agrees that the level played is enjoyable
and has excellent visual aesthetics; a score of 1 for the Turing
criterion means that the participant strongly agrees that the
level was designed by a machine; finally, a score of 1 for
difficulty means that the participant strongly agrees that the
level is difficult.

3) Participants: Our within-subject experiment had 34
participants: 30 males and 4 females with an average age
of 23.73 and standard deviation of 4.31. The experiment was
carried out online. Namely, we made our system available in
the Internet and advertised our experiment in different mailing
lists. Participation was anonymous and volunteered.

4) Experimental Design: In the beginning of the experi-
ment the subjects filled a questionnaire informing their age,
and their skills in the game of Mario (i.e., how much Mario
they played before). Subjects were instructed about the controls
of the game before playing a practice level. The practice
level is important for participants to get acquainted with
the keyboard control. The practice level was generated by
the NLG system. Only after playing the practice level that
the participants evaluated the levels generated by the PCG
systems. After playing each level the participants gave scores
according to the criteria described above in a 7-likert scale. In
addition to the scores, the participants had the option to enter
comments justifying their scores, informing us of technical
issues they might have had, or making general suggestions on
the experiment. Since all participants played levels generated
by the four tested systems, we used a balanced Latin square
design to counteract ordering effects.

In order to have a fair comparison of the levels generated
by different systems we had all systems generating levels of
the same size: 160 × 15. We chose such size because we
did not want the experiment to be too long. In total each
participant played 5 levels (1 practice level and 4 other levels
for evaluation), and we could not afford creating larger levels
as it could be tiring for the participants.

Moreover, we controlled the systems HCTA+P, HCTA+R,
and NLG to generate levels with difficulty similar to the levels
generated by ORE. This was done in the HCTA approaches
by bounding the difficulty value used in the tension arcs, and
in the NLG approach by bounding the value of d. We evaluate
difficulty in this experiment only to make sure we were able
to control such variable on the levels tested.

5) Data Cleaning: The data provided by the participants
who were not able to play all levels in our experiment is not
included in our results. We also removed the data of a single
participant who had never played the game of Mario before.
By examining the logs of the experiment we noticed that this
participant was not able to get too far into the game and thus
not able to properly evaluate the levels. The number of 34
participants was obtained after removing such data.

B. Hypotheses

We are interested in testing if HTCA is able to generate
levels with good visual aesthetics and that are enjoyable to



TABLE I: Empirical evaluation of PCG systems. Lower values
of enjoyment and visual aesthetics indicate levels that are
more enjoyable to play and have better visual aesthetics; larger
values of Turing indicate levels which participants were more
prone to believe that were generated by humans.

HCTA+P HCTA+R ORE NLG
Enjoyment 2.45 +/- 1.87 2.91 +/- 2.04 3.54 +/- 1.93 2.82 +/- 1.98
Aesthetics 2.48 +/- 1.77 2.42 +/- 1.93 3.60 +/- 1.65 3.02 +/- 2.19

Turing 3.42 +/- 2.03 3.22 +/- 2.13 2.71 +/- 2.09 3.17 +/- 2.32
Difficulty 3.45 +/- 1.69 3.22 +/- 2.28 3.08 +/- 1.57 3.71 +/- 1.72

play. We also want to test if the participants are tricked into
thinking that the levels the HTCA approach generates are
produced by human designers. Finally, we are also interested
in testing the effect of different tension arcs in HCTA.

Specifically, we test the following hypotheses:

H1 On average, the HCTA+P and HCTA+R approaches
generate levels which are more enjoyable to play than the
levels generated by the other approaches tested.

H2 On average, the HCTA+P and HCTA+R approaches
generate levels with better visual aesthetics than the levels
generated by the other approaches tested.

H3 On average, the HCTA+P approach is better at tricking
players into thinking that the levels were produced by humans.

H4 Different tension arcs can influence how much enjoyment
the player has while playing levels generated by HCTA.

C. Quantitative Results

The mean results +/- the standard deviations of our exper-
iment are shown in Table I. Shapiro-Wilk tests show that our
data is not normally distributed (p<.0001 for all criteria). Thus,
we use the non-parametric Friedman test which shows a sig-
nificant difference on enjoyment (χ2(3)=8.18, p<.05) and on
visual aesthetics (χ2(3)=9.18, p<.05) across different systems;
there was no statistical significance for Turing and difficulty.
The small difference in the difficulty scores is an evidence that
difficulty was indeed controlled in our experiment, allowing
a fair comparison of the different approaches. We now turn
to post-hoc tests (Wilcoxon signed-rank) of the systems with
respect to enjoyment and visual aesthetics.

1) Pairwise Comparison on Enjoyment: HCTA+P gener-
ates levels which are significantly more enjoyable to play than
the levels HCTA+R generates (p<.05) and the levels that ORE
generates (p<.005). The levels HCTA+R generates are signif-
icantly more enjoyable to play than the ones ORE generates
(p<.05). Finally, the levels NLG generates are significantly
more enjoyable to play than the ones ORE generates (p<.05).

2) Pairwise Comparison on Visual Aesthetics: HCTA+P
generates levels with significantly better visual aesthetics than
the levels ORE generates (p<.05) and than the levels NLG
generates (p<.05). Also, HCTA+R generates levels with sig-
nificantly better visual aesthetics than the levels ORE generates
(p<.01) and than the levels NLG generates (p<.05).

D. Discussion of the Quantitative Results

1) Testing H1: In general we observe that the participants
enjoyed playing the levels generated by all systems. For
example, a score of two and three for enjoyment means that
the participant agrees and somewhat agrees, respectively, that
the level is enjoyable to play. HCTA+P was the system which
generated levels which the participants enjoyed playing the
most, with a score of 2.45. ORE was the system which
generated levels which participants enjoyed playing the least.
The average score for enjoyment for ORE was of 3.54, which
is the closest to the score of 4 which means that the participant
neither agrees nor disagrees with the statement that the level
is enjoyable to play.

The levels HCTA+P generates are significantly more enjoy-
able to play than the levels generated by HCTA+R and ORE.
The difference between HCTA+P and NLG was not significant
in our experiment. These results partially support H1 in the
sense that both HCTA+P and HCTA+R generated levels which
were more enjoyable to play than those generated by ORE,
but no statistical difference was observed with respect to the
levels NLG generates. We conjecture that the issue regarding
the level size and enjoyment discussed in Section VI-B played
a role in the results.

2) Testing H2: Similar to the results on enjoyment, in
general the participants liked the visual aesthetics of the levels
generated by all systems. HCTA+R was the system with
best score (2.42) and HCTA+P was the second best (2.48).
Both ORE and NLG had an average score above 3. Both
HCTA systems generated levels with significantly better visual
aesthetics than ORE and NLG. These results support H2.

3) Testing H3: The system which performed best in trick-
ing people into thinking that the level was developed by a
human designer was HCTA+P, followed by HCTA+R, NLG,
and ORE. The average score of 3.42 for HCTA+P means that
people somewhat agree that the level was developed by a
machine. Also, the differences on the Turing score values were
not statistically significant. Our results do not support H3.

4) Testing H4: Enjoyment was the only criterion in which
there was a significant difference between the HCTA ap-
proaches. HCTA+P was slightly better than HCTA+R in the
Turing criterion and it produced levels which were slightly
easier than HCTA+R. However, these results were not statisti-
cally significant. The average score of visual aesthetics for both
systems is nearly the same. We conjecture that the perceived
visual aesthetics depends only on what the player sees on the
screen at a given time. This is in contrast with enjoyment,
where there could be a relation with the level’s structure as
discussed in Section VI-B.

It is interesting to observe that the tension arc shape can
influence the enjoyment the players experience. While it is
standard to have tension arcs depicting growing tension in
storytelling [17], it was not immediately clear to us that such
a tension arc could also have a positive impact in IMB. This
result fully supports H4. While the tension arc shown in
Figure 3 performed better than the random tension arc, we
do not know whether there are better tension arcs to be used
to generate levels in platform games or even if the tension arc
shape should be player-dependent. Investigating these issues
are interesting directions of future work.



E. Qualitative Results

Written evaluation was optional in our experiment and only
a few participants entered comments about the levels played.
Here we highlight a few of such comments. A participant
noticed the carry-on effect of playing multiple levels: “this
level seems to be easier than the first I played, maybe it is
because I am getting used to the game”. Although the ordering
effect exists, as mentioned by the participant, an indication that
our balanced Latin square design counteracted such effects is
the small difference in the difficulty scores (see Table I).

Another participant wrote about a level generated by ORE:
“The randomness of how the objects are placed on the screen
make me believe this level was generated by a machine.”.
and “The aesthetics isn’t good because there are objects in
places where they aren’t needed.” A level generated by ORE
also received a compliment: “If this level was developed by
a machine, then this is really good!”. Another participant
wrote about a level generated by HCTA+P: “Despite the large
number of enemies, I believe that the structure of the level was
built by a human designer”.

IX. CONCLUSIONS

In this paper we introduced HCTA, a PCG system for
IMB which uses human computation to evaluate the content
generated. HCTA uses an existing PCG system to generate a
large number of small levels which are evaluated by human
workers. Then, HCTA uses the mathematical model of tension
arcs to combine a number of small annotated levels into a
larger level of the game. We also performed a systematic
experiment with human subjects to evaluate levels generated by
the proposed approach and also by other systems. Our results
showed that (i) the levels generated by the HCTA approaches
had better visual aesthetics than the levels generated by all
other schemes tested on the average case; (ii) the levels
generated by the HCTA approaches were more enjoyable to
play than one of the other schemes tested on the average case.

Our results suggest that the human-in-the-loop approach is
feasible for the task of PCG in platform games and that such
an approach can produce content of good quality. Finally, we
believe that the HCTA approach is general to be applied to
other Mario-like platform games such as Sonic the Hedgehog.
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