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ABSTRACT
An efficient implementation of large graph processing al-
gorithms on distributed-memory machines requires a bal-
anced partitioning of the graph across the machines. In a
previous paper we presented an algorithm, named Work-
load Partitioning and Scheduling (WPS), that uses domain-
specific knowledge to guide a sampling procedure in large
implicitly-defined graphs. WPS’s sampling procedure is used
for partitioning the workload into parts of similar size which
is then distributed amongst different machines. This arti-
cle extends that earlier study and presents an investigation
of the parallel and distributed implementation of Meyer’s
∆-Stepping algorithm for solving the Single-Source Shortest
Path (SSSP) problem for directed graphs. Our implemen-
tation leverages the WPS algorithm for evenly distributing
the workload involved in processing the vertices of the in-
put graph across distributed-memory machines. In contrast
with the previous study, which focussed on implicitly-defined
graphs, this work demonstrates that WPS is also equally ap-
plicable on explicitly-defined graphs.

Empirical evidence shows that applying WPS to Meyer’s
SSSP algorithm yields significant performance benefits.

1. INTRODUCTION
Applications in various domains such as combinatorial op-

timization, graph theory, and state-space exploration ex-
hibit irregular data and task parallelism. These applica-
tions tend to generate substantial amounts of work at run-
time. A large body of recent work has focussed on exploit-
ing irregular and latent parallelism inherent in such appli-
cations with considerable success. Kulkarni et al. show
that many applications exhibit a generalized form of data-
parallelism called amorphous data-parallelism [9], despite
the application’s irregular nature. Similarly, another related
problem of evenly distributing the work in irregular applica-
tions across distributed-memory nodes has also been studied
extensively. Domain experts have implemented highly opti-
mized parallel programs and libraries, such as the parallel
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BGL[4], Pregel [14] and its open-source counterpart Giraph,
distributed GraphLab [12], Green-Marl [5], ∆-Stepping [15,
13], for processing graphs on large distributed-memory ma-
chines. These efforts are highly tailored towards domain-
specific needs. As such, it is difficult to extract broadly
applicable mechanisms from these implementations.

In a previous article we proposed a structured approach,
called Workload Partitioning and Scheduling (WPS), for pre-
dicting the workload in irregular applications [17]. Our pre-
vious work was primarily aimed at algorithms where the
work items, such as vertices in graphs, may be generated
implicitly and may not be available a priori. An important
contribution from that study is the following observation:
Many work items in applications tend to show a large de-
gree of similarity. The similarity depends on the application
domain. For example, two states in the 4 × 4 sliding tile
puzzle problem may be considered similar if they both entail
the same number of moves to reach a goal state. As such,
domain-specific knowledge offers good heuristics to define
the similarity of work items in applications. Such heuristics
can be used to selectively sample only a small number of
work items. Workload analysis of the sampled work items
can then be used as a good predictor of the entire workload
generated by an application. This estimate of the total work-
load generated by an application, either implicitly or explic-
itly, can then be leveraged by a runtime system to evenly
distribute the workload. Our previous work illustrates this
observation largely in terms of tree search algorithms.

This work extends that earlier study and presents an in-
vestigation of the parallel and distributed implementation of
Meyer’s ∆-Stepping algorithm for solving the Single Source
Shortest Path (SSSP) problem for directed graphs. Our
implementation leverages the WPS algorithm for evenly dis-
tributing the workload involved in processing the vertices
of the input graph across distributed-memory machines. In
contrast with Paudel et al.’s study which focused on implicitly-
defined trees, this work demonstrates that WPS is also effec-
tive on explicitly-defined graphs. As we show later in this
paper, the distinction between trees and graphs is impor-
tant in the context of workload distribution due to StraSa,
the sampling algorithm employed by WPS. Although StraSa

is able to produce near-perfect estimates of the workload
when the work items are represented as trees [11, 17], it of-
ten fails to produce good estimates when the work items are
represented as graphs [10]. Our empirical results show that
despite its inability of producing good estimates in graph
structures, WPS is effective in partitioning the workload of
SSSP problems.



2. PROBLEM DEFINITION
In this paper G = (V,E) is a explicitly-defined directed

graph representing an application problem. Let Γ(n∗) with
n∗ ∈ V be a Work-Item Set (WIS) representing the set of
items processed by an algorithm while finding the shortest
paths from n∗ to all other vertices in the graph. In this paper
we will write WIS instead of Γ(n∗) whenever n∗ is clear
from context. For each n ∈ V , child(n) is the set of items
generated when n is processed: child(n) = {ni|(n, ni) ∈ E}.

Given M processing nodes in a computer cluster and a
WIS, the workload partitioning problem consists in parti-
tioning the items in WIS into M parts W1,W2, · · · ,WM of
similar size. Our goal is to minimize

∑
i,j∈{1,··· ,M} |Wi| −

|Wj |, where |Wi| is the size of Wi. We assume that all items
in WIS take approximately the same amount of time to be
processed.

Our current work is similar to our original work in that
we also aim at partitioning the workload of graph-search al-
gorithms. However, the current approach differs from the
earlier work in two important ways. First, we apply WPS to
explicitly-defined graphs, which is in contrast with the implicitly-
defined graphs used in our earlier work. Second, the work
items of the problems, where WPS was originally applied,
could be represented by a tree. The tree representation al-
lowed WPS to sample the work items directly. By contrast,
as we explain later in the paper, we do not have access to
the WIS during WPS’s sampling. We approximate the WIS
by assuming it has a tree structure. Although our assump-
tion does not hold in practice, our empirical results show
that the WPS approach can also be effective when applied to
SSSP.

3. STRATIFIED SAMPLING (StraSa)
A key part of the WPS algorithm is the sampling it per-

forms for partitioning the workload amongst different pro-
cessing nodes. In this section we explain Stratified Sampling
(StraSa), the sampling algorithm WPS employs.

Knuth [8] presents a technique to estimate the size of
the tree expanded by a search algorithm such as chrono-
logical backtracking. His technique repeatedly performs a
random walk from the root of the tree. When all branches
have the same structure, a random walk down one branch
is enough to estimate the size of the entire tree. Knuth ob-
served that his technique was not effective when the tree is
imbalanced. Chen [1] addressed this problem by stratify-
ing the search tree to reduce the variance of the sampling
process. This paper refers to Chen’s technique as Stratified
Sampling (StraSa). WPS uses StraSa to estimate the WIS
size and, based on such an estimation, it finds a partition of
the items in the WIS.

Definition 1 (Source’s Tree). Let S(n∗) = (V ′, E′)
be a tree rooted at source vertex n∗. S(n∗) is constructed fol-
lowing G such that V ⊆ V ′ and for any n1, n2 ∈ V ′ we have
that (n1, n2) ∈ E′ iff (n1, n2) ∈ E. We write S instead of
S(n∗) whenever n∗ is clear from context.

The tree S(n∗) can be constructed from G by travers-
ing G in a depth-first search ordering starting from n∗ and
bounded by the largest shortest distance between n∗ and
any other vertex in G.

Definition 2 (Stratification). T = {t1, . . . , tn} is
a stratification for S if it is a disjoint partitioning of V ′. If

Algorithm 1 StraSa, a single probe

Require: root n∗ of a tree and a stratification T
Ensure: a sampled tree ST represented by an array of sets

A, where A[i] is the set of pairs 〈n,w〉 for the vertices n
at level i, and an array of sets C, where C[i] is the set
of vertices n at level i but not expanded.

1: A[0]← {〈n∗, 1〉}
2: i← 0
3: while stopping condition is false do
4: for each element 〈n,w〉 in A[i] do
5: for each child n̂ of n do
6: if A[i + 1] contains an element 〈n′, w′〉 with

T (n′) = T (n̂) then
7: w′ ← w′ + w
8: with probability w/w′, replace 〈n′, w′〉 in A[i+

1] by 〈n̂, w′〉 and insert n′ in C[i+ 1]; insert n̂
in C[i+ 1] otherwise

9: else
10: insert new element 〈n̂, w〉 in A[i+ 1]
11: end if
12: end for
13: end for
14: i← i+ 1
15: end while

n ∈ V ′, ti ∈ T and n ∈ ti, then T (n) = ti states that the
stratum of n is ti.

StraSa is a general approach for approximating any func-
tion of the form

ϕ(n∗) =
∑

n∈S(n∗)

z(n) (1)

where z is any function assigning a numerical value to a
vertex. ϕ(n∗) represents a numerical property of the search
tree rooted at n∗. For instance, if z(n) = 1 for all n ∈ S(n∗),
then ϕ(n∗) is the size of the tree. As we explain later, in the
paper we are interested in estimating the number of outgoing
edges in a given tree. Thus, in our case z(n) returns the
number of outgoing edges from vertex n.

Instead of traversing the entire tree and summing all z-
values, StraSa assumes that subtrees rooted at vertices of
the same stratum have equal values of ϕ and thus only one
vertex of each stratum, chosen randomly, is processed. This
selective expansion is the key to StraSa’s efficiency as it
explores only a fraction of the tree when estimating ϕ(n∗).

Given a vertex n∗ and a stratification T , StraSa estimates
ϕ(n∗) as follows. First, it samples the tree rooted at n∗ and
returns a set A of representative-weight pairs, with one such
pair for every unique stratum seen during sampling. Given
a pair 〈n,w〉 ∈ A for stratum t ∈ T , n is the unique vertex
of stratum t that was expanded during sampling and w is
an estimate of the number of vertices of stratum t in S(n∗).
ϕ(n∗) is then approximated by ϕ̂(n∗), defined as

ϕ̂(n∗) =
∑

〈n,w〉∈A

w · z(n) . (2)

Algorithm 1 shows StraSa in detail. The set A is divided
into subsets, one for every layer in the search tree; A[i] is the
set of representative-weight pairs for the strata encountered
at level i. In StraSa, the strata must be partially ordered
such that an vertex’s stratum is strictly greater than that of



its parent in the tree. Chen suggests that this constraint can
always be guaranteed by adding the depth of an item in the
tree to the stratification and then sorting the strata lexico-
graphically. In this implementation of StraSa the depth of
exploration is implicitly added to the stratification: strata
at each tree level are treated separately by the division of A
into the A[i]. If the same stratum occurs on different levels,
the occurrences are treated as though they were of different
stratum.
A[0] is initialized to contain only the root of the tree to

be probed, with weight 1 (line 1). In each iteration (lines 4
– 10), all the items from A[i] are expanded to get represen-
tative items for A[i+1] as follows. Every item in A[i] is pro-
cessed and its children are considered for inclusion in A[i+1].
If a child n̂ has a stratum t that is already represented in
A[i+ 1] by another vertex n′, then a merge action on n̂ and
n′ is performed. A merge action increases the weight in the
corresponding representative-weight pair of stratum t by the
weight w(n) of n̂’s parent n (from level i) since there were
w(n) items at level i that are assumed to have children of
stratum t at level i + 1. n̂ will replace the n′ according to
the probability shown in line 8. Chen [1] proved that this
probability reduces the variance of the estimation. Once all
the states in A[i] are expanded, StraSa expands the items
in A[i+ 1]. This process continues until it reaches a level i∗

where A[i∗] is empty.

One run of the StraSa algorithm is called a probe. ϕ̂(p)(n∗)
is the p-th probing result of StraSa. StraSa is unbiased,
i.e., the average of the ϕ̂(n∗)-values converges to ϕ(n∗) in
the limit as the number of probes goes to infinity. Chen [1]
states the following theorem:

Theorem 1. Given a stratification T and a set of p in-
dependent probes ϕ̂(1)(n∗), · · · , ϕ̂(p)(n∗) from a tree S(n∗),
1
p

∑p
j=1 ϕ̂

(j)(n∗) converges to ϕ(S) as p grows large.

Each StraSa probe outputs a subtree of the tree called
sampled tree (ST ). In contrast with Chen’s version of StraSa,
our version of the algorithm also outputs an array of sets C
containing the vertices encountered during sampling which
were not processed. C is organized by levels, e.g., C[i] is the
set of vertices StraSa encountered but did not expand at
level i of S(n∗). WPS uses C to evenly divide the workload
among different processing nodes, as we now explain.

4. WORKLOAD PARTITIONING AND
SCHEDULING ALGORITHM (WPS)

This section provides an explanation of the Workload Par-
titioning and Scheduling Algorithm (WPS). In Section 6 we
explain how WPS can be applied to the SSSP problem.
WPS operates in four phases: sampling, estimating, par-

titioning, and distributing. Algorithm 2 shows a high-level
description of WPS.

4.1 Sampling
The working items of the application problems Paudel et

al. [17] originally applied WPS to are represented by the ver-
tices in S. Due to this property, by sampling S, WPS is
effectively sampling the working items, and a balanced par-
titioning of S represents a balanced partitioning of the items.
WPS employs StraSa on S to selectively process only one

among several items of the same stratum at each level of
the tree. This phase produces a sampled tree ST and a set

Algorithm 2 Workload Partitioning and Scheduling

Require: starting vertex n∗ of S and a stratification T
Ensure: solution for the problem represented by n∗

1: [A,C]← StraSa(n∗, T )
2: χ← ComputePropertySubtree(A, T )
3: {W1,W2, · · · ,WM} ← BLDM(χ,C) // see [16]
4: for i ∈ {1, · · · ,M} do
5: asynchronously copy Wi to node i
6: end for

Algorithm 3 Compute Property Subtree

Require: sampled tree ST represented by A and stratifica-
tion T

Ensure: a collection χ of the estimated subtree sizes Y i
t

for each level i and stratum t in A.
1: χ← {}
2: for i← tree depth to 1 do
3: for each item n in A[i] do
4: Y i

T (n) ← 1

5: for each child n′′ of n in the tree do
6: Y i

T (n) ← Y i
T (n) + Y i+1

T (n′′)

7: end for
8: insert Y i

T (n) in χ
9: end for

10: i← i− 1
11: end for

C of items that were encountered but not expanded. The
subtree ST is used to estimate the size of subtree rooted at
items of different strata (see Section 4.2 below), while the
items in C are partitioned amongst the available processing
nodes according to the size of the subtrees provided by ST
(see Section 4.3 below).

4.2 Estimating
In this phase, WPS traverses the ST bottom up and uses

dynamic programming to compute the estimated size of the
subtrees rooted at each item n ∈ ST . This procedure is
shown in Algorithm 3. Such a procedure outputs a collection
χ of the estimated subtree sizes Y i

t for each tree level i and
stratum t in A. χ is then used in Partitioning, the next
phase of the algorithm.

4.3 Partitioning
In the Sampling phase, WPS processes a small subset of the

items in the tree through StraSa. In this phase WPS partitions
the remaining items in the tree—the items not processed by
StraSa—into M groups, where M is the number of process-
ing nodes available. The items not processed by StraSa are
the items in C as well as the items reachable from the items
in C.
StraSa ensures that for each item n′ in C[i] there is a

unique item n in A[i] with T (n) = T (n′). Moreover, given
Chen’s assumption that items of the same stratum root sub-
trees of the same size, Y i

T (n) in χ is an estimate of the number

of items in the subtree rooted at n′ (number of items reach-
able from n′). Thus, at this point, the problem of evenly
partitioning the workload reduces to the NP-Hard multi-way
number partitioning problem [2]: The algorithm must par-
tition the items n′ in C into M parts W1,W2, · · · ,WM such
that the sum of the Y i

T (n′) values in each part Wj and Wk



with j, k ∈ {1, 2, · · · ,M} are as similar as possible to each
other. WPS employs the Balanced Largest-First Differencing
Method (BLDM) [16] to compute an approximated solution
to the number partitioning problem. BLDM is a widely used
and effective algorithm that performs k-way partitioning for
k ≥ 2 in O(n logn) time.
WPS uses the estimated number of items rooted at each

given item as a workload metric for even distribution. WPS

assumes that the time required to process an item is con-
stant throughout the tree—an assumption that also holds
in all the applications studied in the current paper. WPS

could be easily adapted to use other workload metrics as
well. For example, in applications where work items have
different processing times, StraSa could estimate the total
processing time of subtrees as opposed to estimating the size
of the subtrees. Then, the Balanced Largest-First Differenc-
ing Method (BLDM) [16] is used to partition the items not
processed by StraSa into parts of similar processing time.

4.4 Distributing
In this phase, WPS stores one subset W1 in local memory

for processing in the current processing node and distributes
the remaining Wj|j=2..M subsets of items to the M − 1 re-
maining processing nodes.

5. SINGLE SOURCE SHORTEST PATH
PROBLEM

The shortest path problem is an important combinatorial
optimization problem with applications in diverse domains
such as web mapping, game theory, operations research, and
engineering. Consider a directed graph G = (V,E), with
|E| = m, and |V | = n. Let s be the source vertex (also
called the root vertex) of the graph, and l be a function
assigning a non-negative real-valued weight to each edge of
G. The edge weights represent the distance between the
adjacent vertices. The single-source shortest-path (SSSP)
problem computes the distance d∗(v) for every vertex v in
the graph such that d∗(v) equals the distance from the source
vertex to v along the shortest path.

5.1 Sequential Algorithm:
Dijkstra’s Algorithm

A well-known sequential algorithm for computing SSSP is
Dijkstra’s algorithm. The algorithm maintains a tentative
distance d(v), for each vertex v ∈ V . The value d(v) always
represents an upper bound on the actual shortest distance
d∗(v). Initially, the tentative distance of the root vertex
is initialized to 0 and that of all other vertices to ∞. All
vertices v whose d(v) 6= d∗(v) are called unsettled vertices.

The algorithm begins by considering all the vertices as
unsettled and proceeds in multiple iterations. In each iter-
ation, the algorithm selects the vertex u that has the mini-
mum tentative distance. Initially, only the source vertex is
settled because it has the minimum tentative distance in the
entire graph i.e., d(u) = d∗(u) = 0. Then, for each neigh-
bour v of u in the edge e = 〈u, v〉, the algorithm modifies the
tentative distance by performing an operation called edge
relaxation. Reducing the tentative distance of u can possibly
reduce the tentative distance of its neighbour as well. Given
an edge e = 〈u, v〉, the operation Relax(u, v) is defined as

d(v)← min{d(v), d(u) + w(〈u, v〉)} ,

where w represents the edge weight.
For each edge (u, v) encountered during the relaxation

process, the algorithm adds a pair 〈v, distance〉 to the work-
set, where distance = d(u) + weight(u, v). The workset
is ordered by the distance of each pair. Initially, the tree
contains only the source vertex as the root, and the work-
set contains tuples corresponding to the neighbours of the
source vertex. The algorithm repeatedly removes the pair
with the minimum distance from the workset and, if the
corresponding vertex has not already been visited, updates
the vertex’s distance and adds 〈neighbour, distance〉 pairs
to the workset for each of its neighbours. As the algorithm
proceeds, d(v) matches the actual shortest distance d∗(v). A
vertex v is said to be settled if d(v) = d∗(v). The algorithm
terminates when there are no more unsettled vertices in the
graph.

Dijkstra’s algorithm processes the vertices in a fixed pri-
ority order. Therefore, Dijkstra’s algorithm is inherently
sequential and less amenable to parallelization.

5.2 Parallelizing SSSP:
Bellman-Ford Algorithm

Dijkstra’s algorithm processes one vertex in any iteration.
The key to parallelizing SSSP lies in processing the distance
of multiple vertices in parallel. Multiple vertices in the graph
can be processed in parallel if the shortest distance com-
puted for each vertex does not depend on the order of pro-
cessing of the vertices. To derive the unordered algorithm,
we note that shortest distance from the source to each vertex
in the graph can be computed using the following fixpoint
system.

Initialization:

d(root) = 0; d(k) =∞, ∀k other than root

Fixpoint computation:

d(v)← min{d(v), (d(u) + w(〈u, v〉)} ,

where ∀u ∈ incoming neighbours of v, and w(u, v) is the edge
weight, i.e., the distance between u and v. This observation
yields an unordered algorithm for SSSP that is essentially
the Bellman-Ford algorithm, shown in Algorithm 4.

A brief outline of how the Bellman-Ford algorithm oper-
ates is as follows: The algorithm proceeds in multiple itera-
tions. In each iteration, a vertex u is declared to be active if
its tentative distance d(u) changed in the previous iteration.
All active vertices are added to the workset. For each active
vertex u, the algorithm considers all the edges e = 〈u, v〉
and performs Relax(u, v). This fix-point iterative algorithm
may update a vertex in the graph multiple times, but the
vertex’s distance is guaranteed to decrease monotonically to
the correct value.

Initially, the only active vertex in the graph is the source
vertex. In every step, the algorithm removes a vertex from
the workset and tries to reduce the distance of each outgo-
ing neighbour. If the distance of a neighbour is reduced,
this neighbour is added to the workset. Hence, the workset
always contains the vertices whose neighbours may need to
be updated later. The algorithm terminates when the work-
set is empty, which implies that there are no more active
vertices to be processed.



Algorithm 4 Bellman-Ford’s Parallel SSSP

Require: Graph G and WorkSet ws
Ensure: Graph G with each node’s distance from the root
1: ws.add(root)
2: for each node n in ws do
3: for each node m in neighbours(n) do
4: dist← n.getDist() +G.edgeWeight(n,m)
5: if dist < m.getDist() then
6: m.setDist(dist)
7: ws.add(m)
8: end if
9: end for

10: end for

5.2.1 Available Parallelism in SSSP
The available parallelism in SSSP initially increases expo-

nentially. At each step, all vertices in the workset can be
processed in parallel without conflicts. The available par-
allelism drops when the algorithm runs out of vertices to
process.

5.2.2 Distribution of Vertices in the Workset
To distribute the active nodes in the workset, we run

the Bellman-Ford algorithm to generate a worksheet with
10 ×M vertices, where M is the number of available pro-
cessing nodes. The vertices are then block distributed across
the processing nodes. Each processor then operates on its
portion of the workset and updates only its portion of the
workset as new vertices need to be added. The vertices are
retrieved and added to the workset at different ends in order
to prioritize unprocessed vertices to be processed in the next
iteration.

A processing node whose workset is empty attempts to
steal vertices from the workset of other processors. The
algorithm terminates when the workset of all the processing
nodes is empty.

5.2.3 Inefficiency of Bellman-Ford algorithm
The distributed implementation of Bellman-Ford algorithm

suffers from two distinct source of overheads. First, note
that Dijkstra’s algorithm relaxes each vertex only once. From
the set of vertices that have not yet been relaxed, the Di-
jkstra’s algorithm processes the vertices in increasing order
of their tentative distances. However, Bellman-Ford algo-
rithm processes edges in the graph through random selec-
tion. As such, Dijkstra’s priority-based relaxation order con-
verges much faster and is therefore, more work-efficient than
the Bellman-Ford algorithm. Second, the block distribution
of vertices does not account for the branching factor of the
vertices distributed. Therefore, the worksets of different pro-
cessing nodes will tend to be of substantially different sizes,
specially in large graphs with high degrees of vertices. The
uneven work distribution leads to the overhead of dynamic
load balancing.

5.3 ∆-Stepping Algorithm
Dijkstra’s algorithm and the Bellman-Ford algorithms em-

ploy two contrasting strategies for selecting active vertices
in each iteration. The former chooses only one vertex, which
is guaranteed to be settled, from the fixed priority queue. In
contrast, the latter activates any vertex whose tentative dis-
tance was reduced in the previous iteration. The ∆-Stepping

Algorithm 5 ∆-Stepping Algorithm for SSSP

Require: G(V,E), source vertex s, length function l : E →
R

Ensure: δ(v), v ∈ V , the weight of the shortest path from
s to v

1: for each v ∈ V do
2: d(v)←∞
3: end for
4: relax(s, 0)
5: i← 0
6: while B is not empty do
7: S ← φ
8: while B[i] 6= φ do
9: Req ← {(w, d(v) + l(v, w)) : v ∈ B[i] ∧ 〈v, w〉 ∈

light(v)}
10: S ← S ∪B[i]
11: B[i]← φ
12: for each (v, x) ∈ Req do
13: relax(v, x)
14: end for
15: end while
16: Req ← {(w, d(v)+l(v, w)) : v ∈ S∧〈v, w〉 ∈ heavy(v)}
17: for each (v, x) ∈ Req do
18: relax(v, x)
19: end for
20: i← i+ 1
21: end while
22: for each v ∈ V do
23: δ(v)← d(v)
24: end for

Algorithm 6 The relax procedure in ∆-Stepping algorithm

Require: v, weight request x
Ensure: Assignment of v to appropriate bucket
1: if x < d(v) then
2: B[bd(v)/∆c]← B[bd(v)/∆c]\{v}
3: B[bx/∆c]← B[bx/∆c] ∪ {v}
4: end if

algorithm [15] strikes a balance between these two extremes
and offers an efficient schedule for the fixpoint algorithm by
weakening the total ordering constraint on the queue.

The ∆-Stepping algorithm partitions the vertices in the
graph and hashes the vertices into an array B of buckets
based on their distance label. The parameter ∆ is a positive
real number that represents the bucket width. For an index
k ≥ 0, the bucket Bk stores vertices v whose tentative dis-
tance fall in the range [k∆, (k+ 1)∆− 1]. The bucket index

for a vertex v is given by b d(v)
∆
c. A high level overview of

the ∆-Stepping algorithm is shown in Algorithm 5.
The algorithm can perform deletion and edge relaxation

for an entire bucket in parallel. The parameter, ∆, governs
the amount of parallelism in each bucket and the number of
extra updates on the vertices. For example, a large value
of ∆ yields increased parallelism per bucket, but also more
wasted work. Intuitively, setting ∆ = ∞ yields Bellman-
Ford algorithm whereas setting ∆ = 1 yields Dijkstra’s al-
gorithm.

Initially, the root vertex s is placed in the bucket B0 and
all other vertices are placed in the bucket B∞. The algo-
rithm works in multiple phases. The goal of phase k is to



settle all the vertices whose actual shortest distance falls in
the range of bucket k. The phase works in multiple itera-
tions. In each iteration, a vertex u is declared to be active if
its tentative distance changed in the previous iteration and
the vertex is found in the bucket Bk. Note that in the first
iteration of the phase, all vertices found in the bucket are
considered active. For each active vertex v and all its inci-
dent edges e = 〈u, v〉, the algorithm performs the Relax(u, v)
operation.

A vertex may require multiple Relax operations to become
settled. During a Relax operation, the tentative distance of
a vertex in a bucket Bk may reduce in such a manner that
the new value also falls within the current bucket’s ∆ value.
In such a case, the vertex is re-inserted into the bucket Bk. If
the new tentative distance of the vertex falls in the range of a
bucket of lower index, the vertex is removed from its current
bucket and inserted into the new bucket. Such movement of
vertices among different buckets are treated as a step within
the Relax procedure. The operations of the Relax procedure
are shown in Algorithm 6.

We now focus on the operations inside each bucket (the
inner while loop in Algorithm 5) in detail. Inside a bucket,
the vertices are processed based on their edge weights. The
edges with (l(e) < ∆, e ∈ E) are categorized as light edges
while the edges with (l(e) ≥ ∆, e ∈ E) are categorized as
heavy edges. During each phase, the algorithm removes all
vertices from the current bucket, adds the vertices to the
set S, and selectively relaxes only light outgoing edges em-
anating from these vertices. This phase may result in new
vertices being added to the current bucket, which are then
deleted in subsequent phases. It is also possible that ver-
tices previously deleted from the current bucket may be rein-
serted, if their tentative distance is improved. Heavy edges
are not relaxed in a phase because they result in tentative
values outside the current bucket. Heavy edges are only re-
laxed after all their respective starting nodes have become
settled. In other words, once the current bucket becomes
empty after relaxations, all heavy edges out of the vertices
in S are relaxed at once. When the bucket does not contain
any active vertices, the phase terminates and the algorithm
proceeds to the next non-empty bucket of index higher than
k.

Note that the edge relaxations in each phase can proceed
asynchronously in parallel provided the individual tentative
distance values are updated atomically.

5.3.1 Distributed Implementation of the ∆-Stepping
algorithm

The vertices in the graph are block distributed in the form
of buckets such that each vertex is owned by a processing
node and belongs to its assigned bucket. Each processing
node maintains the bucket Bk and also stores the adjacency
lists of all vertices whose indices hash to the value k. Each
processor relaxes only the edges between those vertices that
belong to its bucket. All relaxations of edges incident at
vertices belonging to other processing nodes must be trans-
ferred to their owners. Hence, the relaxation requests are
generated and processed only locally.

While the vertices within a bucket may be processed in
any order relative to each other, there are two choices as
to the order in which the buckets may be processed. Ide-
ally, processing the non-empty buckets in increasing order of
their bucket numbers yields the best work efficiency and fast

convergence of the relaxation operations. However, this ap-
proach also limits the utilization of processing nodes. There-
fore, popular distributed implementations of the ∆-Stepping
algorithm permit processing of the buckets out of order. The
price of this additional parallelism is that some nodes may
be relaxed repeatedly. The proper choice of the bucket width
∆ for a given graph helps to strike a balance between work
efficiency and parallelism.

Relax operations require communication among the pro-
cessors: to perform Relax(u.v), the owner of the source ver-
tex u must send d(u) to the owner of the destination vertex
v (if the two owners are distinct). The iterations and phases
are executed in a bulk synchronous manner. A processing
node whose bucket is empty attempts to steal vertices from
the bucket of other processors. The algorithm terminates
when the buckets of all the processing nodes are empty.
Termination checks and computing the next bucket index
require collective reduction operations.

6. APPLYING WORKLOAD PARTITIONING
AND SCHEDULING TO SSSP

A major challenge in distributing buckets across the pro-
cessing nodes is to ensure an even distribution of the work-
load. A simple assignment of buckets where all processing
nodes own the same number of vertices in the graph does not
guarantee a balanced workload distribution. For instance, a
processing node that owns vertices with high out-degrees will
need to perform more relaxations compared to the process-
ing node that owns vertices with lower out-degrees. Also,
when all edges 〈u, v〉 of a high-degree vertex u are to be re-
laxed, then the value of the tentative distance (d(v)) must
be made available to all processing units that store outgoing
edges of u.

One approach to try to evenly distribute the workload
would be to pre-process the graph to identify the out-degree
of each vertex. Then, a distribution of buckets by consider-
ing the total out-degrees of vertices in each processing node
would yield a more balanced workload distribution. How-
ever, traversing the entire graph to load the out-degree of
each vertex is computationally expensive and may even off-
set the performance gains from improved load distribution.
Furthermore, the out-degree of a vertex on its own is not
a reliable indicator of the work associated with the node in
the graph. For example, two vertices of the same out-degree
could involve substantially different workloads because the
number of paths passing through the two vertices could be
quite different. Consequently, the number of edge relax-
ations required could be vastly different.

To reduce such an overhead, this work selectively observes
the out-degree of some vertices in the graph and relies on
those observations to predict the out-degree of unobserved
vertices. We apply WPS for such a prediction and for dis-
tributing the vertices. The trick is to sample the graph with
StraSa and create a tree of visited vertices. Specifically, we
use StraSa to estimate the total number of outgoing edges
in each bucket of the ∆-Stepping algorithm. Then, we ap-
ply the BLDM algorithm for partitioning the buckets into
M parts of similar total number of outgoing edges.

The problem with such an approach is that StraSa’s sam-
pling procedure is not able to estimate the number of edge
relaxations that will be performed during the actual search.
This problem arises because StraSa samples a tree and is



not able to capture the actual structure of the underlying
graph—the number of edge relaxations performed during
search is closely related to the graph structure. In this paper
we assume that the information StraSa samples is enough to
make effective partitions of the WIS, the set of working items
processed by the ∆-Stepping algorithm. Specifically, we use
the estimated number of outgoing edges in a given bucket
B as a surrogate for the total number of edge relaxations
that occurs in B during the execution of the ∆-Stepping al-
gorithm. In Section 7 we show empirically that the number
of outgoing edges is in fact a good surrogate for the num-
ber of edge relaxations as WPS is able to achieve substantial
speedups while parallelizing the ∆-Stepping algorithm.

We note that the problems WPS was evaluated on in its
original paper had a natural tree structure, which allowed
WPS to sample the working items directly and there was no
need to employ a surrogate function for WPS’s sampling.

6.1 Stratification
The stratified sampling technique underlying WPS samples

all vertices with properties unique according to the strati-
fication. Ideally, the strata should be representative of the
vertices in the input graph. The goal is to yield a precise
estimate of the number of outgoing edges in different buck-
ets, even if the properties of the vertices are heterogeneous
within the same stratum. A stratification will be successful
if the vertices can be partitioned into different strata, each
of which is internally homogeneous, by using prior informa-
tion about the vertices. If each stratum is homogeneous,
then the property used for stratification varies little from
one vertex to another within a stratum. Consequently, a
precise estimate of any stratum parameter can be obtained
from a small sample in that stratum. These estimates can
then be combined to obtain a precise estimate for the en-
tire tree. However, if the vertex properties within a stratum
vary considerably, many samples from within that stratum
will be necessary for a precise estimate. Thus, depending
on the choice of stratification, i.e., the sampling heuristic,
the sampling process has the potential to under-estimate or
over-estimate the overall workload that an application gen-
erates.

Our evaluation uses a stratification that labels vertices u
and v in S with the same stratum if the sum of the out-
degrees of the vertex u, its children and its grandchildren
is equal to the sum of the out-degrees of the vertex v, its
children and its grandchildren. The intuition behind this
stratification is that we expect the number of reachable out-
going edges from u to be similar to the number of reachable
outgoing edges from v if u and v have the same number of
outgoing edges up to a distance of two edges from u and v.

6.2 Usage of Multiple Probes
Having a homogeneous stratification is one way of pro-

ducing accurate predictions. Another way is by using a
large number of probes. By increasing the number of probes
StraSa tends to be more accurate at the expense of an in-
creased running time. The estimation in this paper uses k
independent probes of StraSa. Each subsequent probe of
sampling may visit different vertices at a given level in the
tree than its predecessor. Visiting a new vertex at the same
level of the tree typically yields additional information about
the sampled space of vertices. To accommodate such new
information, on each subsequent sampling probe, the strati-

fication updates the sampled tree from the previous probe by
including the newly visited vertices. This approach guaran-
tees that the sampled tree encompasses all the paths visited
during sampling.

The estimation phase then uses the average of the ver-
tices in the sampled tree at a given level and belonging to
the same stratum while computing the out-degree of the sub-
trees rooted at the vertices. Section 8 discusses the combi-
nation of stratification and the value of k that yields the
best performance for SSSP in our evaluation platform.

6.3 Bucket Distribution using WPS

Once WPS estimates the out-degree of the vertices in the
graph, the next step involves grouping buckets into collec-
tions such that the total out-degree of vertices in each col-
lection is as equal as possible. Finally, the collections of
buckets are assigned to the available processing nodes. The
empirical evaluation in this paper defines the bucket width
∆ in such a way that there are a large number of buckets
compared to the available processing nodes. This strategy
ensures that there is a realistic opportunity for load balanc-
ing. Large bucket widths will lead to fewer buckets, which
are not practical enough for load balancing purpose because
vertices assigned to a bucket cannot be re-assigned to alter-
native buckets.

7. EXPERIMENTAL SETUP

Platform.
Performance measurements use a blade server with 16

nodes, each featuring two 2 GHz Quad-Core AMD Opteron
processors, with 8 GB of RAM and 20 GB of swap space,
running CentOS GNU/Linux 6.2. All binaries were com-
piled with GCC 4.4.3 using the -O3 flag.

Compiler and Runtime.
The SSSP algorithm is implemented in the X10 program-

ming language. The x10C++ compiler 2.3.1 is used for all
measurements. The nodes in the cluster are connected by
an InfiniBand network with a bandwidth of 10 Gbit/s and
use MVAPICH2 library for communication. The experimen-
tal runs create eight worker threads per node and vary the
number of nodes from 1 to 16 so that the number of threads
is the same as the total number of cores.

Stratification and Number of Probes.
As explained before, our evaluation uses a stratification

that labels vertices u and v in S with the same stratum if
the sum of the out-degrees of the vertex u, its children and
its grandchildren is equal to the sum of the out-degrees of
the vertex v, its children and its grandchildren. Section 8
discusses the performance impacts of different stratifications
and number of probes.

8. EXPERIMENTAL EVALUATION
The experimental evaluation in this paper uses two graphs

as inputs for the SSSP problem. The small input is a graph
with 2.39 Million nodes and 5.77 Million edges with the
weights in the range (0, 1000], and a branching factor in the
range of [1, 10]. The sequential execution time to compute
the SSSP in this graph takes 287 seconds using Dijkstra’s
algorithm.



The large input is a graph with 268 Million nodes and
1 billion edges with weights in the range (0, 100000], and
a branching factor in the range of [1, 1000]. The sequen-
tial runtime to compute the SSSP in the large graph is 462
seconds.

8.1 Speedups
The choice of an appropriate metric for proper evalua-

tion of a workload partitioning algorithm depends both on
the algorithmic properties and on the computing platform.
For instance, balancing message traffic across distributed-
memory machines could be more important than balanc-
ing the amount of computation executed on each process-
ing node in the context of large-scale production data cen-
ters. On the contrary, for long-running applications, it is
important to improve the overall execution time by reducing
both the message traffic and by balancing the computational
workload on each processing node. WPS enables program-
mers to easily specify such a choice of metric that belies the
partitioning goal.

For the SSSP problem, this work uses speedup as the met-
ric for evaluating the performance of WPS. The speedups of
different algorithms on these inputs are shown in Figures 1
and 2. The reported speedups are relative to the sequential
implementation of Dijkstra’s ordered algorithm, which uses
a heap-based priority queue. The relative speedup for these
algorithms increases as the problem size increases. This
is because smaller graphs possess insufficient parallelism to
saturate the available 128 processors. Note that the figures
only show the performance of Bellman-Ford and ∆-Stepping
algorithms using Dist-WS [18] for distributed load balancing.
Dist-WS yields better performance than using X10’s intra-
node work-stealing scheduler only. The best performance
is achieved with the ∆-Stepping algorithm using WPS for
even workload distribution across nodes, and by relying on
X10’s work-stealing scheduler for intra-node load balancing.
For instance, the ∆-Stepping approach to SSSP using WPS

outperforms the baseline ∆-Stepping by 41% in terms of
execution time.

8.2 Performance Impact of Bucket Width (∆)
The choice of the ∆ value may significantly impact the

performance of the ∆-Stepping algorithm. The ∆ parameter
impacts the total number of relaxations and the number of
phases necessary to compute the SSSP. Empirical evaluation
shows that ∆ values of 400 and 8,000 yield best results for
the small and large graph inputs, respectively.

The evaluation also shows that there is no direct corre-
lation between the choice of stratification and the value of
∆. The same value of ∆ leads to the best performance for
different stratifications, as we now show.

8.3 Performance Impact of Stratification
Stratification 1 (S1) is the stratification described above in

Section 7. Stratification 2 (S2) is a coarse version of S1, i.e.,
with fewer strata. Namely, S2 considers two items to be of
different stratum if the sum of the out-degrees of the children
and the grandchildren they produce differ by more than two.
The numbers in parenthesis in Figure 4 represent the number
of probes used. WPS performs worse in all domains when
using a single probe (see WPS (1)). The performance does
not improve even when coordinating WPS with Dist-WS (see
WPS+). WPS yields best performance under S1 and S2 at
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Figure 1: Performance of SSSP using small input.
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Figure 2: Performance of SSSP using large input.
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Figure 3: Average Node Utilizations for SSSP Al-
gorithms.

five and ten probes of StraSa respectively.
Increasing the number of probes beyond five for S1 and

ten for S2 is not beneficial. In fact, the performance wors-
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Figure 4: Performance of SSSP using WPS with dif-
ferent stratifications. The number of probes used
are indicated in the parentheses, and the ‘+’ sign in
the x-axis labels indicate WPS + Dist-WS.
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Figure 5: Breakdown of execution time of SSSP
when using different algorithms and stratifications.

ened at larger number of probes because of the overhead
of sampling. Figure 5 shows the increasing amount of time
spent on partitioning as the number of probes increases. At
lower number of probes, the times spent on partitioning is
practically negligible. However, the resulting loss of preci-
sion of the estimates leads to poor load distribution. As a
result, the time spent on communication tends to be larger
at lower number of probes. The loss in performance is re-
gained by coordinating WPS with Dist-WS.

Through an improved workload distribution, significantly
reduced work-stealing operations, and reduced machine idle
times, WPS achieves an increased and uniform CPU utiliza-
tion compared to X10WS and Dist-WS. The radial axes and
the points in the circumference of the circles in Figure 3
respectively indicate the average CPU utilization of eight
cores in a node and a node in the cluster.

9. RELATED WORK
Balancing the distribution of computational workload while

minimizing communication across distributed memory ma-
chines is fundamental to the efficiency of distributed graph
processing algorithms.

Many graph libraries and graph processing systems de-
veloped as part of research initiatives and industry needs
facilitate workload partitioning in large graphs. Libraries,
such as Pregel [14] and its open-source counterpart Giraph,
FENNEL [20], GoldenOrb [3], and HAMA [19] offer multi-
ple approaches for partitioning the graph data. The three
common approaches to partitioning the data are hash-based,
range-based, or min-cut. Hash and range-based partition-
ing approaches divide a dataset based on simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning
approaches do consider vertex connectivity and partition the
data such that it places strongly connected vertices close to
each other, such as on the same cluster.

Many popular graph processing platforms such as Pregel [14]
that builds on MapReduce, and its open source cousin Apache
Giraph, PEGASUS [6] and GraphLab [12] use as a default
partitioner Hash Partition of vertices, which corresponds to
assigning each vertex to one of the k partitions uniformly
at random. This heuristic efficiently balances the number of
vertices over different clusters, but ignores the differences in
workload involved in processing different vertices.

These graph libraries have been shown to yield good per-
formance for certain algorithms. Leveraging the efficiency of
these libraries requires a substantial implementation effort
in writing applications using provided library routines, and
must be repeated for each new algorithm or graph repre-
sentation. These libraries and graph-processing infrastruc-
tures inherently assume that either the entire graph is known
statically or that the structure of the graph is static while
performing graph partitioning.

In contrast to these existing graph libraries and infras-
tructures, this work builds on a graph partitioning approach
that is agnostic to graph representation, and is not tied to a
specific implementation or an infrastructure. This work is a
demonstration that the idea of WPS, proposed by Paudel et
al., applies well to the problem of workload partitioning in
the Single Source Shortest Path problem.

Another approach to workload partitioning that is closely
related to the WPS technique applied in this work is the
approach adopted in the Mizan system [7]. Mizan uses a
Bulk Synchronous Parallel-based approach which first reads
and partitions the graph data across workers. The system
then proceeds as a series of supersteps, each separated by a
global synchronization barrier. During each superstep, each
vertex processes incoming messages from the previous su-
perstep and sends messages to neighbouring vertices (which
are processed in the following superstep). Mizan balances
its workload by moving only selected vertices across work-
ers. Vertex migration is performed when all workers reach
a superstep synchronization barrier to avoid violating the
computation integrity, isolation and correctness of the BSP
compute model. Unlike Mizan, WPS does not require dis-
tributed runtime monitoring of workload characteristics, and
a distributed migration planner that decides which vertices
to migrate.



10. SUMMARY
This work describes the use of the workload partitioning

approach WPS on applications with explicitly-defined graphs.
An evaluation using WPS for workload distribution in the
well-known SSSP problem showed that WPS can estimate,
with reasonable accuracy, the entire workload in an appli-
cation with explicitly-defined graph by visiting only a small
set of the vertices in the graph. The estimate offers a good
basis for balanced workload distribution with minimal run-
time overhead. Using WPS for workload distribution in SSSP
in our evaluation platform yields 41% improvement in exe-
cution time at 128 worker threads compared to the state-
of-the-art Meyer and Sanders’ distributed solution to SSSP.
This study also confirms the expected tradeoff between ac-
curacy and the runtime of the sampling algorithm under-
lying WPS. Another important observation from this study
is that WPS offers flexibility in choosing a suitable objective
that accommodates specific needs of an application while
performing workload partitioning.
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