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Abstract—This work presents Workload Partitioning and
Scheduling (WPS), a novel algorithm for evenly partitioning
the computational workload of large implicitly-defined work-
list-based applications on distributed/shared-memory systems. In
WPS, a stratified sampling technique estimates the number of
work items that will be processed in each step of the target
application. Then WPS uses this estimation to evenly partition
and distribute the computational workload. An empirical eval-
uation on large applications — Iterative-Deepening A* (IDA*)
applied to (4×4)- and (5×5)-Sliding-Tile Puzzles, Delaunay Mesh
Generation, and Delaunay Mesh Refinement — shows that
WPS is applicable to a range of applications. A coordination
between WPS and existing work-stealing schedulers for intra-
node load balancing yields additional speedups in the range of
18% to 40% compared to that achieved with the existing work-
stealing schedulers alone. Such a coordination also outperforms
an existing workload-partitioning scheme intended specifically
for IDA* algorithms by 17% to 36%.

I. INTRODUCTION

State-space exploration algorithms, such as A* [8] and
IDA* [11], are fundamental algorithms in areas such as
Artificial Intelligence and Combinatorial Optimization [21].
A state-space exploration problem consists of a start state and
a transition function that receives a state and returns a set of
child states. State-space exploration algorithms can be applied
to search for a path to a goal state, or to a specific state that
minimizes an objective function.

One way to achieve high performance in state-space ex-
ploration algorithms is to process disjoint portions of states in
different processing nodes of a computer cluster. However, it is
usually difficult to foresee how many states will be processed
to solve a given problem because state-space exploration
algorithms usually operate on implicitly-defined state spaces.
When an implicit definition of the state space is used, the
current state produces a list of child states that recursively
produce other child states as the algorithm progresses. Such
algorithms also use enhancements to reduce the effort of state-
space exploration by avoiding processing of states deemed as
unfruitful — e.g., usage of heuristic functions to guide search.
The difficulty in predicting the number of states processed
by such algorithms in each region of the state space leads to
potential load imbalances in parallel-processing solutions.

Mainstream programming systems employ work-stealing to
alleviate load imbalance. Under work stealing, a processor that

runs out of work steals work from another processor. Work
stealing can reduce an application’s execution time by making
work available to idle processing nodes. However, it can also
impose significant overheads of synchronization on shared data
structures, and of communication across the network.

A. Contributions

We propose a technique for workload distribution that min-
imizes the need for expensive load-balancing operations such
as work stealing. The technique, called Workload Partitioning
and Scheduling (WPS), operates in four steps: first, it samples a
small portion of the states to be processed using the statistical
technique of stratified sampling [4]; then, based on such
a sampling, it estimates the total number of states to be
processed; in the third step, it partitions the states into M
parts of sizes as equal as possible, where M is the number
of processing nodes in the computer cluster; and finally, it
distributes the states amongst M processing nodes.
WPS is general and can be applied to different problems.

As a demonstration, we use WPS to parallelize three al-
gorithms from different applications: (i) Iterative-Deepening
A* (IDA*) [12] for finding least-cost paths in state-space
search problems; (ii) an algorithm for generating Delaunay
Meshes [2], [27]; and (iii) an algorithm for refining Delaunay
Meshes [13]. These applications were chosen because they
represent a large set of important problems, including path-
finding, computational geometry, and combinatorial optimiza-
tion problems. Our empirical evaluation indicates that WPS
achieves its goal of minimizing the need for expensive load-
balancing operations. When operating in tandem with an intra-
node work-stealing scheduler, WPS is faster than traditional
work-stealing schemes alone in the range of 18% to 40% .

II. PRELIMINARIES

This paper refers to a state in an application’s state-space
as a work-item, or simply an item. Let S(n∗) = (N,E) be a
Work-Item Tree (WIT) rooted at item n∗, representing the set of
items processed by an exploration algorithm while solving n∗.
N is a set of items and E is the set of edges in the tree. A WIT
is formed by the items reachable from n∗. For each n ∈ N ,
child(n) is the set of items generated when n is processed:
child(n) = {ni|(n, ni) ∈ E}. We call child(n) the children of
n, and we call the edges (n, ni) ∈ E the actions available from



Fig. 1: A random state (left), and the goal state (right) of the
(3×3)-Sliding Tile Puzzle, also known as the 8-puzzle.

n. In contrast with the Artificial Intelligence literature, a node
refers to a processing node in a cluster, and not to a vertex in
the WIT. Also, S is used to refer to S(n∗) whenever n∗ is clear
from context. An item n is expanded when a computer node
processes n. This work deals with implicitly-defined WITs, as
described next.

Figure 1 shows the (3×3)-Sliding Tile Puzzle (8-puzzle), an
example of a state-space exploration problem. For each state
of this puzzle, there is a set of available actions. For instance,
the state shown in Figure 1 (left) has three available actions:
move tile 5, 6, or 7 onto the blank space. Moving a tile onto
the empty space generates another state. The objective in this
puzzle is to find the shortest sequence of actions that transform
the given state to the goal state shown in Figure 1 (right).

The WIT of the 8-puzzle (as the other WITs we deal with
in this paper) is implicitly defined. That is, the WIT is not
available a priori, but items in the WIT can be generated
by applying actions from the initial item. WITs of the 8-
puzzle have at most 181,440 different states, which could be
stored explicitly in memory. However, we are interested in
problems that are too large to be stored explicitly in memory.
For example, one of the application domains we use is the
(4×4)-Sliding-Tile Puzzle, which has 16!

2 different states.

III. PROBLEM FORMULATION

Given M processing nodes in a computer cluster and an
implicitly defined WIT, the Work-Load Distribution Problem
consists in partitioning the items in the WIT into M parts
W1,W2, · · · ,WM of similar size. Our goal is to minimize∑

i,j∈{1,··· ,M} |Wi| − |Wj |, where |Wi| is the size of Wi. In
this paper all items in the WIT take approximately the same
amount of time to be processed. However, the algorithm we
introduce in this paper could be easily adapted to deal with
items that have different processing times.

In addition to being implicitly-defined, the tree representing
the WIT is often unbalanced, which poses a significant chal-
lenge for an even workload partitioning. The WIT is usually
unbalanced because exploration algorithms use enhancements,
such as a heuristic function [21], to guide the exploration
to more promising parts of the state space (details in Sec-
tion VIII-A). As a result, the tree will grow more quickly
toward the directions deemed as promising by the algorithm.

Consider, for example, that an initial item produces two
items i1 and i2, and that our cluster has two processing nodes.
Given that the WIT is unbalanced, the size of the subtree
rooted at i1 might be very different from the size of the subtree
rooted at i2. A trivial solution of assigning i1’s subtree to one
node and i2’s subtree to another node will lead to workload
imbalance. The lack of a priori information about the sizes

of the subtrees rooted at i1 and i2 further complicates the
Work-Load Distribution Problem.

The WPS algorithm presented in this paper uses the statis-
tical technique of stratified sampling introduced by Chen [4]
for quickly partitioning the WIT into parts of similar size.

IV. CHEN’S STRATIFIED SAMPLING

Knuth [10] presents a technique to estimate the size of the
tree expanded by a search algorithm such as chronological
backtracking. His technique repeatedly performs a random
walk from the root of the tree. When all branches have the
same structure, a random walk down one branch is enough
to estimate the size of the entire tree. Knuth observed that
his technique was not effective when the tree is imbalanced.
Chen [4] addressed this problem by stratifying the search tree
to reduce the variance of the sampling process. This paper
refers to Chen’s technique as Stratified Sampling (StraSa).
WPS uses StraSa to estimate the WIT size and, based on
such an estimation, it finds a partition of the items in the WIT.

Definition 1 (Stratification). Let S = (N,E) be a WIT.
T = {t1, . . . , tn} is a stratification for S if it is a disjoint
partitioning of N . If n ∈ N , ti ∈ T and n ∈ ti, then T (n) = ti
states that the stratum of n is ti.

StraSa is a general approach for approximating any
function of the form ϕ(n∗) =

∑
n∈S(n∗) z(n) , where S(n∗) is

a WIT rooted at n∗ and z is any function assigning a numerical
value to an item. ϕ(n∗) represents a numerical property of
the search tree rooted at n∗. For instance, if z(n) = 1 for
all n ∈ S(n∗), then ϕ(n∗) is the size of the WIT. Instead of
traversing the entire WIT and summing all z-values, StraSa
assumes that subtrees rooted at items of the same stratum have
equal values of ϕ and thus only one item of each stratum,
chosen randomly, is expanded. This selective expansion is the
key to StraSa’s efficiency because trees of practical interest
are too large to be examined exhaustively.

Given an item n∗ and a stratification T , StraSa estimates
ϕ(n∗) as follows. First, it samples the WIT rooted at n∗ and
returns a set A of representative-weight pairs, with one such
pair for every unique stratum seen during sampling. Given
a pair 〈n,w〉 ∈ A for stratum t ∈ T , n is the unique item
of stratum t that was expanded during sampling and w is an
estimate of the number of items of stratum t in the WIT rooted
at n∗. ϕ(n∗) is then approximated by ϕ̂(n∗), defined as

ϕ̂(n∗) =
∑

〈n,w〉∈A

w · z(n) . (1)

Algorithm 1 shows StraSa in detail. The set A is divided
into subsets, one for every layer in the search tree; A[i] is the
set of representative-weight pairs for the strata encountered at
level i. In StraSa, the strata must be partially ordered such
that an item’s stratum is strictly greater than that of its parent
in the WIT. Chen suggests that this constraint can always be
guaranteed by adding the depth of an item in the WIT to the
stratification and then sorting the strata lexicographically. In
this implementation of StraSa the depth of exploration is



Algorithm 1: StraSa, a single probe
Input: root n∗ of a tree and a stratification T
Output: a sampled tree ST represented by an array of sets

A, where A[i] is the set of pairs 〈n,w〉 for the items n
expanded at level i, and an array of sets C, where C[i] is
the set of items n generated at level i but not expanded.

1: A[0]← {〈n∗, 1〉}
2: i← 0
3: while stopping condition is false do
4: for each element 〈n,w〉 in A[i] do
5: for each child n̂ of n do
6: if A[i+ 1] contains an element 〈n′, w′〉 with

T (n′) = T (n̂) then
7: w′ ← w′ + w
8: with probability w/w′, replace 〈n′, w′〉 in

A[i+ 1] by 〈n̂, w′〉 and insert n′ in C[i+ 1];
insert n̂ in C[i+ 1] otherwise

9: else
10: insert new element 〈n̂, w〉 in A[i+ 1]
11: end if
12: end for
13: end for
14: i← i+ 1
15: end while

implicitly added to the stratification: strata at each tree level
are treated separately by the division of A into the A[i]. If the
same stratum occurs on different levels, the occurrences are
treated as though they were of different stratum.
A[0] is initialized to contain only the root of the WIT to

be probed, with weight 1 (line 1). In each iteration (lines 4 –
13), all the items from A[i] are expanded to get representative
items for A[i+ 1] as follows. Every item in A[i] is expanded
and its children are considered for inclusion in A[i+ 1]. If a
child n̂ has a stratum t that is already represented in A[i+1] by
another item n′, then a merge action on n̂ and n′ is performed.
A merge action increases the weight in the corresponding
representative-weight pair of stratum t by the weight w(n)
of n̂’s parent n (from level i) since there were w(n) items
at level i that are assumed to have children of stratum t at
level i+ 1. n̂ will replace the n′ according to the probability
shown in line 8. Chen [4] proved that this probability reduces
the variance of the estimation. Once all the states in A[i] are
expanded, StraSa expands the items in A[i+1]. This process
continues until it reaches a level i∗ where A[i∗] is empty.

One run of the StraSa algorithm is called a probe.
ϕ̂(p)(n∗) is the p-th probing result of StraSa. StraSa is
unbiased, i.e., the average of the ϕ̂(n∗)-values converges to
ϕ(n∗) in the limit as the number of probes goes to infinity.
Chen [4] states the following theorem:

Theorem 1. Given a stratification T and a set of p inde-
pendent probes ϕ̂(1)(n∗), · · · , ϕ̂(p)(n∗) from a WIT S(n∗),
1
p

∑p
j=1 ϕ̂

(j)(n∗) converges to ϕ(S) as p grows large.

Each StraSa probe outputs a subtree of the WIT called

Algorithm 2: Workload Partitioning and Scheduling
Input: starting item n∗ of the WIT and a stratification T
Output: solution for the problem represented by n∗

1: [A,C]← StraSa(n∗, T ) // see Algorithm 1
2: χ← ComputeSubtreeSizes(A, T ) // see Algorithm 3
3: {W1,W2, · · · ,WM} ← BLDM(χ,C) // see [16]
4: for i ∈ {1, · · · ,M} do
5: asynchronously copy Wi to node i
6: end for

sampled tree (ST ). In constrast with Chen’s version of
StraSa, our version of the algorithm also outputs an array
of sets C containing the items encountered during sampling
which were not expanded. C is organized by levels, e.g., C[i]
is the set of items StraSa encountered but did not expand at
level i of the WIT. The algorithm introduced in this paper uses
C to evenly divide the workload among different processing
nodes, as we explain next.

V. WPS: WORKLOAD PARTITIONING & SCHEDULING

Algorithm 2 shows a high-level description of WPS. WPS
operates in four phases: sampling, estimating, partitioning, and
distributing. First, we describe the four phases WPS when using
a single StraSa probe, then in Section VI we describe how
the algorithm employs multiple probes of StraSa.

A. Sampling

In the Sampling phase, WPS employs StraSa on the
WIT to selectively process only one among several items of
the same stratum at each level of the WIT. Following this
technique, this phase produces a sampled tree ST and a set C
of items that were encountered but not expanded. The subtree
ST is used to estimate the size of subtree rooted at items
of different strata (see Section V-B below), while the items
in C are partitioned amongst the available processing nodes
according to the size of the subtrees provided by ST (see
Section V-C below).
WPS offers, through the stratification, a customizable label-

ing system to define properties that constitute two items to be
of the same stratum. For instance, in an Iterative Deepening
A* (IDA*) search tree, two items may be considered to belong
to the same stratum if their h-values, i.e., their estimated cost-
to-goal, are the same.

B. Estimating

In this phase, WPS computes the estimated size of the
subtrees rooted at each item n ∈ ST . To compute this
estimate, WPS traverses the ST bottom up and uses dynamic
programming, as shown in Algorithm 3. In Algorithm 3 the
values of Y i

u represent the estimated size of the subtree rooted
at the node of stratum u at level i of the WIT. The traversal of
the ST , represented by the structure A, starts at the deepest
level and moves toward the root (line 2). The values of Y i+1

u

are used to compute the values of Y i
u (line 6). In this phase

WPS produces a collection χ of Y i
u values for every u and i

encountered in the ST .



Algorithm 3: ComputeSubtreeSizes
Input: sampled tree A and stratification T
Output: a collection χ of the estimated subtree sizes Y i

t

for each level i and stratum t in A.
1: χ← {}
2: for i← tree depth to 1 do
3: for each item n in A[i] do
4: Y i

T (n) ← 1
5: for each child n′′ of n in the WIT do
6: Y i

T (n) ← Y i
T (n) + Y i+1

T (n′′)
7: end for
8: insert Y i

T (n) in χ
9: end for

10: i← i− 1
11: end for

C. Partitioning

In the Sampling phase, WPS processes a small subset of
the items in the WIT through StraSa. In this phase WPS
partitions the remaining items in the WIT — the items not
processed by StraSa — into M groups, where M is the
number of processing nodes available. The items not processed
by StraSa are the items in C as well as the items reachable
from the items in C.
StraSa ensures that for each item n′ in C[i] there is

a unique item n in A[i] with T (n) = T (n′). Moreover,
given Chen’s assumption that items of the same stratum root
subtrees of the same size, Y i

T (n) in χ is an estimate of the
number of items in the subtree rooted at n′ (number of items
reachable from n′). Thus, at this point, the problem of evenly
partitioning the workload reduces to the NP-Hard multi-way
number partitioning problem [7]: the algorithm must partition
the items n′ in C into M parts W1,W2, · · · ,WM such that
the sum of the Y i

T (n′) values in each part Wj and Wk with
j, k ∈ {1, 2, · · · ,M} are as similar as possible to each other.
WPS employs the Balanced Largest-First Differencing Method
(BLDM) [16] to compute an approximated solution to the
number partitioning problem. BLDM is a widely used and
effective algorithm that performs k-way partitioning for k ≥ 2
in O(n log n) time.

This work uses the number of items rooted at each given
item as a workload metric for even distribution. We assume
that the time required to process an item is constant throughout
the WIT — an assumption that holds in all the applications
studied in this paper. WPS could be easily adapted to use other
workload metrics as well. For example, in applications where
work items have different processing times, StraSa could
estimate the total processing time of subtrees as opposed to
estimating the size of the subtrees. Then, BLDM would be
used to partition the items not processed by StraSa into
parts of similar processing time.

D. Distributing

In this phase, WPS stores one subset W1 in local memory
for processing in the current processing node and distributes

the remaining Wj|j=2..M subsets of items to the M − 1
remaining processing nodes. The items are copied to the nodes
asynchronously to ensure that a processing node does not
need to wait for completion of data transfer to any other
nodes. Multiple independent threads can be used to parallelize
the copying operations across the processing nodes. In the
applications used in this study, the work-items in different
Wj subsets can be processed in any order as the applications
generate valid results for all orders of processing of the items.

In applications, where the work-items must be expanded
in an orderly fashion, processing of parent items first may
be necessary to ensure that its children do not wait for
a prolonged time. Work-items in such applications can be
processed in a monotonically increasing order of A[i] because
the parent items are stored at higher levels of the ST than their
children. Optimizing the scheduling and distribution strategy
for applications that exhibit irregular dependencies among the
work items is beyond the scope of this paper.

VI. WPS IN THE MULTIPLE-PROBING SETTING

Typically, increasing the number of StraSa probes will
improve the accuracy of the tree size prediction. In WPS we
use multiple probes to improve the prediction accuracy of the
size of the subtrees rooted at items of different strata. In the
partitioning phase, for stratum t encountered at level i, instead
of using the Y i

t value produced in a single probe, we use the
average of the Y i

t -values computed across multiple probes.
An important question is: how many probes are sufficient

to yield best performance? An empirical evaluation indicates
that a larger number of probes improves the accuracy of
estimation, but incurs large sampling overhead. Likewise, a
smaller number of probes with lower overhead may lead
to poor estimates of the workload metric. This study used
manual tuning to determine the number of probes that yields
the best performance (details in Section XI). The findings
from this study establish the significant performance merit
of the sampling-based workload distribution technique. Future
studies may use automatic techniques to identify the optimal
number of probes for high performance. For instance, they
could use profile-guided tuning, where WPS could continue
the probing process until the execution time stops improving.

VII. WPS ACCURACY

WPS is intended to evenly distribute the workload among
different processing nodes in a cluster, thus minimizing the
need for load-balancing operations. An empirical evaluation
(Section XI) indicates that WPS performs a good partitioning
of the work list and consequently requires infrequent load-
balancing operations. However, the approximations of the
stratified sampling technique and of the multi-way number
partitioning algorithm may leave room for some load im-
balance both inside and across multiple nodes in a cluster.
Therefore, WPS is intended to operate in coordination with
existing load-balancing schedulers, such as work stealing,
that manage intra- and inter-node load imbalances, and not
to replace them completely. For the applications studied in
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Fig. 2: Triangle-flipping process.

this implementation, there was limited scope for inter-node
load balancing. Nonetheless, coordinating WPS with existing
load-balancing schemes in runtimes of programming systems
is beneficial because: i) there is no load-balancing overhead
if there is no load imbalance in the system; and ii) the
infrequent load-balancing operations that may be necessary
will be handled by the existing load-balancing techniques.

VIII. APPLICATION PROBLEMS

We apply WPS to parallelize three algorithms: IDA*, De-
launay Mesh Generation, and Delaunay Mesh Refinement.

A. Iterative-Deepening A* (IDA*)

IDA* is a fundamental algorithm in Artificial Intelligence
for solving state-space search problems. Given a start state s∗,
IDA* expands a tree while performing a Depth-First Search
from s∗ with cost bound d in the state space. IDA* uses a
cost function defined as f(n) = g(n) + h(n), where g(n) is
the cost to reach state n from s∗, and h(n) is the estimated
cost-to-go from n. The value of the cost bound d is initially
set to the heuristic value of s∗.

In each iteration, IDA* expands all states n that it encoun-
ters such that f(n) ≤ d. If a goal is not found, then d is
increased by setting it to the lowest f -value larger than d
observed in the previous iteration. If IDA* uses an admissible
heuristic — a heuristic that never overestimates the optimal
solution cost for any state n — then IDA* is guaranteed to
return a path from s∗ to the goal state, if one exists, with the
optimal solution cost [12].

1) Parallelizing IDA*: The tree that IDA* expands during
its search, with a given cost bound, is WPS’s WIT. The states
in this tree represent the items. In each IDA* iteration, WPS
partitions the WIT into M parts of similar size. The M
processors detect termination of each iteration and compute
an estimate of the cost for the next iteration. WPS is used
once again to partition the new WIT defined by the new cost
bound. If a processor finishes its part of the search, it tries to
steal items from other processors. All processors stop once
the solution is found. Processor idling leads to substantial
performance degradation because an iteration of IDA* does
not start until the previous one is completed. Therefore, a
balanced workload partitioning scheme is crucial for agent-
search domains such as IDA*.

B. Delaunay Mesh Generation (DMG)

Delaunay Triangulation, a.k.a Delaunay Mesh Generation
(DMG), from a set of points P in an Euclidean plane is
a triangulation DT such that no point in P is inside the
circumcircle of any triangle in DT . DMG starts by adding
to P three dummy points at infinity, whose spanning triangle
contains all points in P . In each iteration, the algorithm inserts

Fig. 3: Retriangulating a bad triangle in DMR.

a point p ∈ P into the current triangulation by connecting p
to the three vertices of the triangulation. The new triangles
formed after triangulation are valid Delaunay triangles iff there
is no point inside the circumcircle of any of the triangles.

The first triangulation in Figure 2 is an example of an invalid
triangulation because the circumcircle of ∆bcd encompasses
the point a, which is a vertex of the other ∆abc. Therefore,
the triangulation process deletes the edge bc, shared by ∆abc

and ∆bcd (second diagram in the figure), connects a to
the vertex d of ∆bcd (third triangulation in the figure), and
examines the newly formed ∆acd and ∆abd for validity. This
process, called triangle-flipping, continues until all triangles
encountered during triangulation are valid. The triangulation
obtained after insertion of all points is the Delaunay mesh. The
final triangulation shown in Figure 2 is valid because there is
no point inside the circumcircle of any of the triangles.

1) Parallelizing DMG: Processing of points during Delau-
nay Triangulation can be done in an arbitray order — all orders
generate valid Delaunay meshes. Processing a point involves
splitting a triangle, and possibly, flipping invalid triangles in
the point’s neighbourhood. Typically, these neighbourhoods
are small – the connected regions of the mesh. DMG can be
parallelized by inserting multiple points in parallel, provided
the points affect triangles that are far apart in the mesh.

The items to be balanced in DMG are the set of given
points. The child triangles resulting from the insertion of
different points into a given triangle form WPS’s WIT. WPS
first generates sufficient triangles in WIT for M processing
nodes and partitions the WIT into M parts of similar size.
A processor tries to steal items from other processors if it
completes triangulations of its allocated WIT. All processors
stop once all given points have been processed.

C. Delaunay Mesh Refinement (DMR)

Delaunay Mesh Refinement (DMR) refines the given De-
launay Triangulation such that no angle in any of the triangles
in the mesh is less than 30 degrees. The triangles that do not
meet this criterion are bad triangles. In each iteration, DMR
successively fixes the bad triangles by adding new points to
the mesh and re-triangulating the resulting triangles. Figure 3
illustrates this process. For example, the shaded triangle in
Figure 3 is a bad triangle. To fix this bad triangle, a new
point is added at the circumcenter of this triangle. Adding this
point may invalidate the Delaunay property of some triangles
in the neighbourhood of this triangle. This region is called
the cavity of the bad triangle. Re-triangulating a cavity to fix
the bad triangles may generate new bad triangles, but this
iterative refinement process ultimately terminates and produces
a guaranteed-quality mesh.

1) Parallelizing DMR: A cavity formed during the process-
ing of a bad triangle is typically a small neighbourhood of the



TABLE I: Instances of 24-puzzles solved optimally.

13 14 17 22 9 21 8 10 6 7 5 16 0 24 1 15 2 23 4 3 18 19 12 11 20
2 0 10 19 1 4 16 3 15 20 22 9 6 18 5 13 12 21 8 17 23 11 24 7 14
9 6 15 10 0 20 17 16 5 24 2 3 21 14 7 18 13 19 4 12 11 22 8 23 1

triangle. The small size of cavities implies that two bad trian-
gles that are far apart on the mesh may have non-overlapping
cavities. Furthermore, the entire process of expanding a bad
triangle, re-triangulating the cavity and updating the mesh
are completely independent for two triangles. Thus, multiple
triangles with non-overlapping cavities can be processed in
parallel. However, two triangles with overlapping cavities must
be processed sequentially. The correctness of the final refined
mesh is agnostic to the order of processing of the triangles —
all orders lead to valid triangulations.

The items to be balanced are the bad triangles in the given
Delaunay Triangulation. The cavities formed while iteratively
fixing different bad triangles form WPS’s WIT .

IX. THE X10 PROGRAMMING SYSTEM

The applications and the runtime changes are implemented
in X10 [26], a well-supported high-performance programming
system. The X10 programming model is organized around the
notions of activities and places. Every computation in X10 is
an asynchronous activity, akin to a light-weight task. A place
is an abstraction of shared, mutable data and worker threads
operating on the data. It encodes the affinity between tasks
and memory partitions. Every activity runs in a place. In X10
the statement async (p) S creates a new activity at place
p to execute S. The activities running in a place may access
co-located data with the efficiency of local access. An access
to a remote place may take orders of magnitude longer and is
performed using the at (p) S statement. The at statement
shifts the control of execution of the current activity from the
current place to place p, copies any data that is required by
the statements S to p, and, at the end, returns the control
of execution to the original place. The data copying is done
through runtime system calls inserted by the compiler.

X10 uses an intra-node work-stealing scheduler for load
balancing. The scheduler uses a pool of worker threads to
execute activities. Each worker owns a deque — double-ended
queue — of activities. A worker pushes an activity for each
async construct it encounters. When a worker completes one
activity, it pops the next activity to run from its deque. A
worker attempts to steal an activity from the deque of another
worker if its own deque is empty. Contention is minimal and
only arises with load imbalance because each worker primarily
interacts with its own deque. Contention is further reduced
because the push and pop operations access one end of the
deque while steal operations access the other end.

X. EXPERIMENTAL SETUP

Platform Performance measurements use a blade server
with 16 nodes, each featuring two 2 GHz Quad-Core AMD
Opteron processors, with 8 GB of RAM and 20 GB of swap
space, running CentOS GNU/Linux version 6.2. All binaries
were compiled with GCC version 4.4.3 using the -O3 flag.
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Fig. 4: Sequential execution times and steal-to-task ratios.

Compiler and Runtime The x10c++ compiler version
2.3.1 is used for all measurements. The nodes in the cluster are
connected by an infiniband network with a bandwidth of 10
Gbit/s and use MVAPICH2 library for communication. The
experimental runs create eight worker threads per node and
vary the number of nodes from 1 to 16 so that the number of
threads is the same as the total number of cores.

Start States for WPS This evaluation uses Korf’s [11] one
hundred instances of 15-puzzle and 3 random instances of 24-
puzzle (shown in Table I). The start states for the puzzles can
be generated through random valid permutations of the tiles.
There is only one valid start state for DMG — the triangulation
that encapsulates the given points. For DMR, triangulation of
any given bad triangle is a valid start state. DMG uses 10M
points and DMR uses 68M triangles as inputs.

Stratification Our evaluation uses a stratification that labels
items n1 and n2 with the same stratum if three conditions are
met: (1) h(n1) = h(n2); (2) n1 and n2 generate the same
number of children and grandchildren; and (3) the children and
grandchildren have the same heuristic values. Lelis et. al [15]
first introduced this stratification and showed that StraSa
produces good estimates of the IDA* WIT size using such a
stratification. For DMG and DMR, two items are said to have
the same stratum if they generate the same number of children
and grandchildren. Unless stated otherwise, WPS employs five
probes of StraSa on 15-Puzzle, DMG, and DMR, and 25
probes on 24-Puzzle. Section XI discusses the performance
impacts of different stratifications and number of probes.

Methodology Applications are run twenty times to account
for variances, such as work-stealing in the X10 runtime, and
scheduling policies in the operating system. The performance
charts include 95% confidence intervals for execution times,
speedups, and steals-to-tasks ratios.

Application Properties The ratio of the total number of
tasks stolen to the total number of tasks created during the
execution of an application is its steal-to-task ratio. Figure 4
shows the steal-to-task ratio for the applications at 128 threads
using X10WS. Although the ratios are small, the absolute num-
bers of work-stealing operations required for load balancing
are high — 32,093 for 15-puzzle, 776,193 for one instance
of the 24-puzzle, 63,290 for DMG and 52,647 for DMR —
indicating that these applications can substantially benefit from
a more balanced workload distribution.

Workload Distribution Algorithms The idea of perform-
ing state-space exploration to generate enough parallel tasks
for distribution amongst processing nodes is not new. WPS pro-



vides a systematic way to do this without requiring program-
mers to code this solution. Unlike other existing techniques,
WPS estimates the number of tasks that will be generated after
processing the initial tasks to evenly divide the total workload
in an application. This evaluation compares the performance of
WPS against the following workload-distribution algorithms:

i) X10WS: X10’s default intra-node work-stealing scheduler
ii) WD scheduler complements X10WS and migrates tasks to

a node whose worker repeatedly fails to steal from its
co-located peers [19], [18].

iii) EagerWD scheduler is similar to WD but proactively maps
tasks in a load-balance-aware manner rather than waiting
until the occurrence of a load-imbalance.

iv) DistWS scheduler complements X10’s intra-node work-
stealing with inter-node work-stealing [20].

The evaluation also investigates the implications of operat-
ing WPS in isolation and in tandem with these schedulers:

v) WPS*: WPS operating without coordination with any other
scheduler;

vi) WPS: WPS operating in coordination with X10WS; and
vii) WPS+DistWS: WPS operating in coordination with both

X10WS and DistWS.
A closely-related algorithm intended specifically for IDA*

also exists, it is called AIDA*. Section XII compares the
performance of WPS against AIDA*.

Initial Partitioning of Work-List WPS partitions the WIT
based on the predicted size of the subtrees rooted at items in
the WIT. X10WS and DistWS employ the following approach
to partitioning. The sliding-tile and DMG applications start
with a single state and generate several states during the
course of their execution. Therefore, in 15- and 24-Puzzles,
the algorithms perform an iterative-deepening search for a
few levels until there are at least 10×M items in the search
frontier, where M is the number of available processing nodes.
This initial exploration produces a sufficient number of subtree
roots — about 1,300 nodes — while not overflowing the
memory resources of the evaluation platform. Similarly, in
DMG, the algorithms perform triangulation until 10 × M
triangles are formed in the mesh. These triangles and their
encapsulated points are then distributed among M processing
nodes. In DMR, the implicitly-defined worklist of triangles to
be refined is distributed amongst M processing nodes. Unlike
WPS, X10WS and DistWS are unable to account for the
dynamically generated items during workload distribution.

XI. EVALUATION

The sequential execution times of the three instances of 24-
puzzle are long and they significantly differ from one another.
Therefore, the parallel execution time for each instance at 128
workers is reported separately in Figure 5. The speedup results
for other applications are shown in Figure 6. This evaluation
investigates the following research questions:
(1) How beneficial is WPS*? For each application, Fig-
ure 6 shows the speedups achieved using different workload-
distribution strategies at different worker counts. The speedups
are relative to the sequential execution time using X10WS.
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Fig. 5: Execution times of 24-Puzzle at 128 workers.

WPS* consistently outperforms EagerWD, WD, and
DistWS. For instance, the 86x speedup on DMR at 128
workers achieved using WPS* represents 23%, 20%, and 18%
improvements over EagerWD, WD, and DistWS, respec-
tively. EagerWD and WD yield relatively small speedups over
X10WS. EagerWD yields 11%, 10%, and 14% speedups on
15-puzzle, DMG and DMR respectively. WD exhibits better
speedups — 14%, 16%, and 19% on the same applications.
DistWS performs much better. It yields speedups of 22%,
32% and 29%. The algorithms exhibit similar trend on 24-
Puzzles too. DistWS outperforms X10WS by 26%, 27%,
and 28% on three instances of 24-Puzzle. WPS* outperforms
X10WS by 29%, 29%, and 31% on the same instances.
(2) What is the impact of coordinating WPS* with other
schedulers? WPS* aims to evenly distribute the workload
among processing nodes, but not among multiple threads
within a processing node. Therefore, WPS scheduler coor-
dinates WPS* with X10WS. WPS yields significant speedups
over X10WS on 15-Puzzle, DMG, and DMR — 38%, 45%,
and 43% respectively. WPS outperforms DistWS— the best
performing scheduler among X10WS, EagerWD, WD, and
DistWS— by 21%, 18%, and 20% on 15-Puzzle, DMG, and
DMR respectively. WPS outperforms DistWS by 34%, 35%,
and 40% on three instances of 24-Puzzle.
WPS+DistWS does not yield significant speedup over WPS.

This is a result of the even workload distribution generated by
WPS, which leaves little opportunities for DistWS to migrate
items between nodes for load balancing.

Further evaluations do not discuss WPS* and WPS+DistWS
because they are not interesting in terms of overall speedups.
(3) How does the precision of stratification impact WPS?
The quality of the stratification guiding the sampling pro-
cess may substantially impact the accuracy of the tree-size
predictions. Ideally, a stratification would determine that two
items are of the same stratum iff they root subtrees of the
same size, which would allow StraSa to produce a perfect
estimate of the tree size in a single probe. A trivial example
of such a stratification is one in which every item belongs
to its own stratum. In this case, there would be far too many
strata to sample from and the approach would not be effective.
In practice one should use a compact stratification (i.e., a
stratification with a small number of strata) that has a low
variance on the subtree sizes rooted at items of the same
stratum. Multiple StraSa probes can be used to improve the
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Fig. 6: Application speedups over sequential execution times using different schedulers at different worker counts.
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Fig. 7: WPS performance using different stratifications. The
number of probes used are indicated in the parentheses, and
the ‘+’ sign in the x-axis labels indicate WPS+DistWS.

accuracy of predictions when using low-quality stratifications.
Figure 7 shows the performance impact of different strati-

fications and of different number of StraSa probes on WPS.
Stratification1 (S1) is the stratification described in Section X,
while Stratification2 (S2) is a version of S1 with fewer strata.
Namely, S2 considers two items to be of different stratum if
the number of children and grandchildren they produce differ
by more than two. The numbers in parentheses in Figure 7
represent the number of probes used. WPS performs worse in
all domains when using one probe (see WPS(1)). When using
a single probe, the performance does not improve even when
coordinating WPS with DistWS (see WPS(1)+).
WPS yields best performance under S1 and S2 at five and

ten probes of StraSa, respectively. This difference in the
number of probes in which each stratification performs best is
because S1 has more strata than S2. Thus, a StraSa probe
using S2 will tend to be faster than a StraSa probe using S1.
Increasing the number of probes beyond five for S1 and ten
for S2 is not beneficial. In fact, the performance worsened at
larger number of probes because of the overhead of sampling.
The loss in performance is regained by coordinating WPS with
DistWS. The 24-Puzzles exhibit best performance under both
stratifications at 25 probes, and exhibit similar trends overall.
(4) What are the sources of speedups? Fig. 8 shows the
breakdown of execution times of applications using X10WS,
DistWS, and WPS. The performance gains arise from:

i) Reduced Work-stealing Operations: WPS reduces the exe-
cution time spent on work stealing in the range of 10% to 16%
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Fig. 8: Breakdown of total execution time.

over X10WS and in the range of 7% to 12% over DistWS. The
work-stealing time also accounts for the machine idle times —
when workers are unsuccessfully searching for surplus work to
steal — because an idle worker may continuously try to steal
work from other workers. The reduced need for work-stealing
operations means that the nodes will be mostly performing
useful computations. Thus, actual computations in applications
contribute more to the total execution time with WPS – in the
range of 7% to 13% over DistWS and in the range of 14%
to 16% over X10WS. These performance gains are achieved
at the cost of 1% to 2% of the total execution time spent on
workload partitioning using WPS.

ii) Reduced Communication over the Network: An even
distribution of workload using WPS necessitates fewer message
transmissions across the network. This reduced communica-
tion stems from fewer steal operations, fewer synchronized
access to the shared deques of remote workers, and fewer
accesses to data required to process stolen tasks.

Table II shows the average number of messages transmitted
across the network obtained from twenty runs of each appli-
cation using X10WS, DistWS, and WPS at 128 threads. As
expected, WPS requires fewer message transmissions across
the network compared to X10WS and DistWS.

iii) Improved Node Utilization: Through an improved work-
load distribution, significantly reduced work-stealing opera-
tions, and reduced machine idle times, WPS achieves an in-
creased and uniform CPU utilization compared to X10WS and
DistWS. The radial axes and the points in the circumference



TABLE II: Messages transmitted across network (in millions).

Applications # of Messages Transmitted (128 workers)

X10WS DistWS WPS

15-Puzzle 12.43 10.49 3.40
24-Puzzle(1) 86.39 81.78 69.58
DMG 42.68 36.84 26.03
DMR 37.92 32.29 22.89
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Fig. 9: Average node utilization (128 threads). The figure
shows the node utilizations starting from 50% for better clarity.

of the circles in Fig. 9 respectively indicate the average CPU
utilization of eight cores in a node and a node in the cluster.

With X10WS, the standard deviations of average node
utilization for 15-Puzzle, DMG and DMR are 12.45, 18.37,
and 17.5 respectively. With DistWS, the standard deviations
are 9.71, 11.49, and 10.2 respectively. With WPS, the standard
deviations are 2.32, 3.12, 3.09 respectively. The lower standard
deviations of average node-utilizations when using WPS point
to an improved load-distribution achieved with WPS.
DistWS permits workers in a node to steal tasks from

remote nodes if all the co-located workers lack surplus work.
Thus, DistWS performs more work compared to X10WS,
which operates only within a node, resulting in an increased
CPU utilization over X10WS. However, DistWS still exhibits
a non-uniform CPU utilization due to a large number of tasks
stolen for load-balancing. Stealing tasks from remote nodes
incurs the overheads of remote data accesses that are necessary
for processing the stolen tasks. Hence, some nodes show
heavy utilization while the others show lighter utilization. WPS
reduces the need for work stealing across processing nodes,
thereby, enabling workers to perform useful computations.
Thus, the node utilization circles for WPS are larger and more
uniform compared to those for X10WS and DistWS.

XII. ASYNCHRONOUS IDA* (AIDA*)
Similar to WPS, AIDA* also combines a data-partitioning

scheme with work stealing for parallel and distributed imple-
mentation of IDA* [24]. AIDA* operates in three phases:

i) in the data-partitioning phase, each processor redundantly
expands the tree to generate enough frontier nodes;

ii) in the distributed node-expansion phase, each processor
expands its portion of the nodes generated in the preced-
ing phase to generate additional finer-grained nodes;
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Fig. 10: WPS and AIDA* performance on 15- and 24-Puzzles.

iii) in the asynchronous search phase, processors perform
IDA* on their subtrees until a solution is found. All
processors search to the same threshold. After completion
of an iteration, the processors begin a new search pass
through the same set of subtrees using a larger threshold.

This implementation of AIDA* uses the following con-
straints to closely match the original algorithm: i) steals from
neighbouring processors; ii) partially re-orders the nodes in
the local work list and only allows nodes of average size to
be stolen; iii) steals in chunk sizes of five nodes; iv) permits
stealing of at most half of a victim’s items. The cluster used
in this evaluation is fully connected, where stealing from a
randomly selected victim has the same effect as trying to
steal from a neighbour in terms of communication latency.
Nevertheless, we modify our load-balancer to mimic the
original algorithm.

AIDA* differs from WPS as follows: i) unlike AIDA*,
WPS expands the search tree on a single processor to gen-
erate enough frontier items for distribution among processors;
ii) while AIDA* relies on a robust distributed load balancer to
mitigate the imbalance in subtrees distributed to the proces-
sors, WPS rarely needs load balancing across processing nodes.
WPS relies only on intra-node load balancer to mitigate load
imbalance among workers co-located in a processing node.

For the three instances of 24-Puzzle, Figure 5 shows the ex-
ecution time performance using AIDA* and WPS. For the 15-
Puzzle, Figure 10 shows the speedups achieved with AIDA*
and WPS at different worker counts. Figure 10 also shows the
performance gains with WPS relative to AIDA* at 128 workers.
AIDA* does not account for the variability in the subtree sizes
during initial distribution of the frontier nodes. Consequently,
processing nodes often suffer from frequent load imbalances
and require several expensive load-balancing operations. In
addition, AIDA* also needs to perform expensive item sorting
and coalescing to support efficient migration of items. As a
result, WPS outperforms AIDA* by 17%, 29%, 31% and 36%
on 15-Puzzle, and the three instances of 24-Puzzle.

XIII. ADDITIONAL RELATED WORK

A popular task-distribution strategy in agent-search domains
expands the search tree to generate enough frontier nodes
for distribution among processors [23], [14]. Such a strategy
does not account for the size of dynamically generated states,
thereby, causing a load imbalance. Parallel Window Search is
another approach for load balancing where multiple worker



threads search the same tree in parallel using different cost
bounds [22]. The demerit of this approach is that some
processors may search the tree with a search bound that is
too high and result in wasted work if the optimal solution is
found at lower depths by some other workers.

Transposition-table-driven scheduling (TDS) uses a hash-
function-indexed transposition table for workload distribu-
tion [25]. TDS relies on robust optimizations, such as message
coalescing, and requires: (i) dynamically identifying states
with identical source and destination processors; (ii) coalesc-
ing them into a single message of appropriate granularity;
and (iii) migrating the coalesced message packets at precise
control-flow points. Efficient implementation of such opera-
tions often requires expensive data and control flow analyses.

Niewiadomski et al. [17] present a sampling-based approach
for workload distribution in implicit graphs. Unlike their ap-
proach, WPS selectively samples only items of unique stratum
and therefore does not require application programmers to
manually identify the best sampling size for each application.

Frameworks, such as PREMA [1], Scioto [5], and Tur-
bine [28], also aim to support automatic load balancing
in irregular parallel applications. These frameworks require
programmers to expose parallelism, and migratable data and
objects in applications using special runtime libraries. Unlike
these approaches, WPS does not require re-writing existing
X10 applications, and only requires users to specify strati-
fications during program execution.

XIV. CONCLUDING REMARKS

This paper presents an algorithm for evenly partitioning
workload in distributed shared-memory machines. The dis-
tribution relies on a sampling-based prediction of the size
of the sub-tree rooted at a given item. An experimental
evaluation of this approach on IDA*, Delaunay Triangulation
and Delaunay Mesh Refinement algorithms yields substantial
speedups compared to state-of-the-art approaches, including
ones that are specifically targeted at individual applications.

The main strength of the algorithm is that its workload
distribution strategy applies to a range of iterative work-list-
based data-parallel irregular applications and does not require
manual tuning of sampling strides. Another strength of the
algorithm is its ability to integrate well with mainstream
load-balancers, such as work-stealing schedulers. Although
not necessary for applications studied in our evaluation, the
algorithm may benefit from coordination with work-stealing
schedulers, but it does not require a complete overhaul or
removal of the existing schedulers. As such, this approach has
wide scope in other high-performance programming systems
such as Chapel [3], UPC [6], and Charm++ [9].
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