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Abstract

There are several approaches in the literature for au-
tomatically generating Infinite Mario Bros levels. The
evaluation of such approaches is often performed solely
with computational metrics such as leniency and linear-
ity. While these metrics are important for an initial ex-
ploratory evaluation of the content generated, it is not
clear whether they are able to capture the player’s per-
ception of the content generated. In this paper we eval-
uate several of the commonly used computational met-
rics. Namely, we perform a systematic user study with
procedural content generation systems and compare the
insights gained from our user study with those gained
from analyzing the computational metric values. The
results of our experiment suggest that current computa-
tional metrics should not be used in lieu of user studies
for evaluating content generated by computer programs.

Introduction
Automatic generation of good-quality content is a long-
term goal in Artificial Intelligence (AI), where content could
mean levels of a computer game, stories, sport commen-
taries, and others. The research area of automatic con-
tent generation is known as Procedural Content Generation
(PCG), and in this paper we refer to systems which automati-
cally generate content as PCG systems. We focus the present
work on the problem of automatically generating levels of
the game of Infinite Mario Bros (IMB), a variant of Super
Mario Bros (SMB). IMB has recently received a lot of atten-
tion from AI researchers—see Togelius et al. (2011) for a re-
view. The reason for its popularity amongst AI researchers is
that IMB is an excellent testbed for PCG systems: the game
is simple enough to allow researchers to quickly experiment
with novel PCG approaches and yet quite entertaining.

There are various approaches in the literature for auto-
matically generating IMB levels. The evaluation of such ap-
proaches is often performed solely with computational met-
rics such as leniency and linearity (Smith and Whitehead
2010; Horn et al. 2014). While these metrics are important
for performing initial exploratory evaluations of the levels
generated, it is not clear whether they are able to capture
the player’s perception of the content generated. A focus in
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many PCG research projects is to know whether the con-
tent generated has good quality from the player’s perspec-
tive, and the literature lacks a systematic evaluation of the
computational metrics used for evaluating PCG systems.

The contributions of this paper are empirical. Namely, we
perform a systematic user study with IMB PCG systems
and compare the insights gained from our study with those
gained from analyzing a set of commonly used computa-
tional metrics. As an example of the results we present in
this paper, all computational metrics used in our experiment
rated the levels generated by two PCG systems very simi-
larly, while subjects in our user study found that the levels
generated by one of the systems were significantly more en-
joyable to play than the levels generated by the other system.
As another example, the computational metric of leniency,
which was designed to approximate the difficulty of a given
level, only weakly correlated with the difficulty rated by the
subjects in our study. Perhaps the most important conclusion
one can draw from our experiments is that although the com-
putational metrics can be valuable for an initial exploratory
study of the content generated by PCG systems and for ver-
ifying the diversity of levels a PCG system can generate,
these metrics should not replace user studies for analyzing
the player’s perception of the content generated.

The current paper is of interest to the AI community be-
cause our results provide valuable insight on how to design
experiments for evaluating PCG systems and potentially on
how to develop novel computational metrics for guiding the
AI search process of procedurally generating IMB levels.

This paper is organized as follows. First, we provide a
literature review of evaluation strategies of PCG systems for
Mario games. Following, we explain the computational met-
rics evaluated in our experiment. Finally, we describe our
experiment and discuss the results obtained.

Review of Evaluation Strategies
In this section we review strategies used by others for evalu-
ating IMB and SMB PCG systems. The literature in evalua-
tion strategies for games in general is much broader than the
review we present in this paper; we focus on Mario games.

We group the works in our review as follows: works us-
ing user studies to evaluate PCG systems (user studies for
evaluation), works using user studies not to evaluate PCG
systems, but to collect data to learn predictive models (user



studies for data collection), works using computational met-
rics and/or artificial agents to evaluate PCG systems (com-
putational evaluation), and works that evaluate PCG systems
with self critique or some other sort of evaluation.

User Studies for Evaluation
The Mario AI Competition (Togelius et al. 2013) offers a
user study for comparing different PCG systems. In contrast
with the competition, which is interested in ranking differ-
ent PCG systems, in this paper we perform a user study to
evaluate computational metrics.

Shaker et al. (2010) describe a system for generating
adaptive player-tailored IMB levels. Their system directly
asks questions to the players about their preferences. Shaker
et al.’s main experiment is carried out with artificial agents,
but an experiment with human subjects compares the pro-
posed adaptive approach with a non-adaptive one. Dahlskog
and Togelius (2013) also present a user study comparing dif-
ferent levels of SMB. Bakkes et al. (2014) describe a system
for balancing game challenging in IMB levels; their system
is also evaluated with human subjects.

User Studies for Data Collection
Pedersen et al. (2009) presented a system for modeling
player experience based on empirical data collected in a user
study. They were aiming at learning statistical models for
predicting, given an IMB level L, the challenge L will of-
fer to the player, and how much enjoyment and frustration
the player will have while playing L. Similarly, in different
works, Shaker et al. (2011; 2012; 2013) showed how to ex-
tract features to learn predictive models of the player’s expe-
rience in IMB. Pederson et al.’s and Shaker et al.’s long-term
goal is to use these models to guide the search for good-
quality player-tailored IMB levels. By contrast, in this pa-
per we are not interested in models for guiding the process
of generating good-quality IMB levels, we are interested in
comparing different strategies for evaluating PCG systems.

Computational Evaluation
Smith and Whitehead (2010) and Horn et al. (2014) intro-
duced several computational metrics for evaluating what the
authors called the expressivity of PCG systems—we de-
scribe some of these metrics below. Their metrics were used
in several works as a form of evaluating PCG systems.

For example, Smith et al. (2010) presented Tanagra, a sys-
tem for generating levels of 2D-platform games which was
evaluated solely with computational metrics. Later, Smith et
al. (2011) presented Launchpad, a system that uses rhythm
groups to generate levels of platform games. Launchpad
was also evaluated with computational metrics. Shaker et
al. (2012a) use a grammar to concisely encode design con-
straints for evolving IMB levels. Shaker et al.’s system is
also solely evaluated with computational metrics similar to
those used by Smith et al. to evaluate Tanagra and Launch-
pad. In another work Shaker et al. (2012b) evaluate the per-
sonalized content generated by a grammar-based PCG sys-
tem with artificial agents. In a recent work Shaker and Abou-
Zleikha (2014) used non-negative matrix factorization to

generate levels based on patterns learned from levels gen-
erated by other systems; their method is also evaluated with
computational metrics.

Dahlskog et al. (2014) use n-grams created from original
levels of SMB to generate novel levels of the game. In two
other works Dahlskog and Togelius (2014a; 2014b) present
systems which use patterns to generate levels of the game
of SMB. All these works were evaluated with the computa-
tional metrics introduced by Smith and Whitehead (2010).

Sorenson et al. (2011) presented a system which uses the
idea of rhythm groups introduced by Smith et al. (2008) to
define a computational model of player enjoyment to evolve
levels of IMB. This model is also used to evaluate the result-
ing levels. Sorenson et al. also evaluate their system in terms
of the results of the Mario AI Competition.

Other Evaluation Strategies
Some PCG systems are evaluated neither with user stud-
ies nor with computational metrics. For example, the
Occupancy-Regulated Extension (ORE) PCG system is
evaluated by the authors themselves with an analysis of the
levels generated (Mawhorter and Mateas 2010). Kerssemak-
ers et al. (2012) also presents a self critique of the pro-
posed approach in addition to an empirical running time
analysis of the system. The seminal work of Compton and
Mateas (2006) on content generation for platform games
does not present evaluations of the proposed approach.

Recently, Canossa and Smith (2015) introduced several
metrics based on design theory for evaluating IMB levels.
Their metrics were obtained through discussions with design
students. However, in contrast with the computational met-
rics introduced by Smith and Whitehead (2010) and Horn
et al. (2014), some of Canossa and Smith’s metrics are not
formal enough to be implemented as a computer procedure.

Most of the user studies in the PCG literature of Mario
Bros games have been performed to collect data to learn pre-
dictive models of the player’s perception of the game. Ex-
ceptions include the Mario AI competition, and the works
of Shaker et al. (2010), Dahlskog and Togelius (2013), and
Bakkes et al. (2014). A large number of PCG systems have
been solely evaluated with computational metrics similar to
the ones introduced by Smith and Whitehead (2010). It is
not clear whether such metrics provide insights about the
player’s perception of the generated levels. Our work is the
first to systematically compare the computational metrics
with the human’s perception of the generated levels.

The PCG Problem for Infinite Mario Bros
In this paper we are interested in the problem of evaluating
the content generated by PCG systems for the game of IMB.
The levels of IMB are grid spaces containing a set of objects
such as platforms, mountains and shooting cannons. Every
object is associated with a location on the grid (x and y coor-
dinates) and some of the objects such as mountains can have
different heights and widths.

Let L = {o1, o2, · · · , on} be a level of IMB where
o1, o2, · · · , on are the n objects composing the level. The
PCG problem for IMB is to choose the set of objects in L



as well as the objects’ x and y coordinates. For some of
the objects such as pits and mountains the PCG system also
needs to define their height and width values. In this paper
we assume that the goal in PCG for IMB is to generate levels
which are both visually appealing and enjoyable to play.

Computational Metrics
In this section we describe the computational metrics used in
our experiment: linearity and leniency introduced by Smith
and Whitehead (2010), density, and Compression Distance
introduced by Shaker et al. (2012a). Similarly to previous
works, to ease the presentation of the results, we normalize
all metrics to the [0, 1] interval. Normalization is performed
by accounting for the levels generated by all systems evalu-
ated. Thus, the metric values we present in this paper are not
directly comparable to the values presented in other works
as the normalized values depend on the systems evaluated.
We note that the normalization we perform does not affect
the results of our experiment.

Linearity The linearity of level L is computed by per-
forming a linear regression on the center points of each plat-
form and mountain contained in L. The linearity of L is the
average distance between the center points and the linear
regression’s line. Normalized values closer to one indicate
more linear levels. The linearity of a PCG system ρ is the
average normalized linearity of the levels ρ generates.

Linearity measures the changes in height (y-coordinate)
the player experiences while going through the level. Smith
et al. (2011) pose the linearity metric as a visual aesthetics
metric, which is reasonable since levels with different linear-
ity values are expected to look different from one another.

Leniency Leniency measures how much challenge the
player is likely face while playing the level. The leniency of
level L is the sum of the lenience value w(o) of all objects
o in L, defined as

∑
o∈L w(o). We use the lenience values

specified by Shaker et al. (2012a). Namely, power-up items
have a weight of 1, cannons, flower tubes, and gaps of−0.5,
and enemies of −1. We subtract the average gap width of
the level from the resulting sum as defined by Shaker et al.
Leniency is meant to approximate the difficulty of the levels.
Normalized values closer to one indicate more lenient levels.
The leniency of a PCG system ρ is the average normalized
leniency of the levels ρ generates.

Density Mountains can occupy the same x-coordinate on
the grid defining a IMB level by being “stacked-up” to-
gether. The density of L is the average number of mountains
occupying the same x-coordinate on the grid. Intuitively,
a level with high density could have different layouts and
challenges than a level with low density. Normalized values
closer to one indicate denser levels. The density of a PCG
system ρ is the average normalized density of the levels ρ
generates.

Compression Distance The Compression Distance (CD)
measures the structural dissimilarity of a pair of levels. CD
is computed as follows. First, we convert the pair of levels
L and L′ into two sequences of integers S and S′, respec-
tively. Each integer in S represents one of the following in

L: (i) an increase or decrease in the platform’s height, (ii)
the existence or the nonexistence of enemies and items, and
(iii) the beginning or ending of a gap. The conversion of L
into S is done by traversing the level’s grid from left to right
and for each x-value on the grid we insert the appropriate
integer into the converted sequence (e.g., the integer 1 in po-
sition 10 could represent an enemy at x-coordinate 10 of the
level). Intuitively, if sequences S and S′ are very different,
then one would expect L and L′ to be structurally different.

The CD value of a PCG system ρ is the average normal-
ized compression metric (Li et al. 2004) of S and S′ for pairs
of levels L and L′ ρ generates. Normalized values closer to
one indicate that the PCG system is able to generate levels
with a larger structural variety.

Evaluating Evaluation Metrics
We now evaluate the computational metrics described
above. First we describe the methodology of our experiment.
Then, we present the results of the computational metrics,
followed by the results of the user study. Finally, we discuss
the insights gained from each evaluation.

Methodology
We now describe our experimental methodology.

Systems Tested We used four different IMB PCG sys-
tems in our experiments: Notch Level Generator (NLG),
Human-Computation Tension Arc-Based (HCTA) level gen-
erator with a random tension arc (HCTA+R) and with
a parabolic tension arc (HCTA+P) (Reis, Lelis, and Gal
2015), and Occupancy-Regulated Extension (ORE) gener-
ator (Mawhorter and Mateas 2010).

The NLG system receives as input a difficulty value d for
stochastically determining the number of enemies and chal-
lenges to be placed in the level. The levels NLG generates
tend to be harder for larger values of d. NLG starts with an
empty level grid and adds objects to the grid according to the
value of d. HCTA+R and HCTA+P are variants of NLG. The
HCTA systems work by having human subjects rating a set
of small levels generated by NLG. Then, HCTA combines
the small levels into a regular-sized IMB level according
to the human-rated difficulty of the small levels. HCTA+P
combines the small levels into a regular level in a way that
the difficulty of the resulting level follows a parabolic curve:
difficulty increases as the player progresses into the level
until reaching its largest value, then difficulty decreases un-
til the end of the level. HCTA+R combines the small levels
in a way that the difficulty is random (but still respecting a
user-specified upper bound) throughout the level. See Reis
et al. (2015) for details on HCTA.

We chose NLG, HCTA+R, HCTA+P, and ORE for two
reasons. First, the computational metrics will tend to give
similar scores to the levels HCTA+R and HCTA+P gener-
ate for they both use similar strategies for level generation.
Yet, levels generated by the HCTA systems could still be
rated differently by the participants in the user study. Sec-
ond, ORE generates levels which are structurally different
from the ones the other systems generate, allowing us to ver-
ify whether the user study is able to capture nuances which



are likely to be captured by the computational metrics. Ide-
ally we would use more systems in our experiment, but the
time required for each participant to complete the experi-
ment could be prohibitively long should we required them
to play extra levels.

Participants Our within-subject experiment had 37 par-
ticipants: 32 males and 5 females with an average age
of 23.95 and standard deviation of 4.48. Each participant
played one level generated by each system, resulting in the
evaluation of 37 levels of each PCG system. The experiment
was carried out online: our system was made available in the
Internet and our experiment advertised in different mailing
lists. Participation was anonymous and volunteered.

Evaluated Metrics In the user study the systems are eval-
uated according to the following criteria: enjoyment, visual
aesthetics, and difficulty. Each participant was asked to an-
swer how much they agreed or disagreed, in a 7-likert scale,
with the following sentences: “This level is enjoyable to
play”; “this level has good visual aesthetics”; “this level is
difficult”. A score of 1 for enjoyment and visual aesthet-
ics means that the participant strongly agrees that the level
played is enjoyable and has excellent visual aesthetics; a
score of 1 for difficulty means that the participant strongly
agrees that the level is difficult.

We compute the computational metric values only for the
levels evaluated in our user study: 148 levels in total (37
levels for each of the four systems). This is to allow a fair
comparison of the insights gained from the computational
metrics with those gained from the user study.1 The normal-
ization of the computational metrics to the [0, 1] interval was
made by considering all 148 levels used in our experiment.

Experimental Design In the beginning of the experiment
the subjects filled a questionnaire informing their age, and
their skills in the game of Mario Bros. Subjects were in-
structed about the controls of the game before playing a
practice level. The practice level is important so that the par-
ticipants get acquainted with the controls of the game. NLG
was used to generate the practice levels. Only after playing
the practice level that the participants evaluated the levels
generated by the PCG systems. Each participant played one
level generated by each of the four PCG systems. After play-
ing each level the participants gave scores according to the
criteria described above in a 7-likert scale. In addition to the
scores, the participants had the option to enter comments
informing us of technical issues they might have had dur-
ing the experiment. Since all participants played one level
generated by each system, we used a balanced Latin square
design to counteract ordering effects. The tested levels were
generated during the experiment by the evaluated systems,
we did not pre-select a set of levels to be tested.

In order to have a fair comparison of the levels generated
by different systems we had all systems generating levels
of the same size: 160 × 15. We chose this size because we
did not want the experiment to be too long. In total each

1We also computed the computational metrics for a larger num-
ber of levels and observed results similar to the ones we report in
this paper.

participant played 5 levels (1 practice level and 4 other levels
for evaluation), and using larger levels could be tiring for
the participants. Finally, to ensure a fair comparison of the
different approaches, we tuned the systems to generate levels
with similar difficulty. This was done by manually setting
the d-values of NLG, HCTA+P, and HCTA+R so that the
three systems generated levels which we thought to be of
difficulty similar to the ones generated by ORE.

Data Cleaning The data of participants who did not finish
playing all 5 levels (1 practice level plus 4 levels to be evalu-
ated) is not included in the results. We also removed the data
of one participant who had never played the game of Mario
before. By examining the logs of the experiment we noticed
that this participant was not able to get too far into the game
and thus not able to properly evaluate the levels. The number
of 37 participants was obtained after cleaning the data.

Computational Metric Results
We start by presenting the computational metric results. Al-
though the computational metrics are systematic and do not
represent a source of variance in our experiment, all PCG
systems are stochastic and insert variance in the results.
Moreover, as we explained above, the number of levels con-
sidered in this experiment is somewhat limited (37 levels
for each system). Therefore, we present statistical tests for
the computational metric results. Table 1 shows the average
value and standard deviation for each metric and PCG sys-
tem. Different letters in a given row of the table indicate that
the two means are significantly different.

We now explain how the statistical significance was com-
puted for the results in Table 1. First, we ran Shapiro-Wilk
tests for each metric and verified that the leniency, density,
and CD values were unlikely to be normally distributed.
Thus, repeated-measures ANOVA was used only for lin-
earity, and the test indicated statistically significant results
(p < .001). The non-parametric Friedman test was ap-
plied to remaining metrics and indicated statistically signif-
icant results for leniency and density (p < .001), the dif-
ferences in CD were not significant. Pairwise comparisons
with Tukey tests for linearity showed that the only averages
that are not significantly different are those of HCTA+P and
HCTA+R, all other differences are significant (p < .001).
Pairwise comparisons with Wilcoxon signed-rank tests for
leniency and density showed that the averages that are not
significantly different are those of the HCTA+P and the
HCTA+R systems for both leniency and density, and ORE
and NLG for leniency; all other results are statistically sig-
nificant (p < .001).

We highlight the following observations from Table 1.

1. HCTA+P and HCTA+R generate similar levels as both
systems scored similarly in all four metrics tested.

2. The average leniency value of the HCTA systems are
much lower than ORE and NLG, indicating that the levels
generated by HCTA are more difficult than those gener-
ated by the other two systems.

3. The HCTA approaches generate levels with nearly equal
linearity averages, ORE generates highly non-linear lev-



HCTA+P HCTA+R ORE NLG
Leniency 0.45 ± 0.10a 0.48 ± 0.18a 0.71 ± 0.11b 0.77 ± 0.15b

Linearity 0.52 ± 0.17a 0.52 ± 0.15a 0.33 ± 0.14c 0.83 ± 0.07b

Density 0.74 ± 0.13a 0.73 ± 0.12a 0.17 ± 0.15c 0.49 ± 0.09b

CD 0.61 ± 0.02a 0.61 ± 0.02a 0.60 ± 0.02a 0.56 ± 0.02a

Table 1: Computational metric results. Larger values of leniency, linearity, and density indicate are more lenient, linear, and
dense levels; larger values of CD indicate that the PCG system is able to generate a larger variety of structurally different levels.
Different letters in the same row indicate statistically significant results.

els, and NLG generates highly linear levels. The linearity
results suggest that the HCTA approaches generate levels
with similar visual aesthetics while NLG and ORE gener-
ate levels which are visually different than the levels gen-
erated by the other systems.

4. The density averages follow a pattern similar to linear-
ity’s: the HCTA approaches have very similar values
while NLG and ORE differ from the other systems. The
density results indicate that the HCTA approaches of-
ten use the pattern of superposing mountains while ORE
rarely uses such a pattern. Similarly to linearity, the dif-
ference in the density average values show that the levels
generated by ORE are visually different than the levels
generated by other systems.

5. The difference on the average values of CD is minimal, in-
dicating that all systems generate levels with similar struc-
tural diversity.

User Studies Results
We now present the user study results. The mean results and
standard deviations are shown in Table 2. Different letters
in a given row indicate that the two means are significantly
different. Shapiro-Wilk tests showed that our data is unlikely
to be normally distributed (p < .0001 for all criteria). Thus,
we used the non-parametric Friedman test which showed a
significant difference on enjoyment (p < .05) and on visual
aesthetics (p < .05) across different systems; there was no
significant difference for difficulty.

Next, we use Wilcoxon signed-rank tests to perform pair-
wise comparisons of the results obtained by the evaluated
systems. We present the effect size of the comparisons (r-
values) in addition to p-values. HCTA+P generates levels
which are significantly more enjoyable to play than the lev-
els HCTA+R generates (p < .05, r = 0.21) and the lev-
els that ORE generates (p < .001, r = 0.35). The levels
HCTA+R generates are significantly more enjoyable to play
than the ones ORE generates (p < .05, r = 0.26). Finally,
the levels NLG generates are significantly more enjoyable to
play than the ones ORE generates (p < .05, r = 0.24).

Pairwise comparisons on visual aesthetics (Wilcoxon
signed-rank test) showed that HCTA+P generates levels with
significantly better visual aesthetics than the levels ORE
generates (p < .01, r = 0.27) and than the levels NLG
generates (p < .05, r = 0.24). HCTA+R generates lev-
els with significantly better visual aesthetics than the levels
ORE generates (p < .01, r = 0.37).

All pairwise comparisons reported as statistical signifi-
cant have effect sizes around the medium size mark of 0.3,
indicating substantial differences among the levels gener-
ated by the different systems.

We highlight the following observations from Table 2.

1. The system that generates the most enjoyable levels is
HCTA+P. The difference between enjoyment of HCTA+P
and HCTA+R is significant and substantial. That is,
HCTA+P yielded an average score of 2.24 which is close
to 2 (score marked by participants who agreed that the
level played is enjoyable). By contrast, HCTA+R yielded
an average score of 2.70 which is close to 3 (score
marked by participants who somewhat agreed that the
level played is enjoyable).

2. The HCTA approaches generated the levels with best vi-
sual aesthetics, followed by NLG and then ORE. In par-
ticular, HCTA+P generates levels with significantly better
visual aesthetics than NLG and ORE.

3. There is little difference amongst the difficulty scores of
the systems, indicating that the evaluated systems gener-
ate levels with similar difficulty.

Next, we discuss the strengths and weaknesses of the
user study evaluation and of the computational evaluation by
comparing the conclusions drawn from the two evaluations.

Strengths of the User Study Evaluation
We organize the discussion of the strengths of the user study
evaluation by the evaluated criteria.

Enjoyment The user study shows a significant and sub-
stantial difference between the average enjoyment score of
the levels generated by HCTA+P and by HCTA+R, while
the computational evaluation yielded nearly the same score
for both systems in all metrics. Spearman correlation tests
between enjoyment and the computational metrics yielded
coefficients close to zero, indicating that none of the metrics
correlated with enjoyment.

Enjoyment is perhaps the most important evaluation crite-
rion for PCG systems as we are interested in generating con-
tent which users find enjoyable to play. The computational
metrics used in our experiment were not able to estimate the
player’s enjoyment. This result is not surprising. First, none
of the computational metrics used in the literature were de-
signed for measuring enjoyment. Second, enjoyment is dif-
ficult to measure without accounting for human input as it
depends on various factors such as cultural background.



HCTA+P HCTA+R ORE NLG
Enjoyment 2.24 ± 1.75a 2.70 ± 1.91b 3.35 ± 2.04c 2.62 ± 2.00ab

Visual Aesthetics 2.32 ± 1.65a 2.38 ± 1.64ab 3.43 ± 2.21c 2.92 ± 1.93b

Difficulty 3.46 ± 1.76a 3.38 ± 1.72a 3.27 ± 1.90a 3.84 ± 2.35a

Table 2: User study results. Lower values of enjoyment and visual aesthetics indicate levels which are more enjoyable to play
and have better visual aesthetics; lower values of Difficulty indicate levels which participants found more challenging to play.
Different letters in the same row indicate statistically significant results.

Our user study required the participants to answer ques-
tions after playing each level. Another promising way of re-
ceiving human input for evaluating PCG systems is by ana-
lyzing facial expressions of the players (Shaker and Shaker
2014; Tan, Bakkes, and Pisan 2014).

Visual Aesthetics Both linearity and density indicated that
HCTA+P and HCTA+R would generate levels with similar
visual aesthetics, while ORE and NLG would generate lev-
els with different visual aesthetics. The user study indicates
that the HCTA approaches have nearly the same score for vi-
sual aesthetics, while ORE and NLG have higher values (in-
dicating worse visual aesthetics). While the computational
metrics indicated levels with different visual aesthetics, the
metrics are not able to distinguish good from bad aesthetics.
By contrast, through the user study we are able to rank the
systems with respect to the visual quality of the levels gen-
erated. A Spearman’s test shows that linearity weakly corre-
lates with visual aesthetics (coefficient of 0.18 and p < .05);
none of the other metrics correlates with visual aesthetics.

Difficulty While there is a large difference in the leniency
values of the systems tested, according to the user study,
there is little or no difference in the difficulty rated by the
participants. Difficulty is also an important criteria for eval-
uating PCG systems as it is closely related to enjoyment.
That is, it is known that the Yerkes-Dodson law (Yerkes
and Dodson 1908) applies to computer games in the sense
that enjoyment will be maximum somewhere in between
the largest and the smallest difficulty (Piselli, Claypool, and
Doyle 2009). Thus, when comparing different PCG systems
the difficulty of the levels generated should be controlled to
yield a fair comparison of the systems. It is hard to auto-
matically measure difficulty because difficulty depends on
factors such as the disposition of objects on the level. For
example, there could be a level full of enemies and chal-
lenges (non-lenient level according to the metric) but with
an easy path for Mario to follow and win the game—in such
cases leniency will be misleading. Although our leniency re-
sults were somewhat misleading, we observed a weak but
significant correlation between leniency and difficulty—the
Spearman’s coefficient was of 0.199 with p < .05.

The weak correlations observed between the computa-
tional metrics and the human-evaluated criteria of visual aes-
thetics and difficulty indicate that there is hope that future
research will develop novel computational metrics to auto-
matically (without asking the user) estimate the visual aes-
thetics and difficulty of IMB levels.

Strengths of the Computational Evaluation
Although our experiment showed that the computational
metrics can be misleading, this kind of automatic evaluation
also has its strengths. In contrast with the user study, one
can easily achieve statistical significance by computing the
metrics for a large number of levels. Moreover, we found the
metrics to be very easy to implement. Taken together, these
features make the computational metrics an easy and cheap
way to perform an initial exploratory evaluation of the con-
tent generated by PCG systems.

The computational metrics can be particularly useful for
gaining insight on evaluation criteria which are hard to test
in user studies. For example, if one wants to verify the di-
versity of levels generated by a given PCG system in a user
study, then the participants would have to play several levels
generated by the same system and then inform the diversity
of levels played. If the subjects had to play several levels of
each system, then the experiment would likely be too long to
be practical. One could then use the CD metric—or another
similar metric such as edit distance (Smith et al. 2011)—to
gain insight on the structural diversity of levels generated.

Conclusions
In this paper we tested several computational metrics used
to evaluate levels generated by PCG systems for the game
of IMB. We conducted a user study for evaluating four PCG
systems according to the following criteria: enjoyment, vi-
sual aesthetics, and difficulty. Then, we compared the re-
sults obtained in the user study with those obtained by us-
ing computational metrics. Our evaluation showed that the
computational metrics (i) are not able to accurately estimate
enjoyment, (ii) provides limited information about the vi-
sual aesthetics of the levels, and (iii) can be misleading with
respect to the player’s perceived difficulty. Yet, the computa-
tional metrics can provide important information by measur-
ing features which are hard to be measured in user studies.

Perhaps the most important conclusion drawn from our
experiment is that a well-designed user study cannot be re-
placed by the current computational metrics. However, we
believe that the computational metrics are suitable to be used
during the design process, for quick and easy exploratory
evaluations of the PCG system.
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