
Feature Selection as State-Space Search: An Empirical Study
in Clustering Problems

Julian R. H. Mariño and Levi H. S. Lelis
Departamento de Informática
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Abstract

In this paper we treat the problem of feature selection in
unsupervised learning as a state-space search problem.
We introduce three different heuristic functions and per-
form extensive experiments on datasets with tens, hun-
dreds, and thousands of features. Namely, we test dif-
ferent search algorithms using the heuristic functions
we introduce. Our results show that the heuristic search
approach for feature selection in unsupervised learning
problems can be far superior than traditional baselines
such as PCA and random projections.

Introduction
Clustering algorithms such as the k-means (McQueen 1967)
group together objects that are more similar according to a
distance metric in the objects’ feature space. Often in real-
world applications objects have a large number of features.
For example, microarray gene expression datasets might
contain several thousand features (Pomeroy et al. 2002). In
such cases, clustering algorithms may suffer from the curse
of the dimensionality. That is, due to the large number of
features, it is hard to measure the distance of the objects in
the feature space—the curse of dimensionality makes it hard
for clustering methods to find meaningful groups of objects.

A common approach for preventing the curse of dimen-
sionality is to select a discriminative subset of features as
a clustering preprocessing step. If the objects have b fea-
tures, then there is 2b different subsets in the space of search,
which is clearly too large for any reasonable b. One way
of finding good discriminative subsets in such large search
spaces is by employing a heuristic function to guide search
algorithms to more promising feature subsets.

Hall (2000) introduced Correlation-Based Feature Selec-
tion (CFS), an algorithm which uses best-first search for
feature subset selection for supervised learning. CFS uses
a heuristic function which accounts for the feature-feature
and feature-class correlations of a given subset to guide
search. Gaudel and Sebag introduced FUSE, an algorithm
that uses the UCT search algorithm (Kocsis and Szepesvári
2006) with the nearest-neighbor classifier as heuristic (re-
ward) function for the UCT playouts (Gaudel and Sebag
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2010). Both CFS and FUSE rely on the object labels to de-
rive heuristic functions to guide search. In this paper we deal
with problems where no labels are available.

We consider two settings of the clustering problem. In
the first setting no background information is available. In
the second setting, known as constrained-based clustering
(CBC), in addition to the objects and their features, the user
provides a set of pairwise must-link and cannot-link con-
straints to aid the process of clustering. Objects with a must-
link constraint should be in the same cluster, while objects
with a cannot-link constraint should not be in the same clus-
ter (Wagstaff and Cardie 2000; Wagstaff et al. 2001).

We make the following three contributions in this paper.
First, we introduce two heuristic functions based on must-
link and cannot-link constraints to guide search. Second, we
adapt an existing unsupervised quality metric for clustering
to function as a heuristic to guide search. Finally, we present
experiments testing different search algorithms guided by
our heuristic functions in real-world datasets with tens, hun-
dreds and thousands of features. Our results show that the
heuristic search approach for feature selection in unsuper-
vised learning problems can be far superior than traditional
approaches such as PCA and random projections.

Related Work
Works from different communities such as machine learn-
ing, data mining and computer vision have dealt with the
problem of feature selection. However, most of the feature
selection algorithms have been developed and tested on su-
pervised learning problems. In this section we review fea-
ture selection methods for unsupervised learning and meth-
ods that use state-space search for feature selection.

Yusta (2009) use the GRASP method for searching for
discriminative subset of features for supervised learning
problems. Similarly to the work of Hall (2000) and Gaudel
and Sebag (2010), the algorithm of Yusta also relies on the
class labels to derive a heuristic function to guide search.
Procopiuc et al. (Procopiuc et al. 2002) present a Monte
Carlo algorithm for feature selection in projective cluster-
ing. In projective clustering different clusters can be pro-
jected onto different subspaces. In this paper we search for a
single discriminative subspace for all clusters—our problem
is conceptually different from Procopiuc et al.’s. Fern and
Brodley (Fern and Brodley 2003) present a feature selection



method for clustering problems based on ensembles of ran-
dom projections—we use Fern and Brodley’s method as a
baseline comparison in our experiments.

Yip et al. (Yip, Cheung, and Ng 2005) proposes an objec-
tive function for handling feature selection during cluster-
ing. Li et al. (Li, Dong, and Ma 2008) use the information
provided by pairwise constraints within the Expectation-
Maximization algorithm to perform clustering and feature
selection simultaneously. These two works are similar to
ours in that they perform feature selection for clustering
while using background knowledge (class labels in former
and constraints in the latter). However, in contrast with the
heuristic search approach we take in this paper, the ap-
proaches of Yip et al. and Li et al. do not tackle the whole
combinatorial problem of feature selection.

To the best of our knowledge this is the first work present-
ing an empirical study of feature selection for unsupervised
learning from a state-space search perspective.

Problem Formulation
Let O be a set of objects and F the set of features, with
|F| = b. Also, each object o ∈ O is associated with a class
label l(o).1 Let G = (V,E) be a directed graph describing
the feature selection state space. Here, each state n ∈ V rep-
resents one of the 2b possible feature subsets. Also, for each
state n ∈ V child(n) = {n′|(n, n′) ∈ E} represents the
child-parent relationship of feature subsets. Let Fn denote
the set of features of state n, child(n) has one child n′ with
features Fn′ = Fn ∪ f for each feature f ∈ F \ Fn.

In feature selection one is interested in finding F ⊆ F
that maximizes the clustering quality of the partitioning a
clustering algorithm is able to find. The start state is defined
as the empty feature subset.

Heuristic Search Algorithms
In this section we briefly review the heuristic search algo-
rithms we use in our study, which are Monte Carlo Ran-
dom Walks (Nakhost and Müller 2009), Hill-Climbing, and
GRASP (Feo and Resende 1995). All three algorithms start
from the empty feature subset and iteratively add features to
the subset until reaching the desired number of features. We
now describe the iterative process of each algorithm.

Hill Climbing (HC) In each step HC evaluates all children
of the current state and moves to the best child according
to the employed heuristic function. The process is repeated
until reaching a state in which no improvement is possible or
when reaching the number of features selected by the user.

Monte Carlo Random Walks (MRW) In each step MRW
performs M random walks of length L from the current state
and uses the heuristic function to evaluate only the L-th state
in each walk. After finishing all random walks MRW moves
to the state which has the best heuristic value. This process
is repeated until MRW reaches a state with the number of
features equal to the number N determined by the user. This

1In contrast with the supervised learning setting, if labels are
available, we use them for verifying the clustering quality, not for
guiding the process of finding F .

is the simplest version of MRW, which we use in our experi-
ments — see (Nakhost and Müller 2009) for enhancements.

GRASP GRASP alternates greedy with local search. That
is, first it performs a greedy search to find an initial solution
and then it applies local search for improving such initial
solution. In each iteration of the greedy search GRASP se-
lects the top K children according to the heuristic function
and randomly chooses one of them for expansion. This pro-
cess is repeated until reaching a state s which contains the
number of desired features. That is when GRASP performs
a local search from s by randomly replacing features in s
with those not in s. GRASP repeats the greedy search fol-
lowed by the local search R times and returns the best state
encountered according to the heuristic function.

Heuristic Functions for Feature Selection
Ideally one would use the metric used to measure cluster-
ing quality as heuristic to guide search. This way, finding
a state s with a good heuristic value will likely help find-
ing a good partition of the objects while using the subspace
defined by s. However, in a typical clustering problem one
does not have access to the function which measures par-
titioning quality during clustering nor during feature selec-
tion. We derive heuristic functions to operate as surrogates
to the actual quality metric to guide search.

The first heuristic we present, the Silhouette metric,
does not use background knowledge to guide the search.
The other two heuristics, Constrained Objects Distance and
Number of Satisfied Constraints use background knowledge
in the form of must-link and cannot-link constraints.

The Silhouette Metric (SM)
The silhouette (Rousseeuw 1987) is a metric often used to
evaluate clustering quality when class labels are absent. In
this paper we use such metric to guide the search for dis-
criminative feature subsets.

The silhouette of object o ∈ O is defined as,

SM(o) =
b(o)− a(o)

max
{
a(o), b(o)

} , (1)

where a(o) is the average distance between o and all objects
in o’s cluster. Intuitively, if o is in a cluster in which all ob-
jects are close to each other, then the value of a(o) will be
small. Let C be a cluster with o 6∈ C and with the smallest
average distance d between o and all objects in C (C is re-
ferred as the neighbor cluster of o). We have that b(o) = d.
If a(o) is much smaller than b(o), then SM(o) will be close
to 1, which means that o is assigned to a good cluster. Simi-
larly, if SM(o) is close to -1, then there is a neighbor cluster
C that perhaps o should have been assigned to. The SM is
the average of the SM(o)-values for all o ∈ O. Our search
algorithms will search for a subset that maximizes the SM.

Constrained-Objects Distance (COD)
Let ML be the set of pairwise must-link constraints. That
is, for objects o and o′ with (o, o′) ∈ML, one knows that o
and o′ should be in the same cluster. Similarly we define CL



as the set of pairwise cannot-link constraints, and objects o
and o′ should not be in the same cluster if (o, o′) ∈ CL. In
this work we consider the ML and CL constraints as soft
constraints. That is, the constraints provide useful informa-
tion we can use to guide search, but they will not necessarily
be satisfied in the partition of the objects our method en-
counters. Moreover, we use such constraints only for feature
selection, not for clustering the objects.

The first heuristic function we present measures the dis-
tance in the feature space between constrained objects. We
call this heuristic Constrained-Objects Distance (COD). In-
tuitively, a good subspace is the one in which a pair of ob-
jects in a must-link constraint are close to each other, and a
pair of objects in a cannot-link constraint are far apart. The
following equation captures this intuition,

COD(F,ML,CL) =
∑

c,d∈CL

DF (c, d)−
∑

a,b∈ML

DF (a, b) ,

where DF (a, b) is the distance between objects a and b in
the feature subspace F . Our objective is to find a subspace
which maximizes the value of COD. By maximizing the
COD-value we minimize the distance of objects in ML and
maximize the distance of objects in CL.

Number of Satisfied Constraints (NSC)
In NSC, for a given set of objects O, subspace F and sets
ML and CL, one clusters the objects and counts the number
of constraints which were satisfied. Our search algorithms
will search for a subspace that maximizes NSC.

Empirical Evaluation
We evaluate HC, MRW, and GRASP using SM, COD, and
NCS on the following datasets (the numbers in parenthesis
show the number of objects and the number of features in
each data set, respectively): Spectrometer (531, 93), Satellite
(213, 36), Ionosphere (351, 34), Gissete (6000, 5000), and
Arcene (100, 10000); see (Lichman 2013) for more details.

k-means is the clustering algorithm used after selecting
the feature subset to partition the objects and also to compute
the values of SM and NSC during search. Clustering qual-
ity is measured according to Rand Index (Rand 1971). The
Rand Index measures the agreement of the clustering result
with the class labels, where a value of 1 means perfect agree-
ment between clustering and class labels. Euclidean distance
is the metric used. We fix |F | = 10. We experimented with
other values of |F | and found results similar to the ones pre-
sented in this section.

Due to the stochasticity of the search algorithms em-
ployed in our experiments, we run 20 independent runs of
each algorithm and report the average results. Standard de-
viations are omitted for space from the table of results be-
cause they were small. In addition to the average Rand In-
dex (“Rand”), we also report the average running time of the
algorithms in seconds (“Time”). The running time accounts
for the time required to select the feature subset and to run
k-means on the selected subspace. We use PCA and ensem-
ble random projections (“Ensemble”) as baseline compar-
isons. Note that we do not present results of PCA on Gissete

and Arcene datasets because our PCA implementation is too
slow to be practical in datasets with thousands features.

MRW and GRASP have input parameters which allow
one to trade, to some extent, feature subset quality and run-
ning time. In MRW one can choose different number of ran-
dom walks and in GRASP one can choose the number of
times R the algorithm is run (restarts) and the number of
children K considered in each step of the greedy search. The
value of R is set to 10 and K is set to half of the children of
any given node. In order to ensure a fair comparison of the
algorithms, we choose MRW’s number of random walks in
a way that MRW’s running time is similar to GRASP’s.

The constraints are obtained in our experiments by ran-
domly selecting pairs of objects o1 and o2 and if l(o1) 6=
l(o2), then a cannot-link constraint between o1 and o2 is
added to CL; a must-link constraint is added to ML oth-
erwise. We choose the number of constraints used in each
experiment based on the number of objects in each dataset.
That is, datasets with more objects allow more constraints.
The number in parenthesis after COD and NSC shows the
number of constraints used in each experiment.

The Rand Index values we present are computed over all
objects in the dataset. We also computed the Rand Index val-
ues for the objects in the held-out dataset, which contains
only objects not belonging to constraints. We observed that
the Rand Index values when using all objects were similar
to those when using the held-out dataset. Due to space con-
straints we present results only for the whole dataset.

Discussion
The results are presented in Table 1. We start by discussing
the running time of the search algorithms. As expected, we
observe that the search algorithms are substantially faster
when using COD than when using SM or NSC. For exam-
ple, HC takes 4,575.83 seconds on average to find a partition
using SM in Spectrometer. By contrast, the same algorithm
takes only 1.81 seconds on average when using COD. Sim-
ilar results are observed with GRASP: in Satellite GRAPS
takes 533.30 seconds on average to halt when using NSC
(80) and only 34.55 seconds on average when using COD
(80). COD is much faster than SM and NSC because COD
does not run the k-means algorithm for each heuristic value
computed—SM and NSC do.

The constrained-based heuristic functions perform either
similarly or better than the unsupervised SM. This is because
COD and NSC use the information provided by the con-
straints. As examples, in Satellite the best Rand Index ob-
tained using SM is of 0.69 (MRW), while HC obtains an av-
erage Rand Index of 0.79 when using NSC (80). As another
example, in Arcene, the best average Rand Index obtained
while using SM is by MRW, which is of 0.36, while GRASP
obtains an average of 0.44 with COD (40). All heuristics
yielded similar results in Spectrometer, however.

In general, providing more constraints to COD and NSC
helps improving the results as the heuristics become more
informed. However, this is not a rule in Table 1. We notice a
drop in the Rand Index value when increasing the number of
constraints in a few cases. For example, see GRASP using
COD (40) and COD (80) in Satellite. We conjecture that this



Spectrometer (531 objects and 93 features)

Search Algorithm SM COD (50) NSC (50) COD (200) NSC (200)
Rand Time Rand Time Rand Time Rand Time Rand Time

HC 0.89 4,575.83 0.88 1.81 0.77 181.57 0.88 2.82 0.85 183.57
GRASP 0.80 44,921.30 0.88 145.79 0.79 2,120.82 0.88 627.92 0.79 2,118.54
MRW 0.89 80,294.10 0.89 46.96 0.71 3,011.44 0.89 184.53 0.76 3,191.15

PCA, Ensemble 0.53, 0.79
Satellite (213 objects and 36 features)

Search Algorithm SM COD (40) NSC (40) COD (80) NSC (80)
Rand Time Rand Time Rand Time Rand Time Rand Time

HC 0.60 208.82 0.76 0.26 0.74 12.53 0.76 0.44 0.79 12.34
GRASP 0.67 2,073.83 0.76 20.34 0.74 161.30 0.73 34.55 0.75 533.30
MRW 0.69 1,796.94 0.73 30.20 0.76 216.31 0.76 30.82 0.76 637.95

PCA, Ensemble 0.67, 0.72
Ionosphere (351 objects and 34 features)

Search Algorithm SM COD (50) NSC (50) COD (100) NSC (100)
Rand Time Rand Time Rand Time Rand Time Rand Time

HC 0.69 480.89 0.77 0.28 0.62 26.81 0.80 0.47 0.61 26.47
GRASP 0.60 4,621.73 0.64 22.38 0.67 266.65 0.79 36.48 0.63 322.54
MRW 0.59 4,961.82 0.79 37.86 0.63 300.46 0.64 38.44 0.55 304.79

PCA, Ensemble 0.72, 0.58
Gisette (6,000 objects and 5,000 features)

Search Algorithm SM COD (100) NSC (100) COD (500) NSC (500)
Rand Time Rand Time Rand Time Rand Time Rand Time

HC 0.49 9,423,555.00 0.70 180.05 0.65 68,302.00 0.71 431.76 0.63 83,916.00
GRASP 0.50 54,234,122.00 0.67 22,316.60 0.71 312,937.00 0.72 62,245.80 0.65 334,534.00
MRW 0.45 3,069,260.00 0.69 129.17 0.65 84,753.10 0.72 376.46 0.67 86,319.10

Ensemble 0.55
Arcene (100 objects and 10,000 features)

Search Algorithm SM COD (15) NSC (15) COD (40) NSC (40)
Rand Time Rand Time Rand Time Rand Time Rand Time

HC 0.28 16,219.39 0.39 314.54 0.36 2,289.21 0.37 285.34 0.40 2,213.90
GRASP 0.31 215,299.00 0.38 34,886.70 0.36 47,754.60 0.44 41,917.50 0.38 62,281.30
MRW 0.36 8,047.82 0.38 110.81 0.37 1,205.42 0.38 133.04 0.38 1,119.75

Ensemble 0.27

Table 1: Clustering quality in terms of Rand Index and running time of search algorithms for feature selection.

happens due to possible misleading information provided by
the constraints—we recall that the constraints are derived
from the class labels which could be noisy.

Our table of results suggests there is no clear winner
among the search algorithms—they all behave similarly in
most of the problems. Our results suggest that as long as the
search algorithm uses a good heuristic, then it will be able
to find a good feature subset. There seems to be, however,
a difference between the heuristic functions tested. In addi-
tion to being faster to compute, COD is able to provide better
guidance than SM and NSC in a few cases; see for example
the results for Gisette and Ionosphere.

Our last and arguably the most important observation is
that search methods can be far superior than the baselines
PCA and Ensemble of Random Projections. For example, in
the Spectrometer domain, k-means using the subset of fea-
tures selected by the search algorithms is able to find par-
titions with Rand Index of 0.88-0.89. By contrast, k-means
finds partitions with Rand Index of 0.53 and 0.79 when us-
ing the subset selected by PCA and Ensemble, respectively.
Ionosphere is the only domain in which the baselines are
competitive or even superior in a few cases, but overall the

heuristic search methods are far superior.

Concluding Remarks
In this paper we introduced two constrained-based heuris-
tics, Constrained-Objects Distance (COD) and Number of
Satisfied Constraints (NSC), and one unsupervised heuristic
based on the Silhouette Metric (SM) for guiding the search
for discriminative feature subsets in clustering problems.
We also conducted an extensive experiment testing different
search algorithms while using each of the three heuristics
introduced. Our results showed that COD is much faster to
compute and is often able to provide better guidance than
NSC and SM. Moreover, our heuristic search approaches
were far superior than baseline methods such as PCA and
Ensemble of Random Projections in most of the cases tested.
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