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Abstract

This paper provides algorithms for predicting the
size of the Expanded Search Tree (EST ) of Depth-
first Branch and Bound algorithms (DFBnB) for
optimization tasks. The prediction algorithm is im-
plemented and evaluated in the context of solving
combinatorial optimization problems over graphi-
cal models such as Bayesian and Markov networks.
Our methods extend to DFBnB the approaches pro-
vided by Knuth-Chen schemes that were designed
and applied for predicting the EST size of back-
tracking search algorithms. Our empirical results
demonstrate good predictions which are superior to
competing schemes.

1 Introduction
A frequently used heuristic search algorithm for solving com-
binatorial optimization problems is Depth-First Branch-and-
Bound (DFBnB) [Balas and Toth, 1985]. DFBnB explores
the search space in a depth-first manner while keeping track
of the current best-known solution cost, denoted cb. It uses an
admissible heuristic function h(·), i.e., a function that never
overestimates the optimal cost-to-go for every node, and is
guided by an evaluation function f(n) = g(n)+h(n) , where
g(n) is the cost of the path from the root node to n. Since
f(n) is an underestimate of the cost of an optimal solution
that goes through n, whenever f(n) ≥ cb, n is pruned.

In practice DFBnB, especially if guided by an effective
heuristic, explores only a small fraction of the usually expo-
nentially large search space, and this varies greatly from one
problem instance to the next. However, predicting the size
of this Expanded Search Tree, or EST for short, is hard. It
depends on intrinsic features of the problem instance that are
not visible a priori (e.g., the number of dead ends that may
be encountered). The size of the EST may also depend on
parameters of the algorithm and in particular on the strength
of its guiding heuristic function. Available worst-case com-
plexity analysis is blind to these hidden features and often
provides uninformative, even useless, upper bounds.

Predicting the EST size could facilitate the choice of a
heuristic on an instance by instance basis. Or, in the context
of parallelizing search, a prediction scheme could facilitate

load-balancing by partitioning the problem into subproblems
of similar EST sizes [Otten and Dechter, 2012b].

Related work. Several methods have been developed for pre-
dicting the size of the search tree of backtracking and heuris-
tic search algorithms such as IDA* [Korf, 1985]. See for
instance initial work by Knuth [1975], Partial Backtracking
by Purdom [1978], Stratified Sampling by Chen [1992], and
other contributions [Korf et al., 2001; Zahavi et al., 2010;
Burns and Ruml, 2012; Lelis et al., 2013]. These schemes
work by sampling a small part of the EST and extrapolating
from it. The challenge in applying these sampling techniques
to DFBnB lies in their implicit assumption of the “stable chil-
dren” property. Namely, for every node in the EST , the set of
EST children can be determined at the time of sampling. In
the case of DFBnB, however, the set of children in the EST
depends on cb , which impacts the pruning but is generally not
known at prediction time.

Contributions. In this paper we present Two-step Stratified
Sampling (TSS), a novel algorithm for predicting the EST
size of DFBnB that extends the work by Knuth [1975] and
Chen [1992]. The algorithm performs multiple “Stratified
Sampling runs” followed by a constrained DFBnB execution
and exploits memory to cope with the stable children issue.
We show that, if given sufficient time and memory, the pre-
diction produced by TSS converges to the actual EST size.

We apply our prediction scheme to optimization queries
over graphical models, such as finding the most likely expla-
nation in Bayesian networks [Pearl, 1988] (known as MPE or
MAP). In particular, we are interested in predicting the size
of the search tree expanded by Branch and Bound with mini-
bucket heuristic (BBMB) [Kask and Dechter, 2001], which
has been extended into a competition-winning solver [Mari-
nescu and Dechter, 2009; Otten and Dechter, 2012a]. In ad-
dition to comparing against pure SS we compare TSS to a
prediction method presented by Kilby et al. [2006]. Empir-
ical results show that, if memory allows, our prediction is
effective and overall far superior to earlier schemes.

2 Formulation and Background
Given a directed, full search tree representing a state-space
problem [Nilsson, 1980], we are interested in estimating the
size of a subtree which is expanded by a search algorithm



while seeking an optimal solution. We call the former the
underlying search tree (UST ) and the latter the Expanded
Search Tree (EST ).

Problem formulation. Let S = (N,E) be a tree represent-
ing an EST where N is its set of nodes and for each n ∈ N
child(n) = {n′|(n, n′) ∈ E} is its set of child nodes. Our
task is to estimate the size of N without fully generating S.
Definition 1 (General prediction task). Given any numerical
function z over N , the general task is to approximate a func-
tion over the EST S = (N,E) of the form

ϕ(S) =
∑
s∈N

z(s) ,

If z(s) = 1 for all s ∈ N , then ϕ(S) is the size of S.

Stratified Sampling. Knuth [1975] showed a method to esti-
mate the size of search tree S by repeatedly performing a ran-
dom walk from the start state. Under the assumption that all
branches have a structure equal to that of the path visited by
the random walk, one branch is enough to predict the struc-
ture of the entire tree. Knuth observed that his method was
not effective when the EST is unbalanced. Chen [1992] ad-
dressed this problem with a stratification of the EST through
a type system to reduce the variance of the sampling process.
We call Chen’s method Stratified Sampling (SS).
Definition 2 (Type System). Let S = (N,E) be an EST,
T = {t1, . . . , tn} is a type system for S if it is a disjoint
partitioning of N . If s ∈ N and t ∈ T with s ∈ t, we also
write T (s) = t.
Definition 3 (Perfect type system). A type system T is perfect
for a tree S if for any two nodes n1 and n2 in S, if T (n1) =
T (n2), then the two subtrees of S rooted at n1 and n2 have
the same value of ϕ.
Definition 4 (Monotonic type system). [Chen, 1992] A type
system is monotonic for S if it is partially ordered such that a
node’s type must be strictly greater than its parent’s type.
SS’s prediction scheme for ϕ(S) generates samples from

S , called probes. Each probe p is described by a set Ap of
representative/weight pairs 〈s, w〉, where s is a representative
for the type T (s) and w captures the estimated number of
nodes of that type in S. For each probe p and its associated
set Ap a prediction can be computed as:

ϕ̂(p)(S) =
∑

〈s,w〉∈Ap

w · z(s) .

Algorithm 1 describes SS for a single probe. The set A is or-
ganized into “layers”, where A[i] is the subset of node/weight
pairs at level i of the search tree – processing level i fully be-
fore i + 1 forces the type system to be monotonic. A[0] is
initialized to contain only the root node with weight 1 (line 1).

In each iteration (Lines 4 through 11), all nodes in A[i] are
expanded. The children of each node in A[i] are considered
for inclusion in A[i + 1] if they are not to be pruned by the
search algorithm based on upper bound cb (Line 6). If a child
s” of node s has a type t that is already represented in A[i+1]
by node s′, then a merge action on s′′ and s′ is performed. In

Algorithm 1 Stratified Sampling, a single probe
Input: root s∗ of a tree, type system T , and initial upper

bound cb.
Output: A sampled tree ST and an array of sets A, where

A[i] is the set of pairs 〈s, w〉 for the nodes s ∈ ST ex-
panded at level i.

1: initialize A[0]← {〈s∗, 1〉}
2: i← 0
3: while i is less then search depth do
4: for each element 〈s, w〉 in A[i] do
5: for each child s′′ of s do
6: if h(s′′) + g(s′′) < cb then
7: if A[i + 1] contains an element 〈s′, w′〉 with

T (s′) = T (s′′) then
8: w′ ← w′ + w
9: with probability w/w′, replace 〈s′, w′〉 in

A[i+ 1] by 〈s′′, w′〉
10: else
11: insert new element 〈s′′, w〉 in A[i+ 1]
12: i← i+ 1

a merge action we increase the weight in the corresponding
representative-weight pair of type t by the weight w of s′′.
s′′ will replace s′ according to the probability shown in Line
9. Chen [1992] proved that this scheme reduces the variance
of the estimation scheme. The nodes in A form a sampled
subtree denoted ST .

Clearly, SS using a perfect type system would produce an
exact prediction in a single probe. In the absence of that we
treat ϕ̂(S) as a random variable; then, if E[ϕ̂(S)] = ϕ(S) ,
we can approximate ϕ(S) by averaging ϕ̂(p) over multiple
sampled probes. And indeed, Chen [1992] proved the fol-
lowing theorem.

Theorem 1. [Chen, 1992] Given a set of independent sam-
ples (probes), p1, ...pm from a search tree S, and given a
monotonic type system T , the average 1

m

∑m
j=1 ϕ̂

(pj)(S) con-
verges to ϕ(S).

The stable children property. A hidden assumption made
by SS is that it can access the child nodes in the EST of every
node in EST . SS assumes that child nodes are pruned only
if their f -value is greater than or equal to initial upper bound
cb, which is accurate for algorithms such as IDA* [Lelis et
al., 2013]. However, as acknowledged by Knuth [1975], this
sampling scheme would not produce accurate predictions of
the EST generated by DFBnB because the exact child nodes
of nodes generated by DFBnB are not known unless we fully
run the algorithm.

Definition 5 (stable children property). Given an EST S =
(N,E) implicitly specified. The stable children property is
satisfied iff for every n ∈ N in S along a path leading from
the root, the set child(n) in N can be determined based on
only the information along the path.

Proposition 1. The stable children property for the EST of
DFBnB is guaranteed if and only if the initial upper bound cb

is already optimal.



Figure 1: Example of an underlying search tree.

Proof. By counter example. Assume a fixed bound cb in-
put to SS for estimating the search tree expanded by DFBnB
exploring the search space in Figure 1. We assume DFBnB
follows a left-first node ordering. Let cleft be the cost of the
best solution found when exploring the left hand-side of this
search tree. When the search algorithm considers child y of
the root, then if f(y) ≥ cleft, y will not be expanded, and oth-
erwise it will. In the former, the EST will have only x as
a child to the root and in the latter the EST will have both
x, y as child nodes to the root; distinguishing between these
two cases is not possible without actually executing DFBnB
on the left-hand side of the search tree.

3 Two-Step Stratified Sampling
In order to cope with the lack of the stable children property,
we extend SS to approximate the actual set of child nodes
in DFBnB’s EST using a two-step algorithm. In the first
step we use SS as in Algorithm 1 to generate a sampled tree
ST , assuming a fixed upper-bound cb which is derived by
some preprocessing (e.g., local search); in the second step we
prune ST by simulating a run of DFBnB restricted to nodes in
ST . This yields our two-step Stratified Sampling algorithm
(TSS). In contrast to SS, TSS is guaranteed to converge to
correct predictions of the size of the EST of DFBnB. For
clarity, we describe a naive version of the second step of TSS
first, and then present an improved version.

3.1 Naive Second Step
Algorithm 2 describes a naive second step of TSS. It uses
an array SIZE[·] indexed by types, where SIZE[t] is the
estimated size of the subtree rooted at node s representing
type t in ST . Like DFBnB, we explore the UST in a depth-
first manner, pruning nodes based on cb (Line 6) and updat-
ing the value of cb (Line 3). However, in contrast to DF-
BnB, we restrict the algorithm to only expand node s rep-
resenting the type of child node s′ in ST (Line 7). Hence
Algorithm 2 explores only one node of each type in a depth-
first fashion while keeping track of the value of the upper
bound cb. If the value of SIZE[T (s)] has not been com-
puted, i.e., SIZE[T (s)] = 0, then TSS computes it by call-
ing SecondStep recursively (Line 9).

Limitation of the naive approach. Algorithm 2 corrects (to
some extent) for SS’s lack of access to the actual child nodes
in EST as it searches depth-first and updates the upper bound
cb. However, Algorithm 2 is not sufficiently sensitive to the
bound updates when estimating the size of subtrees rooted
at nodes of the same type. For example, assume two nodes
n1 and n2 of type T (n1) = T (n2) that root identical sub-
trees in the UST ; given an initial upper bound cb, DFBnB

Algorithm 2 SecondStep(s∗, T, ST, cb), naive version
Input: root of a tree s∗, type system T , and sampled tree ST ,

initial upper bound cb

Output: estimated size of the search tree rooted at s∗
1: Initialize: ∀t ∈ T, SIZE(t)← 0.
2: if s∗ is a solution node with cost better than cb then
3: update upper bound cb

4: SIZE[T (s∗)]← 1
5: for each child s′ of s∗ do
6: if g(s′) + h(s′) < cb then
7: s← node representing T (s′) ∈ ST
8: if SIZE[T (s)] = 0 then
9: SecondStep(s, T, ST, cb)

10: SIZE[T (s∗)]← SIZE[T (s∗)] + SIZE[T (s)]
11: return SIZE[T (s∗)]

might expand fewer nodes when exploring n2’s subtree than
when exploring n1’s subtree if n1 is explored first, because
it might find a solution that yields a tighter upper bound c′.
Thus, when exploring n2’s subtree the value of c′ found in
n1’s subtree will allow extra pruning.

3.2 Using Histograms
In order to handle the above problem and to get a more ac-
curate knowledge we propose to collect more information as
follows. We consider the distribution of f -values in the sub-
tree rooted at the nodes representing types in our prediction
scheme. The distribution of f -values under a node n is stored
as a histogram, which will initially be indexed by types.

Definition 6 (Histogram). Let ST be the sampled tree gen-
erated by SS based on type system T and initial upper bound
cb. The histogram of a type t, histt is a set of pairs (k, r)
for each observed f -value k in the subtree rooted at node
n ∈ ST whose type is t , and r is the estimated number of
nodes whose f -value is k in n’s subtree.

Example 1. Consider the UST shown in Figure 1 and a
type system where T (x) = T (y), f(x) = f(y) = 1,
f(w) = f(q) = 3, f(z) = f(p) = 2, and an initial up-
per bound cb = 4. SS produces a sampled tree ST with ei-
ther the right or the left branch, since T (x) = T (y). Assume
SS produces the left branch with nodes x, w, and z. After
exploring the subtree rooted at x, we store the histogram:
histT (x) = {(1, 1), (2, 1), (3, 1)}, as the subtree contains
one node whose f -value is 1 (node x), one with f -value of
2 (node z), and one with f -value of 3 (node w). Let us ignore
how the histogram is computed for now (this is explained in
detail in Algorithm 3 below). We also update the upper bound
cb to 2, which is the value of the solution found in node z.

When we backtrack to the subtree rooted at y, we use
the histogram histT (x) to estimate the subtree of y because
T (x) = T (y). This is done by summing up all the r-values
of the entries of histT (x) whose f -value is less or equal to 2,
the current upper bound. Thus, we estimate that the subtree
rooted at node y has two nodes (the entry (3, 1) of histT (x)

is pruned), which is exactly the DFBnB’s EST size. Using
Algorithm 2 would yield SIZE(T (x)) of 3, however.



Algorithm 3 SecondStepHist(s∗, T, UnionST, cb)
Input: root of a tree s∗, type system T , UnionST ← union

of m sampled trees, initial upper bound cb

Output: histogram hists∗ and estimate of the EST ’s size.
1: Initialize: ∀s ∈ UnionST, hists ← ∅.
2: hists∗ ← {(f(s∗), 1)}
3: if s∗ is a solution node with cost better than cb then
4: update lower bound cb

5: for each child s of s∗ do
6: if g(s) + h(s) < cb then
7: if s is not in UnionST then
8: s← random n ∈ UnionST with T (n) = T (s)
9: if hists 6= ∅ then

10: histPruneds ← prune(hists, c
b)

11: hists∗ ← hists∗ + histPruneds
12: else
13: hists ← SecondStepHist(s, T, UnionST, cb)
14: hists∗ ← hists∗ + hists
15: return hists∗ and the sum of the r-values of hists∗

3.3 Union over Multiple Sampled Trees
Before describing the full second step of TSS, we propose
another extension of SS that is orthogonal to the use of his-
tograms. Instead of applying the second step to a single
subtree generated by SS, we propose to run m independent
probes of SS and take the union of the m subtrees into a sin-
gle tree called UnionST . For every path in UnionST there
exists a path in at least one of the sampled trees. We are aim-
ing at providing the second step of TSS with a subtree that is
closer to the UST . The number of probes of SS is a parame-
ter that controls the first step. In the second step we compute
histograms for nodes in UnionST . UnionST could have
multiple nodes representing the same type. Thus, in contrast
with Example 1, in the second step of TSS we are going to
index the histograms by nodes in UnionST instead of types
and allow multiple histograms for the same type. We now
describe the actual second step of TSS.

3.4 Overall TSS
Algorithm 3 describes the second step of TSS. It includes a
recursive procedure that computes the histograms for nodes
in UnionST that are generated in the first step. The sum
of the r-values of the histogram of the start state is the TSS
prediction of the size of the EST .
TSS first generates UnionST which is the union of m

trees ST generated by SS. It then applies DFBnB restricted
to the nodes in UnionST while computing the histograms
and doing the appropriate pruning. The histogram of the start
state, hists∗ , initially contains only one entry with value of
one for the f -value of s∗ (Line 2) and is computed recur-
sively by computing the histogram of each child s of s∗ and
combining these histograms’ entries into a single histogram
(Lines 11 and 14). The combined histogram hist3 of the two
histograms hist1 and hist2 has one entry for each k-value
found in hist1 and hist2. The r-value of each k in hist3 is
the sum of the corresponding r-values of hist1 and hist2.

If the histogram of s was already computed and stored

in memory, i.e., hists 6= ∅, then we “prune” hists accord-
ing to the current cb (Line 10), as shown in Example 1.
The function prune(·, ·) receives as parameters the histogram
hists and the current upper bound cb. It returns a histogram,
histPruneds, that contains all entries in hists for which the
k-value is lower than cb, as illustrated in Example 1.

If TSS generates a node s that is in UnionST , then we
use the histogram of s itself as an estimate of the size of the
subtree rooted at s. If s is not in UnionST , we use the his-
togram of any node representing T (s) in UnionST , chosen
randomly (line 8).
TSS is efficient because it explores only one node of each

type in the search tree sampled by a single probe of SS.

Theorem 2 (Complexity). The memory complexity of TSS is
O(m × |T |2), where |T | is the size of the type system being
employed and also bounds the size of the histograms stored
in memory. The time complexity of TSS is O(m× |T |2 × b),
where b is the branching factor of the UST .

One could run TSSwith m = 1 multiple times and average
the results, like SS does with its probes. However, this ap-
proach is not guaranteed to converge to the correct value. As
the number of probes m goes to infinity, TSS would converge
properly to the correct value, simply because the subtree ac-
cumulated in UnionST approaches a superset of nodes in the
actual DFBnB EST in the limit.

Lemma 1. If UnionST ⊇ EST , Algorithm 3 computes the
DFBnB EST size exactly.

Proof. Because UnionST has all nodes in the EST , Algo-
rithm 3 expands the same nodes and in the same order as DF-
BnB. Thus, Algorithm 3 stores one histogram for each node
in the EST and we know exactly the size of the EST .

Consequently, we have the following.

Theorem 3. Let S be an EST generated by DFBnB using
any heuristic function. TSS perfectly predicts the size of S as
the number of probes m goes to infinity.

In practice, however, we are interested in evaluating pre-
dictions using a small m for time efficiency reasons.

4 Experimental Results
We evaluate TSS and competing schemes by predicting the
EST size of DFBnB when using the mini-bucket heuristic
(BBMB) [Kask and Dechter, 2001], on three domains: pro-
tein side-chain prediction (pdb), computing haplotypes in ge-
netic analysis (pedigree), and randomly generated grid net-
works. For each domain we experiment with different mini-
bucket i-bounds, yielding different strengths of the heuristic.
Every pair of problem instance and i-bound represents a dif-
ferent prediction problem. In total, we have 14, 26, and 54
problems, for pdb, pedigree, and grids, respectively. All ex-
periments are run on 2.6 GHz Intel CPUs with a 10 GB mem-
ory limit. We present individual results on selected single
problem instances and summary statistics over the entire set.

Weighted Backtrack Estimator. In addition to SS, we also
compare TSS to WBE (Weighted Backtrack Estimator) [Kilby



Figure 2: Comparison of TSS, SS, and WBE on six different problem instances. The y-axis shows the ratio between the
predicted by the actual number of nodes expanded in log-scale, and the x-axis the runtime in seconds.

et al., 2006]. WBE runs alongside DFBnB search with mini-
mal computational overhead and uses the explored branches
to predict unvisited ones and through that the EST ’s size.
WBE produces perfect predictions when the search finishes.
We implemented WBE in the context of BBMB. Kilby et al.
presented another prediction algorithm, the Recursive Esti-
mator (RE), whose performance was similar to WBE’s in their
experiments. Both WBE and RE were developed to predict the
size of binary trees, but in contrast to WBE it is not clear how
to generalize RE to non-binary search trees.

Type Systems. A type system can be defined based on any
feature of the nodes. In our experiments we use the f -value of
the nodes as types, as well as their depth level (cf. Algorithm
1). Namely, nodes n and n′ are of the same type if they are at
the same depth and have the same f -value.

Secondly, it is worth noting that optimization problems
over graphical models present an additional difficulty not
commonly considered in the context of SS and other IDA*-
related prediction schemes [Lelis et al., 2013]. Namely, the
cost function input and the derived heuristic bounds are real-
valued. As a result, a type system built on floating point
equality might be far too large for producing efficient predic-
tions. We address this issue by multiplying a heuristic value
by a constant C and truncating it to the integer portion to
compute a node’s type; different values of C yield type sys-
tems of different sizes. Finally, we use the same strategy to
control the size of the histograms, which are also determined
by the number of different f -values.

Results on Single Instances. Figure 2 shows the prediction
results for TSS, SS, and WBE on six problem instances. These
instances are representative in the sense that they highlight
different aspects of the prediction methods. The x-axis rep-
resents the runtime in seconds required to produce the pre-

dictions and the y-axis, in log-scale, the ratio between the
predicted and the actual EST size. A perfect prediction has
a ratio of 1, indicated in each plot by a horizontal line. For
TSS and SS we show the average ratio over five indepen-
dent runs, i.e., we run Algorithm 3 or Algorithm 1 five in-
dependent times and compute the average ratio as predicted

actual

if predicted > actual and as actual
predicted , otherwise – that

way we avoid overestimations and underestimations cancel-
ing each other out when averaging. Assuming the error fol-
lows a normal distribution, we show the 95% confidence
interval with error bars (note that these are hardly notice-
able in the plots). For each problem we first run a limited-
discrepancy search [Harvey and Ginsberg, 1995] with a max-
imum discrepancy of 1 to find an initial bound cb which is
provided to both DFBnB and to the prediction algorithms.
We use C = 50 for pdb and C = 100 for pedigree and grid
instances. We control the prediction runtime and accuracy for
TSS and SS with different number of probes. WBE was set to
produce a prediction every 5 seconds.

Results on the Entire Set of Problems. Table 1 presents
summary results across the entire set of benchmarks. We
display the average ratio of the results of TSS using differ-
ent number of probes m and different values of C averaged
across different problems. Runtime is hard to show directly,
so instead we report the average percentage of the DFBnB
search time that the algorithm covered (column %). For in-
stance, a %-value of 10 means that the prediction was pro-
duced in 10% of the full DFBnB runtime. For each predic-
tion produced by TSS in x seconds we report one prediction
produced by WBE in y seconds such that y is the lowest value
greater than x (thereby giving WBE a slight advantage).

Column n shows TSS’s coverage, i.e., the number of prob-
lems for which TSS is able to produce predictions. Namely,



pdb (total of 14 problems)
TSS (C = 100) WBE TSS (C = 50) WBE TSS (C = 10) WBE

m ratio % ratio % n ratio % ratio % n ratio % ratio % n
1 66.4 3.07 8.05e+25 3.57 13 7.34e+03 2.6 2.31e+27 3.4 14 1.73e+04 0.383 9.02e+30 1.19 14
5 14.3 8.26 4.37e+20 9.21 12 779 4.9 8.21e+25 5.6 13 5.19e+03 1.11 1.55e+30 1.49 14

10 12.1 13.5 2.98e+20 14.3 10 78.3 7.57 4.39e+20 7.9 12 4.34e+03 1.87 1.1e+29 2.69 14
50 1.1 12.2 8.12e+07 12.5 2 1.43 29.3 7.59e+13 29.8 4 174 4.96 9.75e+25 5.37 13
100 - - - - 0 1.26 9.78 1.34e+14 10.1 3 3.88 8.55 2.21e+25 9.31 11

pedigree (total of 26 problems)
TSS (C = 1000) WBE TSS (C = 100) WBE TSS (C = 10) WBE

m ratio % ratio % n ratio % ratio % n ratio % ratio % n
1 1.21e+04 15.9 2.88e+04 29.8 12 4.2e+06 2.38 2.49e+08 14.5 15 7.45e+06 8.47 1.41e+09 11.4 21
5 128 33.5 8.58e+03 47.3 10 1.34e+03 18.8 4.83e+04 28.3 12 3.17e+06 7.09 7.22e+08 17.3 19

10 80.4 30.4 9.92e+03 36.7 8 1.07e+03 22.3 3.17e+04 28.8 12 3.92e+06 5.67 7.14e+08 14.7 18
50 1.47 58.6 3.94 81.2 4 58.8 23.6 3.87e+04 27.1 8 4.37e+06 10.4 1.3e+08 21.4 15
100 1.52 72.7 3.46 93.5 3 72.4 42.3 8.28e+03 54.3 8 6.46e+04 18.9 4.98e+04 32.2 13

grids (total of 54 problems)
TSS (C = 100) WBE TSS (C = 50) WBE TSS (C = 10) WBE

m ratio % ratio % n ratio % ratio % n ratio % ratio % n
1 373 20.4 3.02e+07 34.2 50 9.95e+03 12.7 4.07e+07 29.6 51 2.61e+06 1.61 1.41e+10 14.9 53
5 12.3 38.5 5.53e+06 46.1 45 196 25.4 1.85e+07 37.8 49 8.51e+05 4.39 4.81e+08 19.3 53

10 3.47 41.2 1.23e+07 47.3 40 24.9 31.1 9.25e+06 40.7 46 3.02e+05 7.89 1.09e+08 26 53
50 1.94 61.1 9.75e+04 66.2 20 3.09 44.8 3.93e+05 49.6 33 416 17.3 4.49e+07 30.1 50
100 2.22 69.6 7.21e+04 71.4 12 1.93 57.3 1.26e+05 63 25 134 23 4.16e+07 33.4 48

Table 1: Summary of experiments on three domains. “ratio” denotes the average ratios between the predicted and the actual
EST size, % is the corresponding average prediction time relative to the runtime of complete DFBnB.

TSS does not produce results either if it takes more time than
the actual DFBnB search or if it runs out of memory. In-
stances for which TSS did not produce results are not in-
cluded in the averages in Table 1, since neither SS nor WBE
produced reasonable results on those instances either.

Finally, we highlight in Table 1 those entries of TSS where
TSS produces more accurate predictions in less time than
WBE. SS is not included in the table because it produced un-
reasonable predictions even when granted more time than the
actual DFBnB search.

Discussion. The results in Figure 2 suggest that TSS is far su-
perior to both WBE and SS. WBE often produces accurate pre-
dictions only when DFBnB is about to finish (DFBnB search
time is implied by the plots’ rightmost x-value). For instance,
on the 75-17-6 grid instance with i = 13 WBE is accurate only
after more than one hour of computation time, while TSS is
able to quickly produce accurate predictions. As anticipated,
SS also tends to produce poor predictions. However, if the
initial upper bound cb is in fact the optimal cost, then SS will
also produce accurate predictions – in this case the stable chil-
dren property is satisfied because a full DFBnB run would
never update cb . Although rare, this is depicted in the plot
of pdb1jer with i = 3. Finally, there are a few instances for
which no method was able to produce accurate predictions.
An example is pedigree1 when DFBnB is used with i = 6.

Overall, we see that TSS is the only robust method which
is able to produce reasonable predictions in a timely fashion.
In particular, Table 1 shows that TSS can produce predic-
tions orders of magnitude more accurate than WBE on aver-
age. WBE yields accurate predictions on the pedigree domain,
providing average ratios of 3.94 and 2.79. These are pro-
duced, however, when DFBnB is about to finish exploring the
whole EST : 81% and 94% of the search is complete, respec-
tively. Table 1 also demonstrates the tradeoff between quality
and runtime of TSS: as expected predictions are more accu-
rate with time, namely they get more accurate when m and C
grow. A similar expected tradeoff is also observed between
accuracy and coverage.

The main difference between WBE and TSS is that the for-
mer is restricted to sample the branches of the EST currently
explored by DFBnB, while the latter has the freedom to sam-
ple different parts of the EST guided by the type system.
In fact, WBE and TSS could have almost opposite sampling
behaviors if DFBnB is implemented to explore the subtrees
rooted at nodes with lower f -value first (which is standard
since nodes with lower f -value tend to be more promising).
Thus, WBE tends to explore first the subtrees rooted at nodes
of same or “similar” type, while TSS explores subtrees rooted
at nodes of different types. Our experimental results suggest
that TSS’s diversity in sampling can be effective in practice.

In summary, our empirical results show that, if memory
allows, TSS produces very reasonable predictions, far supe-
rior to competing schemes. Yet, TSS is a memory-intensive
method. With more time and memory it produces better re-
sults, with the memory bound effectively limiting its predic-
tion power. Secondly, the UST sampled by SS in the first
step of TSS is sometimes far larger than the actual DFBnB
EST . In such a case even the first step could take a pro-
hibitive amount of time. We observed this phenomenon espe-
cially when no initial upper bound cb was provided. Clearly,
TSS thus works best in domains with high solution density.

5 Conclusion
We presented Two-Step Stratified Sampling or TSS, a pre-
diction algorithm able to produce good estimates of the size
of the Expanded Search Tree (EST ) of Depth-first Branch
and Bound (DFBnB) for optimization problems over graph-
ical models. Building upon Chen’s Stratified Sampling
(SS) [Chen, 1992], TSS modifies SS so it can handle the lack
of the stable children property in the EST of DFBnB.
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