
Improved Prediction of IDA*’s Performance via ε-Truncation

Levi Lelis
Department of Computing Science

University of Alberta
Edmonton, AB, Canada T6G 2E8

santanad@cs.ualberta.ca

Sandra Zilles
Department of Computer Science

University of Regina
Regina, SK, Canada S4S 0A2

zilles@cs.uregina.ca

Robert C. Holte
Department of Computing Science

University of Alberta
Edmonton, AB, Canada T6G 2E8

holte@cs.ualberta.ca

Abstract

Korf, Reid, and Edelkamp launched a line of research aimed
at predicting how many nodes IDA* will expand with a given
cost bound. This paper advances this line of research in three
ways. First, we identify a source of prediction error that has
hitherto been overlooked. We call it the “discretization ef-
fect”. Second, we disprove the intuitively appealing idea that
a “more informed” prediction system cannot make worse pre-
dictions than a “less informed” one. More informed systems
are more susceptible to the discretization effect, and in several
of our experiments the more informed system makes poorer
predictions. Our third contribution is a method, called “ε-
truncation”, which makes a prediction system less informed,
in a carefully chosen way, so as to improve its predictions
by reducing the discretization effect. In our experiments ε-
truncation rarely degraded predictions; in the vast majority of
cases it improved predictions, often substantially.

Introduction
Tree search is a popular technique for solving combinato-
rial problems (Pearl 1984). A frequent impediment of the
application of tree searching algorithms is the inability to
quickly predict the running time of an algorithm on a par-
ticular problem instance. While one instance of a problem
might be solved in a blink of an eye, another instance of
the same problem might take centuries. Korf, Reid, and
Edelkamp (2001) launched a line of research aimed at cre-
ating a method to predict exactly how many nodes IDA*
would expand on an iteration with cost bound d given a
particular heuristic function. This was in contrast with the
traditional approach to search complexity analysis, which
focused on “big-O” complexity typically parameterized by
the accuracy of the heuristic (Dinh, Russell, and Su 2007;
Gaschnig 1979; Pearl 1984; Pohl 1977).

Korf, Reid, and Edelkamp developed a prediction for-
mula, KRE, for the special case of consistent heuristics,
proved that it was exact asymptotically (in the limit of large
d), and experimentally showed that it was extremely accu-
rate even at depths of practical interest. Zahavi, Felner,
Burch, and Holte (2010) generalized KRE to work with in-
consistent heuristics and to account for the heuristic values
of the start states. Their formula, CDP, is described below.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

d IDA* Coarse Refined ε-Coarse ε-Refined
18 14.5 0.72 1.16 0.79 1.02
19 22.2 0.73 1.19 0.74 1.01
20 27.4 0.74 1.24 0.82 0.99
21 43.3 0.74 1.28 0.77 0.99
22 58.5 0.75 1.34 0.84 0.96
23 95.4 0.76 1.39 0.81 0.98
24 135.7 0.76 1.45 0.85 0.93
25 226.7 0.77 1.52 0.84 0.98
26 327.8 0.77 1.58 0.86 0.92
27 562.0 0.77 1.64 0.86 0.98

Table 1: 8-puzzle, Inconsistent Heuristic. Signed Error.

The present paper advances this research in three ways.
First, we identify a source of prediction error that has hith-
erto been overlooked. We call it the “discretization effect”.
Second, we disprove the intuitively appealing idea, specif-
ically asserted to be true by Zahavi et al., that a “more in-
formed” system cannot make worse predictions than a “less
informed” system.1 The possibility of this statement be-
ing false follows directly from the discretization effect, be-
cause a more informed system is more susceptible to the dis-
cretization effect than a less informed one. We will show
several cases of this statement being false and use the phrase
“informativeness pathology” to refer to this situation. Our fi-
nal contribution is a method for counteracting the discretiza-
tion effect, which we call “ε-truncation”. One way to view ε-
truncation is that it makes a prediction system less informed,
in a carefully chosen way, so as to improve its predictions
by reducing the discretization effect. In our experiments ε-
truncation rarely degraded predictions; in the vast majority
of cases it improved predictions, often substantially.

These contributions are illustrated in Table 1 for the 8-
puzzle using the inconsistent heuristic defined by Zahavi et
al. (see their Table 10). Column “d” shows the cost bound
for which the prediction is being made and column “IDA*”
shows how many nodes IDA* actually expanded, on aver-
age, on its iteration with cost bound d for the given set of
start states. The remaining columns represent the quality
of the predictions of four prediction systems (defined below
under different labels). A perfect score is 1.0 (we explain
how this score is calculated in the experimental section of

1“More informed” is defined formally in Definition 3 below.

this paper). The Refined system is “more informed” than
the Coarse system; ε-Coarse and ε-Refined are the resulting
systems when ε-truncation is applied to Coarse and Refined,
respectively. The number given is the ratio of the average
predicted number of nodes expanded to the average number
of nodes actually expanded. For example, the entry in the
bottom row of the Coarse column being 0.77 means that for
d = 27, the prediction by the Coarse system was 77% of
the actual IDA* value (Coarse predicted 432.7 nodes would
be expanded, on average, whereas in reality 562.0 were).
Coarse is the CDP2 system of Zahavi et al. as it was ap-
plied to the 8-puzzle and the Coarse column here exactly
reproduces the CDP2 column in their Table 10. These are
among the least accurate predictions Zahavi et al. report for
CDP, and they offer no explanation for these poor results.
Even though Refined is “more informed” than Coarse, Ta-
ble 1 shows that its predictions are worse than Coarse’s for
d ≥ 21. The last two columns show the effect of applying
ε-truncation: in both cases the predictions are substantially
improved, and the more informed system ends up outper-
forming the less informed system.

The CDP Prediction Framework
Here we briefly sketch the CDP system using our own no-
tation. The reader is referred to the original paper (Zahavi
et al. 2010) for full explanations and illustrative examples.
For reference, Table 2 summarizes the notation introduced
in this section.

Let S be the set of states, E ⊆ S × S the set of directed
edges over S representing the parent-child relation in the un-
derlying state space, and h : S → N the heuristic function.

Definition 1 T = {t1, . . . , tn} is a type system for (S,E)
if it is a disjoint partitioning of E. For every (ŝ, s) ∈ E,
T (ŝ, s) denotes the unique t ∈ T with (ŝ, s) ∈ t.

Definition 2 Let t, t′ ∈ T . p(t′|t) denotes the probability
that a node s with parent ŝ and T (ŝ, s) = t generates a
node c with T (s, c) = t′. bt denotes the average number of
children generated by a node s with parent ŝ with T (ŝ, s) =
t.

Parent-pruning is an easy-to-implement enhancement of
IDA* that avoids re-expanding the parent of a node. IDA*
with parent-pruning will not generate a node ŝ from s if ŝ
is the parent of s. In making the prediction of the number
of nodes expanded on an iteration of IDA* we are interested
in estimating the number of nodes in the subtree below a
given node. Because of parent-pruning the subtree below
a node differs depending on the node from which it was
generated. Like Zahavi et al., to account for this effect of
parent-pruning we define types over node pairs instead of
just nodes.2

All type systems considered in this paper have the prop-
erty that h(s) = h(s′) if T (ŝ, s) = T (ŝ′, s′). We assume
this property in the formulae below, and denote by h(t) the
value h(s) for any s, ŝ such that T (ŝ, s) = t.

2Zahavi et al. call the type definition over pairs a “two-step”
model.

CDP samples the state space in order to estimate p(t′|t)
and bt for all t, t′ ∈ T . We denote by π(t′|t) and β(t) the
respective estimates thus obtained. The predicted number
of nodes expanded by IDA* (with parent pruning) for start
state ŝ∗, cost bound d, heuristic h, and type system T is

CDP(ŝ∗, d, h, T) =
∑

(ŝ∗,s∗)∈E

d∑
i=1

∑
t∈T

N(i, t, (ŝ∗, s∗), d) .

Here N(i, t, (ŝ∗, s∗), d) is the number of pairs (ŝ, s) with
T (ŝ, s) = t and s at level i of the search tree rooted at s∗. It
is computed recursively as follows.

N(1, t, (ŝ∗, s∗), d) =

{
0 if T (ŝ∗, s∗) 6= t ,
1 if T (ŝ∗, s∗) = t ,

and, for i > 1, the value N(i, t, (ŝ∗, s∗), d) is given by

∑
u∈T

N(i− 1, u, (ŝ∗, s∗), d)π(t|u)βtP (t, i, d) (1)

where P (t, i, d) = 1 if h(t) + i ≤ d, and is 0 otherwise.
According to the formulae above, in order to predict

the number of nodes IDA* expands with a cost bound d,
for every level i ≤ d, CDP predicts how many instances
of each type will be generated; i.e., it predicts a vector
(N [1], . . . , N [|T |]) of numbers of instances of each type on
a level.3 We will call such a vector a type allocation vector.
The type allocation vector for the first level of prediction is
computed by verifying the type of the children of the start
state (the i = 1 base case of the recursive calculation shown
above). Once the allocation vector is calculated for the first
level, the vector for the next level is estimated according to
Equation 1. At level i, for each type t such that h(t) + i ex-
ceeds the cost bound d, the corresponding entry in the type
allocation vector, N [t], is set to zero to indicate that IDA*
will prune nodes of this type from its search.4 The predic-
tion continues to deeper and deeper levels as long as there is
an entry in the type allocation vector greater than zero.

As our basic type system, Th, we use Zahavi et al.’s basic
“two-step” model, defined (in our notation) as Th(ŝ, s) =
(h(ŝ), h(s)). Two new domain-independent type systems
we will also use, which are “more informed” than Th, are:

Tc(ŝ, s)= (Th(ŝ, s), c((ŝ, s), 0), . . . , c((ŝ, s), H)), where
c((ŝ, s), k) is the number of children of s, considering
parent pruning, whose h-value is k, and H is the maxi-
mum h-value observed in the sampling process;
Tgc(ŝ, s) = (Tc(ŝ, s), gc((ŝ, s), 0), . . . , gc((ŝ, s), H)),
where gc((ŝ, s), k) is the number of grandchildren of s,
considering parent pruning, whose h-value is k.

The intuitive concept of one type system being “more in-
formed” than another is captured formally as follows.

3We useN [t] to denoteN(i, t, (ŝ∗, s∗), d) when i, (ŝ∗, s∗) and
d are clear from context.

4That is why we ensure all nodes mapped to a type have the
same heuristic value, as mentioned above.

Notation Meaning
T type system

T (ŝ, s) type of a pair (ŝ, s) ∈ E
p(t′|t) probability of type t generating type t′

bt average branching factor of node pairs of type t
π(t′|t) approximation of p(t′|t)
βt approximation of bt

P (t, i, d) pruning function
N(i, t, (ŝ∗, s∗), d) number of node pairs of type t at level i

Th(ŝ, s) type defined as (h(ŝ), h(s))
Tc(ŝ, s) type defined by Th and the h-values of s’s children
Tgc(ŝ, s) type defined by Tc and the h-values of s’s grandchildren
T1 ≺ T2 T1 is a refinement of T2

Table 2: Notation used in the CDP prediction framework.

Definition 3 Let T1, T2 be type systems. T1 is a refine-
ment of T2, denoted T1 ≺ T2, if |T1| > |T2| and for all
t1 ∈ T1 there is a t2 ∈ T2 with {(ŝ, s)|T1(ŝ, s) = t1} ⊆
{(ŝ, s)|T2(ŝ, s) = t2}. If t1 ∈ T1 and t2 ∈ T2 are related in
this way, we write T2(t1) = t2.

Note that Tgc ≺ Tc ≺ Th, and so, by transitivity, Tgc ≺ Th.
Intuitively, if T1 ≺ T2 one would expect predictions us-

ing T1 to be at least as accurate as the predictions using T2,
since all the information that is being used by T2 to condi-
tion its predictions is also being used by T1 ((Zahavi et al.
2010), p. 59). However, our experiments show that this is
not always true (e.g. Table 1, where Refined≺Coarse). The
underlying cause of poorer predictions by T1 when T1 ≺ T2
is the discretization effect, which we will now describe.

The Discretization Effect
Consider for example the situation depicted in Figure 1.
Here type t1 generates type t2 with probability p(t2|t1) = p
and type t3 with probability p(t3|t1) = 1 − p. Let bt1 = 1,
i.e., one instance of type t1 generates 1 new instance on av-
erage. Assuming, for simplicity, that the estimates π(t′|t)
and β(t) are accurate, CDP predicts that p instances of type
t2 and (1− p) instances of type t3 will be generated by one
instance of t1. If level i − 1 consists only of one instance,
which is of type t1, CDP’s prediction (N [1], N [2], N [3]) =
(0, p, (1 − p)) for level i minimizes the mean squared error
(MSE) compared to the actual expected type allocation vec-
tor (a1, a2, a3) on level i. Note that the ultimate task of CDP
is to minimize the error in predicting the number of nodes
expanded by IDA*. There is no guarantee that minimizing
MSE for type allocation vectors at each level will actually
minimize the overall MSE of the predicted number of nodes
expanded, as will be illustrated below.

In the example above, if p = 0.05, CDP predicts that
0.05 instances of type t2 and 0.95 instances of type t3 will
be generated, and thus minimizes the expected MSE of the
type allocation vector. In an actual search tree, only integer
values are possible, hence it is most likely that 1 instances
of type t3 and no instances of type t2 are generated. In-
tuitively, the case that an instance of type t2 is generated
happens so rarely in practice that it might be better to pre-
dict that it never happens. That does not mean that fractional
predictions in the type allocation vectors should be avoided

Figure 1: A hypothetical situation in CDP prediction.

in general, but in practice it might be advantageous to avoid
very small fractions.

To illustrate that it is at least possible that minimizing
MSE for type allocation vectors does not minimize MSE
of the number of nodes predicted to be expanded, consider
again Figure 1. Let us denote by A2 and A3 the actual av-
erage number of nodes expanded below an instance of type
t2 and type t3, respectively, and by E2 and E3 CDP’s pre-
dictions for the number of nodes in the subtrees below an
instance of type t2 and an instance of type t3, respectively.
The expected MSE for CDP’s prediction would be

p(pE2+(1−p)E3−A2)
2+(1−p)(pE2+(1−p)E3−A3)

2 . (2)

The MSE for predicting only 1 instance of type t3 (and
no instances of type t2) of a system estimating A3 with E′3
would be

p(E′3 −A2)
2 + (1− p)(E′3 −A3)

2 . (3)

It is mathematically possible for the value of (2) to be
larger than that of (3), even if E3 = E′3, as can be verified
by a simple algebraic calculation, which we skip because of
space constraints. This by itself does not justify changing
the way CDP makes predictions, but it shows at least that
minimizing MSE for type allocation vectors does not guar-
antee minimizing MSE in the overall prediction.

Hence we would like to examine the possibility that ig-
noring very rare types, i.e., in the example above, predicting
that type t2 will not be generated at all if p is very small,
might in practice lead to better predictions—we call this
phenomenon the discretization effect. Empirical evidence
for the discretization effect would also explain what we ob-
served in the introduction, namely that more refined type
systems may lead to worse CDP predictions. The reason
is that more refined type systems sometimes contain many
very small type generation probabilities p(t′|t). For exam-
ple, for the 8-puzzle using the inconsistent heuristic defined
by Zahavi et al., 7.3% of the types generated with proba-
bility greater than zero are generated with probability lower

Level (i) 10 11-12 13 14 15 16-17 18-19 20-23 24
εi 0.05 0.07 0.08 0.07 0.05 0.04 0.03 0.01 0.00

Table 3: εi values for the 8-puzzle with Manhattan Distance.

than 1% for the more refined type system. This percentage
is only 0.3% for the less refined type system.

The discretization effect hence would (i) explain why
more refined type systems may behave poorly, and (ii) sug-
gest that ignoring rare types may improve predictions over-
all. The goal of this paper is to show that our intuition is
correct and to provide a method for systematically ignoring
rare types in CDP, thus improving CDP predictions substan-
tially in practice.

The ε-Truncation Prediction Method
Our approach to avoiding the discretization effect, which we
call ε-truncation, can be summarized as follows.

1. As before, sample the state space to obtain π(t|u).
2. Compute a cutoff value εi for each i between 1 and d.

3. Use εi to define πi(t|u), a version of π(t|u) that is specific
to level i. In particular, if π(t|u) < εi then πi(t|u) = 0;
the other πi(t|u) are set by scaling up the corresponding
π(t|u) values so that the πi(t|u) sum to 1.

4. In computing CDP use πi(t|u) at level i instead of π(t|u).
The key step in this process is the calculation of the εi

values. A full description of this calculation is given in the
Appendix. It requires computing CDP predictions for a set
of start states and, for each level i in each of these prediction
calculations, solving a set of small linear programs (one for
each “supertype” at that level, as defined in the Appendix).
Table 3 shows the εi values calculated using 10,000 ran-
domly generated start states for the 8-puzzle with Manhattan
Distance. In practice, useful εi values can be computed us-
ing a much smaller number of start states. Also, as observed
in Table 3 and in all the experiments in this paper, the εi
values converge to zero as i gets larger.

Experimental Results
This section presents the results of experiments showing
that: (a) refining a type system often reduces prediction
accuracy; and (b) ε-truncation often substantially improves
predictions. Each experiment will use two type systems, a
basic one and a refinement of the basic one, and will com-
pare the predictions made by CDP with each type system
and with ε-truncation applied to the refined type system.
We omit the results of applying ε-truncation to the basic
type system for lack of space; as in Table 1 it never pro-
duced large improvements and never produced predictions
that were more accurate than those of the refined system
with ε-truncation. Our experiments are run on two domains:
the sliding-tile puzzle, which has a small branching factor
and deep solutions, and the pancake puzzle, which has a
large branching factor and shallow solutions. We use at least
two sizes for each domain: one that is small enough that the

entire reachable portion of the state space can be enumer-
ated and used in lieu of “sampling”, and one that is large
enough to be of practical interest. The small domains are an
important element of the experiments because phenomena
witnessed in them cannot be attributed to sampling effects.
For each domain we use at least one consistent heuristic and
one inconsistent one.

The choice of the set of start states will be described in
the specific sections below, but we always applied the same
principle as Zahavi et al. (2010): start state s is included
in the experiment with cost bound d only if IDA* would
actually have used d as a cost bound in its search with s
as the start state. Unlike an actual IDA* run, we count the
number of nodes expanded in the entire iteration for a start
state even if the goal is encountered during the iteration.

As in Table 1 for each prediction system we will report
the ratio of the predicted number of nodes expanded, aver-
aged over all the start states, to the actual number of nodes
expanded, on average, by IDA*. This ratio will be rounded
to two decimal places. Thus a ratio of 1.00 does not neces-
sarily mean the prediction is perfect. This ratio we call the
(average) signed error. It is the same as the “Ratio” reported
by Zahavi et al. (2010) and is appropriate when one is in-
terested in predicting the total number of nodes that will be
expanded in solving a set of start states. It is not appropriate
for measuring the accuracy of the predictions on individual
start states because errors with a positive sign cancel errors
with a negative sign. If these exactly balance out, a system
will appear to have no error (a ratio of 1.00) even though
there might be substantial error in every single prediction.
To evaluate the accuracy of individual predictions, an ap-
propriate measure is absolute error. For each instance one
computes the absolute value of the difference between the
predicted and the actual number of nodes expanded, divides
this difference by the actual number of nodes expanded, adds
these up over all start states, and divides by the total number
of start states. A perfect score according to this measure is
0.0. Appendix B shows the corresponding results when root
mean squared error (RMSE) is chosen as a measure (recall
that CDP minimizing MSE and thus RMSE for type alloca-
tion vectors does not imply that CDP minimizes RMSE for
the overall prediction; the numbers in the appendix clearly
demonstrate that CDP is outperformed by ε-truncation in
terms of RMSE).

Zahavi et al. (2010) introduced a method for improving
predictions for single start states. Instead of directly predict-
ing how many nodes will be expanded for cost bound d and
start state s, all states, Sr, at depth r < d are enumerated
and one then predicts how many nodes will be expanded for
depth bound d − r when Sr is the set of start states. We
applied this technique in all our experiments. The value of r
for each experiment is specified below.

The number of start states used to determine the εi is
closely related to the r-value that will be used in the ex-
periment. For example, the number of states (and thus the
number of linear programs) at level 10 of the 8-puzzle is ex-
pected to be much lower than the number of states at level 25
of the 15-puzzle. Therefore, in order to find a suitable ε10-
value for the 8-puzzle we have to use more start states than

is required to determine the ε25-value for the 15-puzzle. The
number of states used to determine the εi is stated below for
each experiment.

Small Domains
The 10-pancake puzzle has 10! states and a maximum opti-
mal solution depth of 11. We used 100 random start states to
determine the εi and 5,000 to measure prediction accuracy.
The heuristic used was a pattern database (PDB (Culberson
and Schaeffer 1996)) based on the smallest four pancakes.
Heuristics defined by PDBs are admissible and consistent.
We used Th and Tgc as the type systems. The results of
this experiment are shown in the upper part of Table 4. The
lower part of Table 4 shows the same experiment when the
heuristic is multiplied by 1.5, which makes it inconsistent
and inadmissible (e.g., there is a d=12 row even though the
maximum optimal solution depth is 11). The bold entries in
this and all other tables of results indicate the best predic-
tions. In both these experiments the refinement Tgc substan-
tially improves on Th and ε-truncation automatically detects
that Tgc contains almost no rare types and therefore makes
little change to its predictions. For all the type systems the
absolute error is substantially higher than the signed error
suggests it should be, indicating that a combination of over-
and under-estimation is occurring.

Signed Error Absolute Error
d IDA* Th Tgc ε-Tgc Th Tgc ε-Tgc

Admissible and Consistent Heuristic
7 1,710.8 1.01 1.00 1.00 0.33 0.02 0.03
8 12,082.4 1.03 1.00 1.00 0.27 0.03 0.03
9 79,650.5 1.08 1.01 1.00 0.25 0.03 0.04
10 507,640.4 1.14 1.01 1.00 0.24 0.03 0.04
11 3,449,158.0 1.20 1.01 1.00 0.22 0.02 0.03

The heuristic above multiplied by 1.5
7 528.5 1.03 1.01 1.01 0.68 0.13 0.13
8 3,740.3 1.06 1.01 1.01 0.51 0.11 0.11
9 13,924.7 1.13 1.02 1.02 0.57 0.12 0.12
10 64,611.8 1.22 1.04 1.03 0.50 0.11 0.11
11 356,366.1 1.36 1.06 1.05 0.46 0.10 0.10
12 2,397,748.6 1.36 1.09 1.05 0.39 0.09 0.09

Table 4: 10-pancake puzzle. r=1.

For the sliding-tile puzzle we ran experiments on two
small sizes, the (3x3)-puzzle (the 8-puzzle) and the (3x4)-
puzzle. We used the same type system as Zahavi et
al. (2010), which is a refinement of Th we call Th,b. Th,b
is defined by Th,b(s, s′) = (Th, blank(s), blank(s

′)) where
blank(s) returns the kind of location (corner, edge, or mid-
dle) the blank occupies in state s.5 Tgc,b is defined analo-
gously. For square versions of the puzzle Tgc is exactly the
same as Tgc,b and therefore Tgc ≺ Th,b. However, for the
(3x4)-puzzle, Tgc and Tgc,b are not the same. For the 8-
puzzle we used 1,000 random start states to determine the εi
and every solvable state in the space to measure prediction

5For the (3x4)-puzzle there are two kinds of edge locations that
blank(s) needs to distinguish—edge locations on the short side
(length 3) and edge locations on the long side (length 4).

accuracy. Table 5 shows the results for Manhattan Distance,
which is admissible and consistent, with r=10. Here we see
the informativeness pathology: Tgc’s predictions are worse
than Th,b’s, despite its being a refinement of Th,b. Applying
ε-truncation substantially reduces Tgc’s prediction error.

Signed Error Absolute Error
d IDA* Th,b Tgc ε-Tgc Th,b Tgc ε-Tgc

18 134.4 1.01 1.01 1.00 0.03 0.01 0.01
19 238.4 1.01 1.01 1.00 0.04 0.02 0.02
20 360.1 1.01 1.02 0.99 0.06 0.03 0.03
21 630.7 1.01 1.02 0.99 0.06 0.03 0.03
22 950.6 1.02 1.04 0.99 0.08 0.05 0.04
23 1,649.5 1.01 1.04 0.99 0.08 0.06 0.04
24 2,457.5 1.01 1.07 0.98 0.09 0.08 0.06
25 4,245.5 1.00 1.08 0.98 0.09 0.08 0.05
26 6,294.4 1.00 1.10 0.97 0.10 0.11 0.07
27 10,994.9 0.99 1.11 0.97 0.11 0.11 0.06

Table 5: 8-puzzle, Manhattan Distance. r=10.

The inconsistent heuristic we used for the 8-puzzle is the
one defined by Zahavi et al. (2010). Two PDBs were built,
one based on tiles 1-4, and one based on tiles 5-8. The lo-
cations in the puzzle are numbered left-to-right and top-to-
bottom and the first PDB is consulted for states having the
blank in an even location and the second PDB is consulted
otherwise. Since the blank’s location changes parity every
time it moves, we are guaranteed that the heuristic value of
a child node will be drawn from a different PDB than its par-
ent. Again we used 1,000 random start states to determine
the εi and every solvable state in the space to measure pre-
diction accuracy. The results of this experiment, with r=1,
are shown in Table 6. The Signed Error columns of Table 6
reproduce the results shown in Table 1. As discussed in the
Introduction, they exhibit the informativeness pathology and
demonstrate that ε-truncation can substantially reduce pre-
diction error. The pathology and the ε-truncation improve-
ments are also observed when absolute error is the measure.

Signed Error Absolute Error
d IDA* Th,b Tgc ε-Tgc Th,b Tgc ε-Tgc

18 14.5 0.72 1.16 1.02 0.38 0.44 0.36
19 22.2 0.73 1.19 1.01 0.45 0.49 0.39
20 27.4 0.74 1.24 0.99 0.45 0.55 0.41
21 43.3 0.74 1.28 0.99 0.49 0.57 0.40
22 58.5 0.75 1.34 0.96 0.47 0.62 0.41
23 95.4 0.76 1.39 0.98 0.48 0.62 0.38
24 135.7 0.76 1.45 0.93 0.46 0.66 0.37
25 226.7 0.77 1.52 0.98 0.44 0.65 0.34
26 327.8 0.77 1.58 0.92 0.41 0.68 0.31
27 562.0 0.77 1.64 0.98 0.40 0.67 0.27

Table 6: 8-puzzle, Inconsistent Heuristic. r=1.

For the (3x4)-puzzle we used 10 random start states to
determine the εi and 10,000 to measure prediction accuracy.
The upper part of Table 7 shows the results for Manhattan
Distance. Tgc,b’s absolute error is very close to Th,b’s, so
being more informed provides no advantage. ε-truncation
very substantially improves Tgc,b’s absolute error. The lower

part of the table is for Manhattan Distance multipled by 1.5,
which is inadmissible and inconsistent. Here Tgc,b’s pre-
dictions are considerably more accurate than Th,b’s and are
substantially improved by ε-truncation.

Signed Error Absolute Error
d IDA* Th,b Tgc,b ε-Tgc,b Th,b Tgc,b ε-Tgc,b

Manhattan Distance
33 30,461.9 1.02 1.02 1.01 0.02 0.01 0.01
34 49,576.8 1.03 1.03 1.01 0.03 0.02 0.01
35 80,688.2 1.04 1.04 1.02 0.04 0.03 0.02
36 127,733.4 1.05 1.06 1.02 0.05 0.05 0.03
37 201,822.7 1.08 1.09 1.04 0.07 0.07 0.04
38 327,835.3 1.10 1.11 1.04 0.09 0.09 0.05
39 478,092.5 1.13 1.16 1.06 0.11 0.13 0.06
40 822,055.4 1.17 1.20 1.07 0.15 0.17 0.08
41 1,163,312.1 1.21 1.27 1.10 0.18 0.23 0.10
42 1,843,732.2 1.27 1.34 1.13 0.23 0.30 0.13

Weighted Manhattan Distance (w=1.5)
33 926.2 1.05 1.01 1.00 0.02 0.01 0.01
34 1,286.9 1.07 1.02 1.01 0.03 0.01 0.01
35 2,225.6 1.09 1.03 1.00 0.05 0.02 0.02
36 2,670.7 1.12 1.05 1.00 0.06 0.03 0.02
37 3,519.5 1.14 1.07 0.99 0.08 0.04 0.02
38 5,570.8 1.19 1.10 0.99 0.13 0.07 0.03
39 6,983.8 1.23 1.13 0.98 0.15 0.09 0.04
40 9,103.3 1.29 1.18 0.97 0.20 0.12 0.05
41 13,635.3 1.36 1.24 0.96 0.28 0.18 0.06
42 16,634.2 1.43 1.31 0.95 0.33 0.23 0.07

Table 7: (3x4)-puzzle. r=20.

Large Domains
For the 15-pancake puzzle, we used 10 random start states to
determine the εi and 1,000 to measure prediction accuracy
while using the consistent heuristic and 1,000 while using
the inadmissible and inconsistent heuristic. We used Th and
Tc as the type systems. To define π(t|u) and βt, 100 million
random states were sampled and, in addition, we used the
process described by Zahavi et al. (2010) to non-randomly
extend the sampling: we sampled the child of a sampled
state if the type of that child had not yet been sampled. The
results with r=4 and a PDB heuristic based on the smallest
eight pancakes are shown in the upper part of Table 8. In
both cases Tc outperforms Th but is also substantially im-
proved by ε-truncation.

For the 15-puzzle, we used 5 random start states to deter-
mine the εi and 1,000 to measure prediction accuracy. To de-
fine π(t|u) and βt, one billion random states were sampled
and, in addition, we used the extended sampling process de-
scribed for the 15-pancake puzzle. Table 9 gives the results
when Manhattan Distance is the heuristic and Th,b and Tgc
are the type systems. Here again we see the informativeness
pathology (Th,b’s predictions are better than Tgc’s) which is
eliminated by ε-truncation.

Like for the 8-puzzle, an inconsistent heuristic for the 15-
puzzle was created with one PDB based on tiles 1-7, and the
other based on tiles 9-15, exactly as Zahavi et al. did (see
their Table 11). The results with Th,b and Tc as the type sys-
tems are shown in Table 10. Here we see that even though

Signed Error Absolute Error
d IDA* Th Tc ε-Tc Th Tc ε-Tc

Admissible and Consistent Heuristic (PDB)
9 1,035.2 1.11 1.06 1.04 0.23 0.10 0.09

10 5,547.9 1.11 1.06 1.02 0.36 0.15 0.11
11 46,009.3 1.11 1.05 0.99 0.51 0.19 0.13
12 322,426.7 1.15 1.07 0.98 0.58 0.23 0.14
13 2,480,436.7 1.27 1.14 1.02 0.61 0.25 0.15
14 19,583,169.2 1.36 1.17 1.03 0.66 0.27 0.17
15 133,596,114.2 1.61 1.31 1.16 0.74 0.32 0.20

Same Heuristic, Weighted (w=1.5)
12 188,177.1 2.00 1.25 1.14 1.51 0.51 0.38
13 398,418.8 2.13 1.32 1.12 1.62 0.53 0.39
14 3,390,387.6 2.31 1.38 1.11 1.62 0.51 0.33
15 6,477,150.7 2.24 1.28 0.98 1.74 0.54 0.37
16 16,848,215.1 2.79 1.49 1.12 1.98 0.55 0.37

Table 8: 15-pancake puzzle. r=4.

Signed Error Absolute Error
d IDA* Th,b Tgc ε-Tgc Th,b Tgc ε-Tgc

48 2,958,898.5 1.10 1.11 1.05 0.05 0.05 0.03
49 5,894,396.1 1.13 1.15 1.06 0.07 0.07 0.04
50 8,909,564.5 1.16 1.18 1.08 0.09 0.10 0.05
51 15,427,786.9 1.15 1.19 1.07 0.11 0.12 0.07
52 28,308,808.8 1.25 1.28 1.14 0.14 0.17 0.09
53 45,086,452.6 1.23 1.29 1.13 0.16 0.20 0.11
54 85,024,463.5 1.36 1.41 1.22 0.21 0.27 0.15
55 123,478,361.5 1.36 1.45 1.24 0.24 0.31 0.17
56 261,945,964.0 1.44 1.54 1.30 0.28 0.39 0.21
57 218,593,372.3 1.43 1.57 1.32 0.33 0.45 0.26
58 531,577,032.2 1.47 1.64 1.37 0.35 0.51 0.30

Table 9: 15-puzzle. Manhattan Distance. r=25.

Th,b presents a reasonable signed error, it has in fact a very
large absolute error, and once again ε-truncation produced
substantial improvement in prediction accuracy. These pre-
diction results could be improved by increasing the r-value
used. However, we wanted our results to be comparable
those in Zahavi et al.’s Table 11.

Conclusion
In this paper we have identified a source of prediction er-
ror that has previously been overlooked, namely, that low
probability events can degrade predictions in certain circum-
stances. We call this the discretization effect. This insight
led directly to the ε-truncation method for altering the prob-
ability distribution used for making predictions at level i of
the search tree by setting to zero all probabilities smaller
than εi, an automatically derived threshold for level i. Our
experimental results showed that more informed type sys-
tems for prediction often suffer more from the discretiza-
tion effect than less informed ones, sometimes leading to
the pathological situation that predictions based on the more
informed system are actually worse than those based on the
less informed system. In our experiments ε-truncation rarely
degraded predictions; in the vast majority of cases it im-
proved predictions, often substantially.

Signed Error Absolute Error
d IDA* Th,b Tc ε-Tc Th,b Tc ε-Tc

48 193,396.1 0.36 1.50 1.00 232.23 1.13 1.08
49 433,915.3 0.35 1.13 0.82 210.85 1.21 1.11
50 562,708.5 0.55 1.77 1.20 537.97 1.29 1.17
51 965,792.6 0.70 1.39 1.04 812.37 1.32 1.12
52 1,438,694.0 0.96 1.68 1.23 513.99 1.52 1.35
53 2,368,940.3 1.29 1.75 1.32 694.34 1.56 1.26
54 3,749,519.9 1.64 2.03 1.54 647.24 1.77 1.53
55 7,360,297.6 1.90 2.07 1.59 650.59 1.72 1.35
56 12,267,171.0 2.30 2.19 1.61 927.71 2.16 1.86
57 23,517,650.8 2.69 2.29 1.78 600.13 2.02 1.55
58 24,607,970.9 5.26 2.54 1.90 700.29 2.73 2.38

Table 10: 15-puzzle. Inconsistent Heuristic. r=1.

Appendix A: Deriving εi for 1 ≤ i ≤ d

Our aim is to compute a value εi, for 1 ≤ i ≤ d, below
which values of π(t|u) for t, u ∈ T are ignored at level i. To
do so, we propose an objective function whose minimizer
defines a set of π-values that yield predictions with a mini-
mal absolute expected error for the type allocation vectors.

Often a type at level i + 1 can be generated by several
different types at level i. To account for this we define a
system of “super types”. A super type system groups types
at level i so that two different super types (at level i) will
never generate children of the same type. In Figure 2, the
pairs (treex,treey) for (x, y) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}
would be in one super type.

Definition 4 Let T, T ′ be type systems, T ≺ T ′, and
t′ ∈ T ′. For all i and all (ŝ∗, s∗) ∈ E, the super type
st(t′, i, ŝ∗, s∗) over T contains exactly the pairs (t1, t2) ∈
T × T for which T ′(t2) = t′ and t1 occurs at level i
starting the prediction from (ŝ∗, s∗). The super type sys-
tem ST (i, ŝ∗, s∗) over T with respect to T ′ is defined
by ST (i, ŝ∗, s∗) = (st(t′1, i, ŝ

∗, s∗), . . . , st(t′z, i, ŝ
∗, s∗))

where T ′ = {t′1, . . . , t′z}. We write st instead of
st(t′, i, ŝ∗, s∗) whenever t′, i, ŝ∗, s∗ are clear from context.

In our experiments, for the pancake domain, when T =
Tgc, we used T ′ = Tc; for the sliding tile puzzle, T = Tgc,b
was used with T ′ given by Tc augmented with the kind of
blank location of the parent of the node.

We adapt CDP to super types by estimating, for state pair
(ŝ∗, s∗), level i, depth limit d, type t, and super type st ∈
ST (i, ŝ∗, s∗), the probability of generating a node of type t
after seeing super type st at level i. We denote the estimate
by πi,dŝ∗,s∗(t|st), defined as

∑
{tp|(tp,t)∈st} π(t|tp)βtpN(i, tp, (ŝ

∗, s∗), d)∑
{tp|(tp,t)∈st} βtpN(i, tp, (ŝ∗, s∗), d)

.

The number of nodes N(i, st, (ŝ∗, s∗), d) of a super type
st ∈ ST at a level i of prediction is given by

N(i, st, (ŝ∗, s∗), d) =
∑

(tp,tc)∈st

N(i, tp, (ŝ
∗, s∗), d)βtp .

We then reformulate the CDP formula equivalently by
computing N(i, t, (ŝ∗, s∗), d) as

∑
st∈ST

N(i− 1, st, (ŝ∗, s∗), d)πi−1,dŝ∗,s∗ (t|st)P (t, i, d) .

Next, we compute a redistribution of π(t, st)-values, for
each st and each level i, from a solution to the following
optimization problem.

Find a type allocation vector (a1, . . . , a|T |) that mini-
mizes:

dN(i,st,(ŝ∗,s∗),d)e∑
j=0

∑
t∈T
|pr(j, t)(at − j)| (4)

s.t.:
∑
t∈T

at = dN(i, st, (ŝ∗, s∗), d)e and at ≥ 0 for t ∈ T .

Here pr(j, t) is short for the probability of generating ex-
actly j children of type t from dN(i, st, (ŝ∗, s∗), d)e many
parents of super type st. The objective corresponds to re-
placing, for each super type st, each π(t|st) by at/

∑
t∈T at

so as to minimize the expected absolute error of the type
vector allocation.

We deliberately chose to minimize the absolute error
rather than MSE here, because we expect small fractions in
the type allocation vectors to be harmful, yet favoured by
MSE minimization. Consider for example a case of only
two types, one being generated with probability p and the
other being generated with probability 1 − p, i.e., the ex-
pected vector would be (p, 1−p). Assume a system predicts
a vector (q, 1 − q). Then its MSE would be p

(
(1 − q)2 +

(0 − (1 − q))2
)
+ (1 − p)

(
(0 − q)2 + (1 − (1 − q))2

)
=

2q2+2p−4pq, which would be minimized by setting q = p.
Thus MSE minimization would never suggest to ignore a
small p value. The absolute error of the same prediction
would be p

(
|1 − q| + |0 − (1 − q)|

)
+ (1 − p)

(
|0 − q| +

|1 − (1 − q)|
)
= 2p(1 − q) + 2(1 − p)q. For p < 0.5

this error is minimized at q = 0 while for p > 0.5 error is
minimized at q = 1 (and thus 1 − q = 0). In this example
we assume that N(i, st, (ŝ∗, s∗), d) = 1. For larger values
of N(i, st, (ŝ∗, s∗), d) this error is minimized at q = 0 for
smaller p. Minimizing the absolute error hence encourages
the system to ignore types less likely to be generated given
an N(i, st, (ŝ∗, s∗), d)-value, as is our intention.

Solving Equation 4 in every step of the prediction would
be too time-consuming. Instead, it plays a role in prepro-
cessing, when we use the modified π-values for super types
to derive ε-cuts for π-values for types as follows. First, we
solve a small number of instances of Equation (4) for each
level i. For every value π(t|st) (which is the x-axis in the
example in Figure 3) estimated before solving (4), we com-
pute the fraction of times that this π(·|·)-value was set to
zero in the solutions to (4) for the given level i (this is the
y-axis in Figure 3). The largest π(t|st) that was set to zero
in 50% or more of these instances at level i is ε̂i, a potential
cutoff value for level i (in Figure 3 this is the x-value where

Figure 2: Each of the trees above contains the information necessary to determine the Tgc type of the highlighted pair. Numbers
denote h-values. The left branch of tree1 and tree2 can potentially generate children of the same Tgc type, illustrated by tree3
and tree4. Therefore, the pairs (treex,treey) for (x, y) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)} will be in the same super type.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Pe
rc

. o
f t

im
es

 th
e

pr
ob

. o
f a

 ty
pe

 b
ei

ng
 g

en
. w

as
 s

et
 to

 z
er

Probability of a type being generated

Types set to zero by the LP Solver (8-puzzle with manhattan distance)

level 10
level 21

Figure 3: ε̂i calculation for i=10 and i=21 (8-puzzle with
Manhattan distance).

the curve intersects the horizontal y=0.5 line). Note that it
can happen that, for some fixed type u, all π(t|u)-values are
below ε̂i. Since we must not set πi(t|u) to zero for all t,
we define εi to be the minimum of ε̂i and the largest value
δi such that, for all u ∈ T there is some t ∈ T such that
π(t|u) > δi.

Appendix B: Results for RMSE
Tables 11 through 17 show results on the same domains,
heuristics, and type systems as used in our experimental sec-
tion above but in terms of relative root mean squared error
(RRMSE). The relative root mean squared error is calculated
by dividing the sum of the RMSE by the sum of the number
of nodes expanded by IDA* for all states in the set of start
states. As in the absolute error score, a perfect score for this
measure is 0.0. Here we observe the same improvements of
ε-truncation discussed above in terms of signed and absolute
errors.

Acknowledgements
This work was supported by the Laboratory for Computa-
tional Discovery at the University of Regina. The authors
gratefully acknowledge the research support provided by Al-
berta Innovates - Technology Futures, the Alberta Ingenuity

RRMSE
d IDA* Th,b Tgc ε-Tgc

17 12.9 0.53 0.44 0.41
18 14.5 0.52 0.48 0.43
19 22.2 0.51 0.47 0.40
20 27.4 0.50 0.50 0.40
21 43.3 0.49 0.50 0.38
22 58.5 0.48 0.53 0.37
23 95.4 0.47 0.54 0.34
24 135.7 0.45 0.58 0.34
25 226.7 0.44 0.61 0.30
26 327.8 0.42 0.65 0.29
27 562.0 0.41 0.68 0.25
28 818.4 0.39 0.73 0.24
29 1,431.7 0.37 0.75 0.20

Table 11: 8-puzzle, Inconsistent Heuristic. r=1. RRMSE.

Centre for Machine Learning (AICML), and Canada’s Nat-
ural Sciences and Engineering Research Council (NSERC).

References
Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. Advances in Artificial Intelligence (LNAI
1081) 402–416.
Dinh, H. T.; Russell, A.; and Su, Y. 2007. On the value
of good advice: The complexity of A* search with accurate
heuristics. In AAAI-07, 1140–1145.
Gaschnig, J. 1979. Performance Measurement and Analysis
of Certain Search Algorithms. Ph.D. Dissertation, Carnegie-
Mellon University.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of Iterative-Deepening-A∗. Artif. Intell. 129(1-
2):199–218.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison & Wesley.
Pohl, I. 1977. Practical and theoretical considerations in
heuristic search algorithms. Mach. Intell. 8:55–72.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010.
Predicting the performance of IDA* using conditional dis-
tributions. J. Artif. Intell. Res. 37:41–83.

RRMSE
d IDA* Th Tgc ε-Tgc

Admissible and Consistent Heuristic
7 1,710.8 0.23 0.02 0.02
8 12,082.4 0.22 0.02 0.03
9 79,650.5 0.21 0.03 0.03
10 507,640.4 0.22 0.03 0.03
11 3,449,158.0 0.22 0.02 0.03

The heuristic above multiplied by 1.5
7 528.5 0.39 0.07 0.07
8 3,740.3 0.37 0.07 0.07
9 13,924.7 0.38 0.08 0.08
10 64,611.8 0.40 0.09 0.09
11 356,366.1 0.46 0.09 0.09
12 2,397,748.6 0.41 0.10 0.09

Table 12: 10-pancake puzzle. r=1. RRMSE.

RRMSE
d IDA* Th,b Tgc ε-Tgc

18 134.4 0.04 0.02 0.02
19 238.4 0.05 0.02 0.02
20 360.1 0.06 0.03 0.03
21 630.7 0.06 0.03 0.03
22 950.6 0.07 0.05 0.04
23 1,649.5 0.08 0.06 0.04
24 2,457.5 0.09 0.08 0.05
25 4,245.5 0.09 0.08 0.05
26 6,294.4 0.10 0.11 0.06
27 10,994.9 0.10 0.12 0.06

Table 13: 8-puzzle, Manhattan Distance. r=10. RRMSE.

RRMSE
d IDA* Th,b Tgc,b ε-Tgc,b

Manhattan Distance
33 30,461.9 0.03 0.02 0.02
34 49,576.8 0.04 0.03 0.02
35 80,688.2 0.05 0.05 0.03
36 127,733.4 0.07 0.06 0.03
37 201,822.7 0.09 0.09 0.05
38 327,835.3 0.11 0.12 0.05
39 478,092.5 0.14 0.16 0.07
40 822,055.4 0.18 0.21 0.09
41 1,163,312.1 0.22 0.27 0.11
42 1,843,732.2 0.28 0.34 0.14

Weighted Manhattan Distance (w=1.5)
33 926.2 0.06 0.02 0.01
34 1,286.9 0.07 0.03 0.02
35 2,225.6 0.10 0.04 0.02
36 2,670.7 0.12 0.05 0.03
37 3,519.5 0.15 0.07 0.04
38 5,570.8 0.20 0.10 0.05
39 6,983.8 0.24 0.14 0.06
40 9,103.3 0.30 0.19 0.07
41 13,635.3 0.37 0.25 0.08
42 16,634.2 0.44 0.31 0.09

Table 14: (3x4)-puzzle. r=20. RRMSE.

RRMSE
d IDA* Th Tc ε-Tc

Admissible and Consistent Heuristic (PDB)
9 1,035.2 0.17 0.08 0.07
10 5,547.9 0.17 0.10 0.08
11 46,009.3 0.19 0.11 0.09
12 322,426.7 0.23 0.14 0.12
13 2,480,436.7 0.31 0.19 0.14
14 19,583,169.2 0.39 0.23 0.17
15 133,596,114.2 0.62 0.34 0.23

Same Heuristic, Weighted (w=1.5)
12 188,177.1 1.06 0.36 0.27
13 398,418.8 1.14 0.37 0.22
14 3,390,387.6 1.31 0.43 0.27
15 6,477,150.7 1.27 0.44 0.32
16 16,848,215.1 1.82 0.63 0.41

Table 15: 15-pancake puzzle. r=4. RRMSE.

RRMSE
d IDA* Th,b Tgc ε-Tgc

48 2,958,898.5 0.12 0.11 0.06
49 5,894,396.1 0.14 0.15 0.07
50 8,909,564.5 0.17 0.18 0.09
51 15,427,786.9 0.16 0.19 0.09
52 28,308,808.8 0.26 0.28 0.15
53 45,086,452.6 0.24 0.29 0.14
54 85,024,463.5 0.37 0.41 0.23
55 123,478,361.5 0.36 0.45 0.25
56 261,945,964.0 0.44 0.54 0.30
57 218,593,372.3 0.44 0.57 0.32
58 531,577,032.2 0.47 0.64 0.37

Table 16: 15-puzzle. Manhattan Distance. r=25. RRMSE.

RRMSE
d IDA* Th,b Tc ε-Tc

48 193,396.1 1.01 0.69 0.44
49 433,915.3 1.01 0.46 0.48
50 562,708.5 1.04 0.89 0.49
51 965,792.6 1.09 0.62 0.50
52 1,438,694.0 1.20 0.81 0.55
53 2,368,940.3 1.33 0.86 0.57
54 3,749,519.9 1.63 1.08 0.71
55 7,360,297.6 1.68 1.14 0.74
56 12,267,171.0 2.17 1.23 0.72
57 23,517,650.8 2.44 1.31 0.83
58 24,607,970.9 4.73 1.57 0.98

Table 17: 15-puzzle. Inconsistent Heuristic. r=1. RRMSE.

