
Predicting Solution Cost with Conditional Probabilities

Levi Lelis
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8

(santanad@cs.ualberta.ca)

Roni Stern
Information Systems Engineering

Ben Gurion University
Beer-Sheva, Israel 85104
(roni.stern@gmail.com)

Shahab Jabbari Arfaee
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8

(jabbaria@cs.ualberta.ca)

Abstract

Classical heuristic search algorithms find the solution
cost of a problem while finding the path from the start
state to a goal state. However, there are applications in
which finding the path is not needed. In this paper we
propose an algorithm that accurately and efficiently pre-
dicts the solution cost of a problem without finding the
actual solution. We show empirically that our predictor
makes more accurate predictions when compared to the
bootstrapped heuristic, which is known to be a very ac-
curate inadmissible heuristic. In addition, we show how
our prediction algorithm can be used to enhance heuris-
tic search algorithms. Namely, we use our predictor to
calculate a bound for a bounded best-first search algo-
rithm and to tune the w-value of Weighted IDA*. In
both cases major search speedups were observed.

Introduction
Heuristic search algorithms such as A* (Hart, Nilsson, and
Raphael 1968) and IDA* (Korf 1985) are guided by the cost
function f(s) = g(s) + h(s), where g(s) is the lowest cost
path from the start state to s and h(s) is an estimate of the
cost of the lowest cost path from s to a goal. This esti-
mate, also known as a heuristic function, is called admis-
sible if it never overestimates the cost of the lowest cost path
from state s to the goal, and it is called inadmissible other-
wise. Heuristic search algorithms guided by the cost func-
tion f = g + h where h is an admissible heuristic are guar-
anteed to find optimal solutions (Hart, Nilsson, and Raphael
1968). A considerable amount of effort has been de-
voted to creating admissible (Culberson and Schaeffer 1996;
Helmert, Haslum, and Hoffmann 2007; Yang et al. 2008;
Sturtevant et al. 2009) and inadmissible (Ernandes and Gori
2004; Samadi, Felner, and Schaeffer 2008; Jabbari Arfaee,
Zilles, and Holte 2010; Thayer, Dionne, and Ruml 2011)
heuristics. Regardless of admissibility, these heuristics share
a property: the heuristic evaluation must be fast enough to
be computed for every state in the search tree, or at least for
a large number of states.

A* and IDA* find the solution cost of a problem while
finding the path from a start state to a goal state. How-
ever, there are applications in which finding the path is not

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

needed. Every decision problem, such as “is there a vertex
cover of size k ?”, is of this type. As an example, consider
an owner of a construction company, which is required to
quickly assess the monetary cost of a project for bidding
purposes. In such a case, only the cost of executing the
project is required. The actual construction plan could be
formulated later, after bidding. Thus, an important question
to be answered is the following. Can we efficiently predict
the solution cost of a problem without actually solving the
problem (i.e., without finding the sequence of actions from
the start state to a goal)?

A heuristic function is in fact an estimate of the solu-
tion cost. However, it is clear that admissible heuristics
will provide inaccurate estimations of the solution cost as
they are biased to never overestimate the actual value. In
some cases even inadmissible heuristics are biased towards
admissibility so that search algorithms using them find solu-
tions that are “close” to optimal (Ernandes and Gori 2004;
Samadi, Felner, and Schaeffer 2008). The algorithm pre-
sented in this paper can be viewed as an inadmissible heuris-
tic function that aims at accurately predicting the solution
cost of a given start state. Moreover, in contrast to other
heuristics, we do not intend to use our heuristic to guide
search algorithms. Thus, we expect to gain accuracy by al-
lowing our method to be slower than “traditional heuristics”.

Our solution is based on the CDP (Conditional Distribu-
tion Prediction) formula described by Zahavi et al. (2010).
For this reason we prefer to call the method presented in
this paper a predictor instead of a heuristic. The CDP pre-
diction formula requires the state space to be sampled with
respect to a “type system”, and the information gathered dur-
ing sampling is used to efficiently predict the number of
nodes expanded on an iteration of IDA* with cost bound
d. Recently, Lelis et al. (2011) identified a source of er-
ror in the CDP formula that had been previously overlooked.
They observed that “rare events” could reduce CDP’s predic-
tion accuracy, and in addition, they presented a method that
systematically disregards these harmful rare events. Lelis
et al.’s method, named ε-truncated CDP, substantially im-
proved prediction accuracy. We extend the ideas of Zahavi
et al. and Lelis et al. to predict the solution cost of a prob-
lem instead of predicting the number of nodes expanded by
IDA*.

We show empirically that our method accurately predicts

(1) the average solution cost of a set of start states and (2) the
solution cost of single start states. Moreover, our empirical
results show that our method is consistently more accurate
than the bootstrapped heuristic (Jabbari Arfaee, Zilles, and
Holte 2010), which is known to be a very accurate inadmis-
sible heuristic for a range of domains (Jabbari Arfaee, Zilles,
and Holte 2010; Thayer, Dionne, and Ruml 2011).

In the second part of this paper we show novel ways of
using inadmissible heuristics to enhance search algorithms.
Different from the traditional approach, we do not use the
heuristic to calculate f(s) = g(s) + h(s). Instead, we show
how our prediction method can be used to (1) tune the w-
value of Weighted A* (Pohl 1970) and Weighted IDA*, and
(2) guide search in a bounded cost search algorithm. Our
experiments show major speedups while using the predictor
presented in this paper for these purposes.

Related Work
Even though we use the ideas of Zahavi et al. (2010) and
Lelis et al. (2011), we are solving a different problem.
They aimed at accurately predicting the number of nodes
expanded on an iteration of IDA*, whereas we are aiming at
accurately predicting the solution cost of a problem instance.
In fact, one of the chief difficulties of using CDP in practice
is to determine a cost bound to provide to the prediction for-
mula. The solution cost predictor sheds some light on this
problem as it suggests an accurate cost bound.

Inadmissible heuristics, such as the bootstrapped heuris-
tic (Jabbari Arfaee, Zilles, and Holte 2010) are designed to
guide search algorithms, and their effectiveness is measured
by the number of nodes expanded and by the quality of the
solution found by search algorithms using them. Our predic-
tor is designed to make accurate predictions of the solution
cost, and our measure of effectiveness is the prediction ac-
curacy.

The CDP Prediction Framework
Here we briefly sketch the CDP system using our own nota-
tion. The reader is referred to the original paper (Zahavi et
al. 2010) for full explanations and illustrative examples.

Let S be the set of states, E ⊆ S × S the set of directed
edges over S representing the parent-child relation in the un-
derlying state space, and h : S → N the heuristic function.

Definition 1 T = {t1, . . . , tn} is a type system for (S,E)
if it is a disjoint partitioning of E. For every (ŝ, s) ∈ E,
T (ŝ, s) denotes the unique t ∈ T with (ŝ, s) ∈ t.
Definition 2 Let t, t′ ∈ T . p(t′|t) denotes the probability
that a node s with parent ŝ and T (ŝ, s) = t generates a
node c with T (s, c) = t′. bt denotes the average number of
children generated by a node s with parent ŝ with T (ŝ, s) =
t.

Parent-pruning is an easy-to-implement enhancement of
IDA* that avoids re-expanding the parent of a node. IDA*
with parent-pruning will not generate a node ŝ from s if ŝ
is the parent of s. In making the prediction of the number
of nodes expanded on an iteration of IDA* we are interested
in estimating the number of nodes in the subtree below a

given node. Because of parent-pruning the subtree below
a node differs depending on the node from which it was
generated. Like Zahavi et al., to account for this effect of
parent-pruning we define types over node pairs instead of
just nodes.1

All type systems considered in this paper have the prop-
erty that h(s) = h(s′) if T (ŝ, s) = T (ŝ′, s′). We assume
this property in the formulae below, and denote by h(t) the
value h(s) for any s, ŝ such that T (ŝ, s) = t.
CDP samples the state space in order to estimate p(t′|t)

and bt for all t, t′ ∈ T . We denote by π(t′|t) and β(t) the
respective estimates thus obtained. The predicted number
of nodes expanded by IDA* (with parent pruning) for start
state ŝ∗, cost bound d, heuristic h, and type system T is

CDP(ŝ∗, d, h, T) =
∑

(ŝ∗,s∗)∈E

d∑
i=1

∑
t∈T

N(i, t, (ŝ∗, s∗), d) .

Here N(i, t, (ŝ∗, s∗), d) is the number of pairs (ŝ, s) with
T (ŝ, s) = t and s at level i of the search tree rooted at s∗. It
is computed recursively as follows.

N(1, t, (ŝ∗, s∗), d) =

{
0 if T (ŝ∗, s∗) 6= t ,
1 if T (ŝ∗, s∗) = t ,

and, for i > 1, the value N(i, t, (ŝ∗, s∗), d) is given by∑
u∈T

N(i− 1, u, (ŝ∗, s∗), d)π(t|u)βtP (t, i, d) (1)

where P (t, i, d) = 1 if h(t) + i ≤ d, and is 0 otherwise.
According to the formulae above, in order to predict the

number of nodes IDA* expands with a cost bound d, for ev-
ery level i ≤ d, CDP predicts how many instances of each
type will be generated; i.e., it predicts a vector of numbers
of instances of each type on a level. The vector for the first
level of prediction is computed by verifying the type of the
children of the start state (the i = 1 base case of the recur-
sive calculation shown above). Once the vector is calculated
for the first level, the vector for the next level is estimated
according to Equation 1. At level i, for each type t such that
h(t) + i exceeds the cost bound d, the corresponding entry
in the vector is set to zero to indicate that IDA* will prune
nodes of this type from its search.2 The prediction continues
to deeper and deeper levels as long as there is an entry in the
vector greater than zero.

As our basic type system, Th, we use Zahavi et al.’s basic
“two-step” model, defined (in our notation) as Th(ŝ, s) =
(h(ŝ), h(s)). Two new domain-independent type systems
we will also use, which are “more informed” than Th, are:
Tc(ŝ, s)= (Th(ŝ, s), c((ŝ, s), 0), . . . , c((ŝ, s), H)), where
c((ŝ, s), k) is the number of children of s, considering
parent pruning, whose h-value is k, and H is the maxi-
mum h-value observed in the sampling process;
1Zahavi et al. call the type definition over pairs a “two-step”

model.
2That is why we ensure all nodes mapped to a type have the

same heuristic value, as mentioned above.

Tgc(ŝ, s) = (Tc(ŝ, s), gc((ŝ, s), 0), . . . , gc((ŝ, s), H)),
where gc((ŝ, s), k) is the number of grandchildren of s,
considering parent pruning, whose h-value is k.
The intuitive concept of one type system being “more in-

formed” than another is captured formally as follows.
Definition 3 Let T1, T2 be type systems. T1 is a refine-
ment of T2, denoted T1 ≺ T2, if |T1| > |T2| and for all
t1 ∈ T1 there is a t2 ∈ T2 with {(ŝ, s)|T1(ŝ, s) = t1} ⊆
{(ŝ, s)|T2(ŝ, s) = t2}. If t1 ∈ T1 and t2 ∈ T2 are related in
this way, we write T2(t1) = t2.
Note that Tgc ≺ Tc ≺ Th, and so, by transitivity, Tgc ≺ Th.

ε-truncation
Intuitively, if T1 ≺ T2 one would expect CDP’s predictions
using T1 to be at least as accurate as the predictions using
T2, since all the information that is being used by T2 to con-
dition its predictions is also being used by T1 (Zahavi et al.
2010, p. 59). However, we have shown empirically in a sep-
arate paper (Lelis, Zilles, and Holte 2011) that this intuition
is often wrong. Refined type systems are more susceptible
to a harmful phenomenon (the discretization effect) that can
reduce prediction accuracy considerably.

In addition to showing that more informed type systems
often make worse predictions than less informed ones, Lelis
et al. (2011) introduced a method called ε-truncation that
carefully disregards information from a type system with
the aim of reducing the discretization effect, and therefore
increasing the accuracy of the predictions. The ε-truncation
method can be summarized as follows.

1. As in normal CDP, sample the state space to obtain π(t|u).
2. Compute a cutoff value εi for each i between 1 and d.
3. Use εi to define πi(t|u), a version of π(t|u) that is specific

to level i. In particular, if π(t|u) < εi then πi(t|u) = 0;
the other πi(t|u) are set by scaling up the corresponding
π(t|u) values so that they sum to 1.

4. In computing CDP use πi(t|u) at level i instead of π(t|u).
The εi values are computed in a preprocessing phase that

involves running normal CDP on a small number of start
states and solving a set of linear programming optimization
problems for every level of every one of those CDP runs.
ε-truncation substantially improved the prediction accu-

racy for the domains tested (the same ones used in this pa-
per), especially when refined type systems were employed.
The “pathological” behavior of more informed type sys-
tems leading to poorer predictions did not occur when ε-
truncation was applied. In this paper we use ε-truncation in
all experiments.

Predicting the Solution Cost
Instead of predicting the number of nodes expanded for a
given cost bound and start state as CDP does, we are aiming
at predicting the solution cost for a given start state. As for
that we do the following.

1. Make a CDP prediction initially bounded by the heuris-
tic value of the start state and increment it by a minimal
amount in subsequent iterations;

Figure 1: Types at level i are used to calculate the probability
of t4 existing at level i+ 1.

2. For every level i, during the CDP iterations, estimate the
probability of finding a goal at that level;

3. Terminate when a goal is found with probability higher
than a confidence value provided by the user.

We use the probability of a type “existing” at a level of
prediction as an estimation for the probability of finding a
state of that type at a level of the actual search. Therefore,
the probability of finding a goal at a level of the actual search
is estimated by the probability of a goal type existing at a
level of prediction. A goal type is a type to which only goal
states are mapped. If we allow non-goal states to be mapped
to goal types, we will create additional “shortcuts” to the
goal type in the “type system state space”. These shortcuts
can potentially reduce prediction accuracy. A goal type is
defined as follows.

Definition 4 (goal type) - A type tg ∈ T is a goal type iff
for all pairs (s, s′) ∈ tg , s′ is a goal state.

The probability of a goal type existing at a level i of pre-
diction depends on: (a) the probability of at least one state
from a type that exists at level i−1 generating the goal type;
and (b) the probability of the types at level i−1 existing. We
define p(i, t, ŝ∗, d) as the approximated probability of find-
ing a state of type t, in a search tree rooted at state ŝ∗, at
level i, with cost bound of d. We explain how p(i, t, ŝ∗, d) is
calculated with an example.

Figure 1 illustrates how the probability of a type existing
at a level of prediction is calculated. Type t4 exists at level
i + 1 iff at least one of the types at the previous level gen-
erates one or more t4’s. In addition, we have to consider
the probability of the types at the previous level existing in
the first place. Let φ(M,π(t′|t), k) be the probability of M
nodes of type t generating k nodes of type t′. We define
pi+1(t

′|t) as the probability of type t existing at level i and
generating at least one t′ at level i + 1. pi+1(t

′|t) is calcu-
lated as follows.

pi+1(t
′|t) = p(i, t, ŝ∗, d)

(
1−φ(N(i, t, ŝ∗, d)·βt, π(t′|t), 0)

)
(2)

here, for ease of notation we define N(i, t, ŝ∗, d) as,3

N(i, t, ŝ∗, d) =
∑

(ŝ∗,s∗)∈E

N(i, t, (ŝ∗, s∗), d) (3)

3We write N(i, t, d) instead of N(i, t, ŝ∗, d) whenever ŝ∗ is
clear from context.

Algorithm 1 SCP(ŝ∗, c)
1: d← h(ŝ∗)
2: D←

{〈
N(1, t, ŝ∗, d), 1.0

〉∣∣t ∈ T}
3: i← −1
4: while i < 0 do
5: [d, i]← SCP-CDP(D, d, 1,−1, c)
6: end while
7: return i

Now p(i, t, ŝ∗, d) can be formally defined as follows.4

p(i, t, ŝ∗, d) = 1−
∏
u∈T

(1− pi(t|u)) (4)

Note that the Equations 2 and 4 are recursive as pi+1(t
′|t)

depends on p(i, t, ŝ∗, d) that in turn depends on pi(t|u). The
base of the recursion is defined for i = 1 as we use the set of
types of the children of a start state s∗ to seed our prediction
formula. The base of recursion is defined as follows.

p(1, t, s∗, d) =

{
1 if ∃(s∗, ŝ∗) ∈ E s.t. T (s∗, ŝ∗) = t ,
0 otherwise ,

(5)
The pseudocode depicted in Algorithms 1 and 2 shows

our algorithm, named Solution Cost Predictor (SCP). The
first iteration of the algorithm uses the heuristic value of the
start state ŝ∗ as cost bound (line 1 of Algorithm 1). In line
2 of Algorithm 1 the set D is initialized with tuples of the
form

〈
N(i, t, ŝ∗, d), x

〉
. The first element of the tuple is the

number of nodes of type t, at level i, in a search tree rooted
at state ŝ∗, and with a cost bound d, as defined previously.
The second element of the tuple is the estimated probability
of a state of type t existing at level i of the actual search.
In line 2 of Algorithm 1 we are initializing D to seed our
algorithm according to the children of the start state ŝ∗, thus
they exist with probability 1.0.

In Algorithm 2 we iterate over all tuples in set D to gener-
ate the set of tuples D̂ for the next level of prediction (line 4).
Pruning is implemented in line 6 of the same algorithm. A
type t′ is pruned from level l+1 of prediction if h(t′)+ l+1
is greater than the bound d, where the value of l is the current
level of prediction. In line 7 of Algorithm 2, N(l + 1, t′, d)
and p(l + 1, t′, d) are updated according to Equations 1 and
4, respectively. Between lines 9 and 12 we keep track of the
minimum amount for which the cost bound will be increased
for a potential next iteration of the algorithm. Finally, in line
18, the level corresponding to D̂ (l + 1) is returned if a goal
type is found with probability greater than the confidence
parameter c. The function will call itself recursively for the
next level of prediction otherwise.

Time Complexity The time complexity of SCP is exactly
the same of CDP and it depends on the size of the type sys-
tem used. The worst case time complexity of one iteration
of SCP is calculated as follows. The maximum number of

4We write p(t, i, d) instead of p(t, ŝ∗, i, d) whenever ŝ∗ is clear
from context.

Algorithm 2 SCP-CDP(D, d, l, limit, c)
1: if D is empty then
2: return [limit,−1]
3: end if
4: for all

〈
N(l, t, d), p(l, t, d)

〉
∈ D do

5: for all t′ ∈ T do
6: if h(t′) + l + 1 ≤ d then
7: update tuple

〈
N(l+1, t′, d), p(l+1, t′, d)

〉
∈ D̂

according to Equations 1 and 4, respectively.
8: else
9: newlimit← h(t′) + l + 1

10: if newlimit < limit or limit < 0 then
11: limit← newlimit
12: end if
13: end if
14: end for
15: end for
16: for all

〈
N(l + 1, u, d), pu

〉
∈ D̂ do

17: if u is a goal type and pu ≥ c then
18: return [limit, l + 1]
19: end if
20: end for
21: SCP-CDP(D̂, bound, l + 1, limit)

types at a level of prediction is |T |. Since each type at a level
i of the prediction can generate at most |T | types on the next
level of prediction, the worst case time complexity for one
“step” of SCP is O(|T |2). If q is the number of steps the
SCP algorithm makes before all types exceed the cost bound
d, the worst case time complexity of one iteration of the al-
gorithm is O(q · |T |2). Even though the worst case analysis
is unrealistic, it gives us a good idea of how much faster the
prediction can be when compared to the actual search.

Accuracy Experiments
In the first set of experiments we are interested in evaluat-
ing the prediction accuracy of the algorithm presented in the
previous section. We report results for predictions of sin-
gle start states and sets of start states We ran experiments on
the 15-puzzle and the 10-pancake puzzle. Together the two
domains offer a good challenge for our prediction formula
as they have different properties. The former has a small
branching factor and deep solutions, while the latter has a
large branching factor and shallow solutions.

The results of the experiments show that (1) the average
cost predicted by our algorithm is almost exactly equal to
the average optimal cost for a set of start states, and (2) our
algorithm makes very accurate predictions for single start
states. Moreover, we show that SCP produces more accurate
predictions than the bootstrapped heuristic (Jabbari Arfaee,
Zilles, and Holte 2010) for the 15-puzzle, which is known
to be a very accurate inadmissible heuristic. We evaluated
the accuracy of the predictions for a set of start states with
the ratio of the average prediction. The ratio of the average
prediction is the sum of the predicted cost for each instance
in the set of start states, divided by the sum of the actual cost
for each instance in the set of start states. A perfect score ac-

cording to this measure is 1.00. The ratio of the average pre-
diction is not a good measure when we want to evaluate the
accuracy of our system for single start states as overestima-
tions and underestimations of the predictions might cancel
out. The correct measure in this case is the absolute error.
In addition, our absolute error will be an average over start
states with a given solution cost. Thus, for each instance
with optimal solution cost of C one computes the absolute
difference of the predicted solution cost and C, adds these
up, and divides by the number of start states with optimal
solution cost C multiplied by C. A perfect score according
to this measure is 0.00. The measures will be rounded up to
two decimal places. Thus a ratio of 1.00 and an error of 0.00
do not imply perfect predictions.

The upper part of Tables 1 and 2 presents the results for
predictions of single start states. The first column on the
left, named “Cost”, shows the actual solution cost to solve
a problem. The “Cost” column is followed by estimation
results. The bottom part of the tables presents the results for
predictions of a set of start states.

In our experiments SCP uses the π(t|u)-values given by
ε-truncation. It is important that the goal depth prediction
is used in conjunction with ε-truncation as the rare events
reduce the accuracy of the solution cost prediction. When
we set the low π(t|u)-values to zero, we are eliminating the
“rare paths” to the goal type in the type system state space.
Preliminary experiments had shown that if rare events are
not disregarded, the goal depth predictions will often be un-
derestimations of the actual costs. The number of states used
to derived the εi-values for each experiment is defined be-
low. For both domains we used the Tgc type system. The
heuristic function used in the type system is also defined be-
low for each experiment.

The Pancake Puzzle
The 10-pancake puzzle has 10! states and a maximum op-
timal solution depth of 11. We used 100 random start
states to determine the εi and 5,000 to measure prediction
accuracy. The heuristic used to define Tgc was a pattern
database (PDB (Culberson and Schaeffer 1996)) based on
the smallest four pancakes. The confidence parameter was
set to 0.9 in this experiment.

Table 1 shows the results for the pancake puzzle. We used
the same heuristic used to define Tgc as a baseline. SCP
makes fairly accurate predictions for single start states and
almost perfect predictions for the set of 5,000 random start
states. It is important to note that missing by one the actual
solution cost already makes the absolute error large for the
pancake puzzle. For instance, if the optimal solution cost
for one start state is 7 and the predictor predicts 8, then the
absolute error according to our measure would be of (|8 −
7|)/1 · 7 = 0.14.

The Sliding-Tile Puzzle
For the 15-puzzle we used 5 random start states to determine
the εi and 1,000 to measure prediction accuracy. The 15-
puzzle has 16!/2 states reachable from the goal state. Thus,
unlike the 10-pancake puzzle, we could not enumerate all
states to define π(t|u) and βt. Therefore, to define them,

Absolute Error
Cost h SCP

7 0.24 0.17
8 0.26 0.07
9 0.28 0.03

10 0.29 0.07
Ratio of Average Prediction

h SCP
0.72 1.01

Table 1: 10-pancake. SCP and PDB (0-4).

one billion random states were sampled and, in addition, we
used the process described by Zahavi et al. (2010) to non-
randomly extend the sampling: we sampled the child of a
sampled state if the type of that child had not yet been sam-
pled. The heuristic used to define Tgc was the sum of the
Manhattan Distance of the tiles in the puzzle. The confi-
dence parameter was set to 1.0 in this experiment. In theory,
the probability of a type existing at a level of search can only
be 1.0 if all types in the path of that type in the “prediction
search tree” are generated with probability 1.0. However,
in a computer implementation with fixed-precision floating-
point numbers the value of φ(N(i−1, t)βt, π(u|t), 0) (prob-
ability of generating zero u out ofN(i−1, t)βt nodes of type
t) goes to zero for large values of N(i − 1, t)βt, even if the
value of π(u|t) is relatively small. In all the experiments
we observed that eventually the probability of finding a goal
type goes to one due to limited precision.

In this experiment we compare the accuracy of the SCP
predictions with the estimates of the bootstrapped heuris-
tic (Jabbari Arfaee, Zilles, and Holte 2010). The bootstrap
algorithm presented in Jabbari Arfaee et al. (2010) itera-
tively improves an initial heuristic function by solving a set
of successively more difficult training problems in each it-
eration. It starts with a time limited search on the set of
training instances using an initial (weak) heuristic function.
A heuristic is learned from the training instances solved at
the end of an iteration. Failing to solve enough training in-
stances in an iteration, the bootstrap algorithm increases the
time limit to fill the gap between the difficulty of the train-
ing instances and the weakness of the current heuristic func-
tion. This process is then repeated on the unsolved training
instances using the heuristic learned during the previous it-
eration. This algorithm was shown to create very effective
heuristics for a variety of classic heuristic search domains.

In addition, we show the accuracy of two admissible
heuristics: Manhattan Distance and 7-8 additive pattern
databases. Manhattan Distance heuristic (shown as MD in
the table) is a popular and easy to implement heuristic func-
tion. The 7-8 additive pattern database (shown as APDB
on the table) is a known effective heuristic for the 15 puz-
zle (Felner, Korf, and Hanan 2004; Korf and Felner 2002).
It consists of the sum of two heuristics based on disjoint pat-
tern databases, one based on the first 7 tiles and the other
based on the 8 remaining tiles.

Table 2 shows the results. Even though the additive PDBs

represent a major advance in the creation of admissible
heuristics, they present poor predictions when compared to
the bootstrapped heuristic and to the SCP predictions. This
result illustrates the intuitive idea presented earlier in the pa-
per that admissible heuristics tend to make poor estimates
as they are biased to never overestimate the optimal solution
cost. The SCP predictions are more accurate than the boot-
strapped heuristic for all the solution costs reported, with
the exception of solution costs of 44, 45 and 46. The high-
lighted values on the table represent statistically significant
results with 95% confidence5. The SCP predictions are par-
ticularly accurate around the value of 52, which is known
to be the median solution cost value for the 15-puzzle. The
prediction of the bootstrapped heuristic for the set of start
states has a ratio of 1.06, while the SCP prediction is nearly
perfect yielding a ratio of 1.00.

Absolute Error
Cost MD APDB Bootstrapped SCP
44 0.30 0.08 0.08 0.08
45 0.29 0.09 0.07 0.09
46 0.33 0.08 0.04 0.05
47 0.32 0.07 0.07 0.05
48 0.29 0.10 0.08 0.05
49 0.29 0.09 0.07 0.04
50 0.29 0.12 0.07 0.04
51 0.29 0.13 0.07 0.02
52 0.30 0.14 0.07 0.02
53 0.30 0.15 0.06 0.03
54 0.30 0.16 0.07 0.02
55 0.29 0.18 0.07 0.03
56 0.30 0.19 0.06 0.03
57 0.29 0.22 0.06 0.04
58 0.28 0.24 0.07 0.04
59 0.27 0.22 0.08 0.04
60 0.28 0.23 0.06 0.05
61 0.27 0.27 0.07 0.05
62 0.27 0.31 0.09 0.06
63 0.27 0.26 0.08 0.06

Ratio of Average Prediction
MD APDB Bootstrapped SCP
0.70 0.85 1.06 1.00

Table 2: 15-Puzzle. A Bootstrapped Heuristic and SCP.

Applications of the Solution Cost Prediction
For scenarios, such as decision problems (e.g., is there a
vertex cover of size k), where knowing the solution cost is
enough, the merit of predicting it is clear. However, in some
other cases one would like to find a path to the goal. Next we
describe two ways that the accurate inadmissible heuristics

5The results tend not be significant on the tails as start states
with solution costs lower than 48 and greater than 59 are less com-
mon to be encountered in a uniform sample of the state space.

provided by SCP can be used to enhance search algorithms:
1) as a bound for a bounded cost search algorithm, and 2) as
a tool for tuning a parametric search algorithm.6

Using Cost Prediction as a Bound
Assuming that the predictions are perfect, a search algo-
rithm could be biased to optimally solve problems as fol-
lows. First, every state s with its g(s) + h(s) value larger
than the predicted solution cost could be pruned off, so that
fewer nodes are expanded. Second, a goal test should be
performed only for nodes with g-value equal to the predicted
cost, reducing the time per node of these nodes.

Recently, Stern et al. (2011) presented the Potential
Search algorithm (denoted hereafter as PTS), a cost bounded
search algorithm that efficiently searches for a solution with
cost less than or equal to a given cost bound (Stern, Puzis,
and Felner 2011). This is done by focusing search on nodes
that are more likely to lead to a goal with cost less than or
equal to the desired bound. Stern et al. showed theoretically
that PTS can be implemented for the 15-puzzle by using a
simple Best-First Search with a cost function of h

Y−g , where
Y is the desired bound.

Algorithm 3 PTS+Prediction
P ← RunCostPrediction()
Run PTS with bound P
if PTS did not find goal with cost ≤ P then

Run optimal solver
end if

The PTS algorithm requires a bound on the desired solu-
tion cost. We propose a variant of PTS (summarized in Al-
gorithm 3) that does not require such a bound, by setting the
bound to be the prediction returned by SCP. When the pre-
diction is equal to or greater than the optimal solution cost,
PTS finds a goal with the predicted cost (or less) quickly.
When the prediction underestimates the optimal cost, PTS
will exhaustively search all states s with g(s) + h(s) ≤ P ,
and then run an optimal solver (e.g., A* or IDA*). In our ex-
periments we used A* in such cases. Note that any optimal
solver has to expand all the states s with g(s) + h(s) ≤ P
before finding the optimal cost. Therefore, the overhead of
running PTS in cases where the predicted solution cost un-
derestimates the actual value is relatively small.

PTS Experiments The experiment with the PTS algo-
rithm bounded by the solution cost prediction was run on the
15-puzzle. The heuristic function used to guide PTS and A*
was Manhattan Distance. We chose to use Manhattan Dis-
tance as our goal was not to solve instances of the 15-puzzle
faster, but to demonstrate how the solution cost prediction
can be used to speed up search. In our experiment we add a
slack value to the predicted solution cost in order to increase
the likelihood of finding a goal within the bound. We report

6In the experiments of this section we ignore the “number of
nodes expanded” by the prediction algorithm as the time complex-
ity analysis suggests SCP expands considerably fewer nodes than
the actual search.

Algorithm Suboptimality Exp. A* Solved
A* 0.00 1 90%
PTS+P 0.01 28 90%
PTS+P+1 0.01 22 90%
PTS+P+2 0.02 34 90%
PTS+P+3 0.02 43 90%
PTS+P+4 0.03 56 93%
PTS+P+5 0.05 68 93%
PTS+P+6 0.06 79 93%
PTS+P+7 0.07 93 96%
PTS+P+8 0.08 145 97%
PTS+P+9 0.09 145 99%

Table 3: Reduction in expanded nodes with PTS+Prediction.

results for different slack values (denoted by PTS+P+S in
Table 3, where S is the slack value). The memory allowed
to solve a problem instance was limited to 1 gigabyte.

The results are shown in Table 3 and they are an average
over 1,000 random start states. The column “Algorithm” de-
notes the algorithm used to generate the result of that row.
The next column shows how suboptimal the solutions are.
The measure for suboptimality, also referred in this paper as
solution quality, is the following. For each start state one
sums up the difference of the solution cost found by the al-
gorithm with the optimal solution cost, and divides this sum
by the sum of the optimal solution costs. If all the solutions
are optimal this measure will be 0.00. The column “Exp.
A*” tells us the reduction factor of the number of nodes ex-
panded when compared to A*. The reduction factor is cal-
culated by dividing the number of nodes expanded by A* to
solve the set of problems by the number of nodes expanded
by the row’s algorithm to solve the same set of problems. Fi-
nally, the last column shows the number of problems solved
with a memory limit of 1 gigabyte.

The first row of Table 3 shows the results for A* with
Manhattan Distance. As all the problems are solved opti-
mally, the suboptimality value is of 0.00. The reduction fac-
tor is obviously 1, and the percentage of problems is 90%.
By using the solution cost prediction as a bound for PTS we
solve the same percentage of problems as A*, but expand-
ing 28 times less nodes, also at a cost of finding solutions of
slightly lower quality. As we start to add the slack value, we
start to solve the problems even faster, at a cost of finding so-
lutions of lower quality. For example, adding a slack value
of 9 to the predicted cost (denoted by PTS+P+9) results in
PTS expanding 145 times less nodes than A* and solving
99% of the instances.

Tuning Search Parameters
Many search algorithms have tunable parameters. A promi-
nent example is the w-value of Weighted A* (Pohl 1970)
and Weighted IDA* (Korf 1985). These algorithms use the
cost function f(s) = g(s) + w × h(s), where w is a pa-
rameter determining the weight given to the heuristic. For
a w-value of 1, Weighted A* and Weighted IDA* reduce to
A* and IDA*, respectively. The value of w is known to have
a major impact on the runtime and on the solution quality of

these algorithms. For example, Weighted A* is often part of
planning systems participating in the satisficing track of the
International Planning Competition (IPC)7. In the IPC set-
ting a planning system is required to solve problems having
no prior knowledge about them within a time constraint. In
this case it is challenging to determine w-values that give a
good trade-off between solution quality and runtime.

One possible approach for finding an effective w-value is
as follows. One solves optimally a sufficiently large num-
ber of problem instances, calculates for every solved in-
stance the ratio between its heuristic value and its optimal
solution cost, and set the w as the average of these ratios.
The idea is to “learn” a global error ratio of the heuristic
function. This approach has two shortcomings. First, solv-
ing a set of instances optimally is often prohibitively time-
consuming. Second, heuristic functions are usually more
accurate in some parts of the state space than in others. As
suggested by Valenzano et al. (2010), ideally we would have
a possibly different w-value for each problem instance. We
describe next how we use SCP to overcome these two short-
comings.

Weighted IDA* Experiments Once again our experiment
is run on the 15-puzzle with MD as the heuristic function.
The results are averaged over 1,000 random start states.
With this experiment we aim at comparing three different
approaches to set the w-value. (i) As explained above, we
solve the entire set of start states and use the average of the
ratios of the optimal solution cost to solve the instances by
their heuristic value as the w-value. (ii) We do exactly the
same as the previous approach, except that instead of the op-
timal solution costs we use the predicted solution costs. (iii)
For each start state we predict its solution cost and use the
ratio between the predicted value and its heuristic value as
the w-value for that particular state. The approaches (i), (ii)
and (iii) appear under the headings of “AvgOpt”, “AvgPred”
and “Pred”, respectively, in the table of results.

The results of the experiment show (1) that on average the
Pred approach produces solutions with better quality and it
expands fewer nodes; and (2) that the Pred approach usu-
ally presents solutions with better quality and it expands
fewer nodes when compared to the other methods across
start states with different solution costs.

Table 4 presents the results. The first column shows dif-
ferent solution costs; results on a row are averages over start
states with the corresponding solution cost. For subopti-
mality we used the same measure used in the experiment
with the PTS algorithm. For search effort we show the av-
erage number of nodes expanded. In the last row of Table
4 we present the average over all the start states, indepen-
dent of their solution cost. A row is highlighted if the Pred
approach produces solutions of better quality and expands
fewer nodes, or if it produces solutions of the same quality
as the other methods but it expands fewer nodes.

It is interesting to note that the values for AvgPred and
AvgOpt are identical. This happens due to the nearly per-
fect predictions for a set of start states, as shown in Table 2.
However, the predictions are much cheaper computationally

7http://ipc.icaps-conference.org

Suboptimality Average N. Nodes Expanded

Cost AvgOpt AvgPred Pred AvgOpt AvgPred Pred

48 0.05 0.05 0.06 1,276,642 1,276,642 569,526

49 0.05 0.05 0.06 865,834 865,834 593,977

50 0.04 0.04 0.05 812,614 812,614 608,403

51 0.04 0.04 0.04 1,417,335 1,417,335 806,905
52 0.05 0.05 0.05 2,407,257 2,407,257 1,975,033
53 0.04 0.04 0.04 1,848,260 1,848,260 1,429,117
54 0.04 0.04 0.03 2,540,969 2,540,969 2,140,678
55 0.05 0.05 0.04 4,952,380 4,952,380 3,707,499
56 0.04 0.04 0.03 3,678,749 3,678,749 3,523,372
57 0.05 0.05 0.03 3,511,613 3,511,613 3,648,784

58 0.05 0.05 0.03 2,624,178 2,624,178 5,390,799

Total 0.05 0.05 0.04 2,407,027 2,407,027 2,149,843

Table 4: Tile puzzle, wIDA* with different weights.

when compared to optimally solving every instance in the
set of start states.

We can also observe a natural trade-off between solution
quality and the number of nodes expanded: solutions closer
to the optimal value come at the expense of expanding more
nodes. Notice, however, that AvgOpt and AvgPred are al-
ways either expanding more nodes or producing solutions of
poorer quality when compared to Pred. On the other hand,
there are several rows (which are highlighted) where Pred
expands less nodes and produces solutions of better quality
when compared to the two other variants. Moreover, for the
average over all solution costs, Pred (displayed in the last
row of Table 4) produces solutions with better quality and it
expands fewer nodes. This result suggests that the w-value
should be tuned for each problem instance individually.

Conclusions

In many real world scenarios it is sufficient to know the so-
lution cost of a problem. Classical search algorithms find
the solution cost by finding the path from the start state to a
goal state. In this paper we propose an algorithm based on
the CDP prediction framework to accurately and efficiently
predict the solution cost of a problem. Our predictor, which
can also be seen as a heuristic function, differs from previ-
ous works as we 1) do not require it to be fast enough to be
used to guide search algorithms; 2) do not favor admissibil-
ity; 3) aim at making accurate predictions thus our measure
of effectiveness is the prediction accuracy, in contrast to the
solution quality and number of nodes expanded used to mea-
sure the effectiveness of other heuristic functions.

We showed empirically that our predictor makes better
predictions when compared to the bootstrapped heuristic.
In addition, we showed novel ways of using accurate inad-
missible heuristics to enhance heuristic search algorithms.
Namely, we used our predictor to calculate a bound for the
PTS algorithm and to tune the w-value of Weighted IDA*.
In both cases we achieved major search speedups when com-
pared to the search algorithms without the enhancement.

Acknowledgements
The authors would like to thank Rob Holte, Ariel Felner,
Sandra Zilles and the anonymous reviewers for reading ear-
lier versions of this paper and making thoughtful comments.
This work was supported by the Laboratory for Computa-
tional Discovery at the University of Regina. The authors
gratefully acknowledge the research support provided by Al-
berta Innovates - Technology Futures, and the Alberta Inge-
nuity Centre for Machine Learning (AICML).

References
Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. Advances in Artificial Intelligence (LNAI
1081) 402–416.
Ernandes, M., and Gori, M. 2004. Likely-admissible and
sub-symbolic heuristics. In ECAI, 613–617.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. J. Artif. Intell. Res. (JAIR) 22:279–318.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2010. Boot-
strap learning of heuristic functions. In SoCS, 52–60.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1-2):9–22.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artif. Intell. 27(1):97–109.
Lelis, L.; Zilles, S.; and Holte, R. C. 2011. Improved pre-
diction of IDA*s performance via ε-truncation. In SoCS.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1(3-4):193–204.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In AAAI, 357–362.
Stern, R.; Puzis, R.; and Felner, A. 2011. Potential search:
a bounded-cost search algorithm. In ICAPS, 234–241.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609–614.
Thayer, J.; Dionne, A.; and Ruml, W. 2011. Learning inad-
missible heuristics during search. In ICAPS, 250–257.
Valenzano, R. A.; Sturtevant, N. R.; Schaeffer, J.; Buro, K.;
and Kishimoto, A. 2010. Simultaneously searching with
multiple settings: An alternative to parameter tuning for sub-
optimal single-agent search algorithms. In ICAPS, 177–184.
Yang, F.; Culberson, J. C.; Holte, R. C.; Zahavi, U.; and
Felner, A. 2008. A general theory of additive state space
abstractions. J. Artif. Intell. Res. (JAIR) 32:631–662.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010.
Predicting the performance of IDA* using conditional dis-
tributions. J. Artif. Intell. Res. (JAIR) 37:41–83.

