
Semi-Supervised Density-Based Clustering

Levi Lelis
Department of Computing Science

University of Alberta, Edmonton, Canada
santanad@cs.ualberta.ca

Jörg Sander
Department of Computing Science

University of Alberta, Edmonton, Canada
joerg@cs.ualberta.ca

Abstract

Most of the effort in the semi-supervised clustering liter-
ature was devoted to variations of the K-means algorithm.
In this paper we show how background knowledge can be
used to bias a partitional density-based clustering algo-
rithm. Our work describes how labeled objects can be used
to help the algorithm detecting suitable density parameters
for the algorithm to extract density-based clusters in spe-
cific parts of the feature space. Considering the set of con-
straints established by the labeled dataset we show that our
algorithm, called SSDBSCAN, automatically finds density
parameters for each natural cluster in a dataset. Four of
the most interesting characteristics of SSDBSCAN are that
(1) it only requires a single, robust input parameter, (2) it
does not need any user intervention, (3) it automatically
finds the noise objects according to the density of the nat-
ural clusters and (4) it is able to find the natural cluster
structure even when the density among clusters vary widely.
The algorithm presented in this paper is evaluated with arti-
ficial and real-world datasets, demonstrating better results
when compared to other unsupervised and semi-supervised
density-based approaches.

1 Introduction

Semi-supervised learning has bicdm09xeen studied re-
cently as a method for improving generalization in Machine
Learning models [10]. The general idea is to augment the
information given by labeled training samples with useful
information from unlabeled samples. The idea behind semi-
supervision is not limited to using unlabeled samples to help
algorithms that typically use labeled data. We can also use
labeled samples to help algorithms that typically use un-
labeled data. Clustering, also called unsupervised learning,
tries to group unlabeled objects of a dataset based on a mea-
sure of similarity. Labeled objects could be used in clus-
tering algorithms to help determine the groups. Clustering
algorithms that make use of class membership information

for some of the samples are called semi-supervised cluster-
ing algorithms.

Clustering algorithms try to extract non-obvious infor-
mation about natural groups in the data from a collection
of unlabeled objects. Sometimes, however, the user might
have more than just a collection of unlabeled objects. The
user might have domain-knowledge about class member-
ship for some of those objects. By exploiting this type of
information the user can bias the process of clustering in or-
der to get more meaningful results. Our work describes how
labeled objects can be used to help a density-based cluster-
ing algorithm by detecting suitable density parameters to
extract density-based clusters in specific parts of the feature
space.

The notion of density-based clustering that we base our
algorithm on is similar to the notion of density-based clus-
tering introduced by Ester et al. [7] for the DBSCAN al-
gorithm. DBSCAN requires two parameters, a minimum
number of points MinPts ∈ N, and a radius ε ∈ R,
which define the density level at which clusters will be de-
tected. These parameters are notoriously difficult to deter-
mine in real world data sets, which limits the applicability of
density-based algorithms in an automatic KDD process. In
some cases, where the density among clusters differ widely,
there is not even a single set of parameter values for ε and
MinPts that allows to extract the real cluster structure of a
dataset for DBSCAN [8]. Figure 1 show an example where
no global density threshold exists that can separate all three
natural clusters, and consequently, DBSCAN cannot find
the intrinsic cluster structure of the dataset. The figures de-
pict the resulting clusters found by DBSCAN for two dif-
ferent values for ε and a fixed value for MinPts; noise ob-
jects in these figures are shown as circles. Figure 1(left)
shows that DBSCAN can separate the two denser clusters,
A and B, with a suitable parameter value for ε, but then, it
has to mark the third cluster, C, as noise. By changing the
value of ε in order to detect clusters of lower density, DB-
SCAN merges the two denser clusters and separates it from
the third cluster (denoted by the letter B in figure 1(right)).

DBSCAN’s authors stated that, “. . . ideally, we would
have to know the appropriate parameters ε and MinPts



Figure 1. In this case, no global set of param-
eters extracts the real structure

of each cluster and at least one point from the respective
cluster. Then, we could retrieve all points that are density-
reachable from the given point using the correct parameters.
But there is no easy way to get this information in advance
for all clusters in the database” [7]. In our case, we as-
sume that information about cluster membership for a small
subset of objects is available, which could provide valuable
information about the density parameters that characterize
different clusters. Using available background knowledge
in this sense is exactly what is accomplished by the Semi-
Supervised DBSCAN (SSDBSCAN): given a set of labeled
objects, and assuming that the labels are consistent with
the density-based clustering structure of the data, SSDB-
SCAN finds values for ε given a fixed value of MinPts
that extract the natural clusters of a dataset, while separat-
ing objects with different labels. We show with an artificial
dataset that SSDBSCAN is able to extract meaningful clus-
ters even when the density between clusters vary widely.
SSDBSCAN was also evaluated with real-world bench-
mark datasets and compared with another semi-supervised
density-based clustering algorithm.

The rest of the paper is organized as follows. The next
section briefly surveys other semi-supervised clustering al-
gorithms. In section 3 we formally specify our assumptions,
define the problem of finding density parameters values, and
present an efficient algorithm that solves the problem. Sec-
tion 4 shows and discusses the empirical results. Finally,
section 5 concludes the paper.

2 Related Work

Wagstaff et al. [9] defined the concept of two basic kinds
of pairwise constraints that made the insertion of domain
knowledge into the clustering(K-means in this case) process
possible: the must-link and cannot-link constraints. A must-
link constraint between two objects indicates that those two
objects should be in the same cluster, while a cannot-link
constraint indicates the opposite, that two objects should
not be in the same cluster. Wagstaff et al. showed with
benchmark datasets that it is possible to bias the process

of clustering while respecting the constraints, getting more
meaningful clusters as a result. A good number of papers
followed Wagstaff’s ideas, modifying and improving on the
usage of constraints for the K-means algorithm; [3] [6] to
cite a few.

Böhm and Plant [4] presented HISSCLU, a hierarchical
density-based clustering algorithm based on OPTICS [1].
HISSCLU can be described in two stages. In the first stage,
given a set of labeled objects, HISSCLU starts the OPTICS
expansion simultaneously from all the labeled objects and
generates as many reachability-plots as the number of la-
beled objects, each one representing a cluster; during the
label expansion they use a method to change the distance
between points that resembles the distance learning [3]. The
reachability-plots are reordered and concatenated with each
other, producing one single plot. In the second stage, a cut
at level ε is made in the plot to extract the clusters [1].

It is important to notice that HISSCLU is not able to ex-
tract the natural cluster structure from a dataset if the plot
generated in the first stage of the algorithm represents a dis-
tribution where the density varies widely between clusters,
as it also uses only one single cut. As for DBSCAN, defin-
ing the value of a single cut corresponding to a single den-
sity level is difficult and requires the user often to perform
a trial and error process, which makes the algorithm unsuit-
able for an automatic KDD process.

3 Semi-Supervised Density-Based Clustering

The basic idea of density-based clustering is that clus-
ters are dense regions in the feature space separated by re-
gions of lower density. Ester et al.[7] formalized this idea
by defining density-based clusters as a set of spatially con-
nected points (including their neighborhood) whose density
estimate exceeds a certain threshold. Density-based clus-
ters, spatial connectedness, and density estimate are spec-
ified using two parameters, ε ∈ R and MinPts ∈ N as
following, assuming a dataset D:

• Core Objects. An object p ∈ D is called core-object
w.r.t ε and MinPts if |Nε(p)| ≥ MinPts, where
|Nε(p)| is the ε-Neighborhood of a point p.

• Density-Reachable. An object q ∈ D is density-
reachable from an object p ∈ D (directly or transi-
tively) w.r.t ε and MinPts if there is chain of ob-
jects p1, ..., pn in D, p1 = p, pn = q such that
pi+1 ∈ Nε(pi), and pi is a core object.

• Density-Connected. An object p ∈ D is density-
connected to q ∈ D w.r.t ε and MinPts if there is an
object v ∈ D that both p and q are density-reachable
from.

2



• Density-Based Cluster. A density-based clusterC w.r.t
ε and MinPts is a non-empty subset of D, satisfying:

1. ∀p, q ∈ D: if p ∈ C and q is density-reachable
from p w.r.t ε and MinPts then q ∈ C.

2. ∀p, q ∈ C: p is density-connected to q w.r.t ε and
MinPts.

Ester et al. proposed an algorithm, called DBSCAN,
that, given a dataset D, returns the density-based clusters
(and a set of noise points, i.e., point not in clusters) of D
based on the above definition. DBSCAN requires as input
global values for ε and MinPts, which are typically diffi-
cult to set, and in many cases, a global density level will not
reveal the complete cluster structure in the data.

The problem of finding global density parameters has
also been observed by Ankerst et al. [1] who propose a
hierarchical version of DBSCAN called OPTICS. For OP-
TICS, MinPts is set to a fixed value so that density-based
clusters of different densities are characterized by different
values for ε. The problem with OPTICS is that it computes
only a hierarchical representation of the clustering structure,
which has to be analyzed interactively and from which clus-
ters are typically determined manually based on a graphical
representation called the reachability plot.

Our goal is to find density-based clusters automatically,
especially in those cases where no global density-threshold
exists, in cases when a user has some knowledge about the
clusters in a data set, in form of a small subset of objects
in D for which class labels are known. For this purpose,
we will also fix the value of MinPts for all clusters, as
in Ankerst et al.[1] (making MinPts the only parameter
of our method), and try to find the ε values for clusters of
different densities.

Suppose we have a dataset D and a supervised subset of
D, DL = {oi}ni=1, of n labeled objects oi, where L(oi)
denotes the label of oi, and there is at least one (possibly
more) labeled objects from each class inDL. In order to uti-
lize this information for density-based clustering, we have
to assume that the class labels are consistent with the clus-
tering structure of the data set in the following sense:

Definition 1. (label consistency) Let oi, oj ∈ DL such that
L(oi) 6= L(oj), i.e., the labels of oi and oj are different.
Then, oi and oj are label consistent with each other (w.r.t.
a value of MinPts) if there are two density-based clusters
Ci and Cj (w.r.t. ε1 and ε2, respectively) such that oi ∈ Ci
and oj ∈ Cj , and Ci and Cj are density separable, i.e.,
Ci ∩ Cj = ∅1.

Label consistency only requires different labels to belong
to different clusters; under this assumption, a single class

1Note that two density-based clusters w.r.t. the same value ofMinPts
and two different values ε1, respectively ε2, are either disjunct or one is
completely contained in the other one.

can still have multiple modes, in other words, objects in
different clusters can have the same label, only in a single
cluster, the labels have to be the same.

The problem we want to solve, using the information
about labeled data for density-based clustering, is to find
suitable ε values for each labeled object in DL, i.e., find
{εi}ni=1, where n is the number of labeled objects, so that
each object in DL is contained in a density-based cluster
and all pairs of objects in DL with different labels are label
consistent. For a given data set, there may be several sets
of values {εi}ni=1 that satisfy these conditions. We are in-
terested in the set that results in the largest possible clusters
that satisfy the cluster assumption in order to assign labels
to the largest possible number of unlabeled objects based on
the labeled object(s).

3.1 The algorithm

To derive an algorithm for our problem statement, we
first observe that two objects p and q will be in the same
cluster w.r.t. MinPts and some value for ε, if they are
density-connected to each other w.r.t. MinPts and ε. Since
density-connectivity between p and q requires a chain of
objects o1, . . . , ok between p and q where dist(oi, oi+1) ≤
ε, there is a smallest ε, say ε′ for which such a chain can
exist, i.e., for which p and q are density-connected.

To separate p and q, in order to achieve label consistency
in case they have different labels, we can choose values
strictly smaller than ε′ as a density threshold. However, we
are interested in the largest possible separate clusters C1,
C2 containing p and q, respectively. For a given data set,
the set of density thresholds for which the resulting clusters
containing p and q are maximal (i.e., equal to C1 and C2),
has a smallest element.

Lemma 1. Assume p, q ∈ DL with different labels, and let
ε′ be the smallest ε value for which p and q are density-
connected w.r.t. MinPts and ε. Furthermore, let C1

and C2 be the largest, separate density-based clusters w.r.t.
MinPts and a “cut value”≤ ε′ that exist such that p ∈ C1,
q ∈ C2. The smallest such “cut value” is equal to the length
of the largest edge in the set of all density-connection paths
between objects within C1, respectively within C2.

Proof. (Sketch) The cut value cannot be smaller than the
length of the largest edge in the set of all density-connection
paths between objects in C1, respectively C2, otherwise at
least one point connected in one of the two clusters with that
edge length will no longer be included in that cluster, which
no longer would be maximal.

Definition 2. (separation density threshold) Assume p, q ∈
DL with different labels, and let ε′ be the smallest ε value
for which p and q are density-connected w.r.t. MinPts and

3



ε. The separation density threshold for p and q is the length
of the largest edge in the set of all density-connection paths
between objects within C1, respectively within C2.

Given the set of points inDL that have to be separated in
order to achieve label consistency, we have to choose a den-
sity threshold for each p ∈ DL so that it falls into a density-
based cluster that is separated from all q ∈ DL that have a
different label. For a fixed p ∈ DL this density threshold
is given by the smallest separation density threshold for p
and q, among all q ∈ DL with L(p) 6= L(q). This density
threshold will separate a maximal cluster containing p from
the “closest” cluster containing a point with a different la-
bel (closest in terms of density reachability path distance).
This value, because it is the smallest of p′s separation den-
sity thresholds, will also separate p from any other point in
DL with a different label. This suggests an efficient algo-
rithm that extracts one cluster at a time, in a similar fash-
ion as OPTICS. We can start from a single labeled object
o and expand a cluster until an object with a different label
becomes density reachable from o. For that purpose, we de-
fine the core distance of a point o as in [1] as the smallest
radius r that makes o a core point w.r.t. MinPts, i.e., for
which |Nr(n)| = MinPts, which is the MinPts-nearest-
neighbor distance of o.

Definition 3. ∀o ∈ D : cDistMinPts(o) =
MinPts-nearest-neighbor distance of o.

Using the core distance, we can define a distance, called
rDist, between all pairs of objects p, q, which indicates the
smallest value for ε at which q and q are core points and
directly density connected2:

Definition 4. ∀p, q ∈ D :
rDist(p, q) = max(cDist(p), cDist(q), dist(p, q))

Using these notions, we can construct a density-based
cluster C containing a labeled point p by adding first p to
C and then iteratively adding the next closest point in terms
of rDist to C. This is essentially what OPTICS does when
starting with the point p; OPTICS also keeps track of the
core distance and the reachability distance of each point
at the time it is added. Conceptually, this is the same as
constructing a minimum spanning tree (MST) for a com-
plete graph where the set of vertices equals D and the edge
weights are given by rDist. The difference here is that once

2Our definition of rDist is similar to the definition of the reachability
distance in Ankerst et al. [1], but differs in that it is symmetric, which
avoids the problems with the original definition of reachability distance is
that it does not deal with “border points” correctly when defining a cut-
level through the OPTICS plot; as Ankerst et al. put it “Only some border
objects may be missed when extracted by the algorithm ExtractDBSCAN-
Clustering” [1]. With our definition of rDist only the core points of a
cluster will be extracted for a given cut level; border points can easily and
correctly be added in a separate step (if desired).

a point q is added that has a label different from the label of
p, the algorithm “backtracks” to the point o with the largest
rDist before adding q; this value for rDist corresponds
to the smallest ε value at which p and q are still density-
connected. The current expansion stops and includes all
points up to but excluding o , having constructed a maxi-
mal cluster C containing p. The largest rDist value in this
set of point is the separation density threshold for p and q.3

Then, the algorithm repeats to extract the next cluster for
the next labeled object. The pseudo-code is given below.

For simplicity, we present our algorithm in the same way
as Prim’s algorithm for constructing a MST found in Cor-
men et al. [5]. The algorithm assumes conceptually a com-
plete graph built upon the datasetD,DL ⊆ D is the labeled
dataset, and rDist determines the edge weights; the output
is a file with the labeled objects. After presenting the algo-
rithm we discuss some implementation details that improve
the memory usage and runtime of the algorithm.

Algorithm 1 SSDBSCAN(D,DL)
1: for all p ∈ DL

2: for all q ∈ D
3: key[q]←∞
4: key[p]← 0
5: Q← D
6: while Q 6= ∅
7: q ← EXTRACT-MIN(Q)
8: list.insert(q)
9: if q ∈ DL and q.label 6= p.label

10: WRITE −OBJECTS(p, list)
11: break
12: for all o ∈ Adj[q]
13: if o ∈ Q and rDist(q, o) < key[o]
14: key[o]← rDist(q, o)

Algorithm 2 WRITE-OBJECTS(p, list)
1: i = arg maxx list(x)
2: for o = 1 to i− 1
3: list[o].label = p.label
4: write(list[o])
5: list.clean()

The algorithm starts building an MST according to
Prim’s algorithm from an arbitrary vertex p ∈ DL and the
process stops when either all objects are added to the MST
or when an object with a different label than the label of p is

3The fact that all points before adding o belong to a density-based clus-
ter w.r.t. MinPts and ε equal to the separation density threshold follows
from the way Prim’s algorithm constructs an MST: in each step of the al-
gorithm, the point that has the smallest edge weight to one of the points in
the current MST is added next.

4



added to the tree. The case when an object q with a differ-
ent label is added to the tree (lines 9-11) indicates that the
MST already “crossed” the border between two clusters that
should be separated, and the algorithm looks for the cur-
rently largest edge that connects p and q in the set of points
that were added before q to the current cluster/MST. In line
8 of the algorithm we keep a list of all objects that were
added to the MST; they are sorted by the order in which
they are added to the list. This list is given to the proce-
dure WRITE-OBJECTS together with the root of the MST
(list and p, respectively). By the time WRITE-OBJECT
is called, two objects with different labels have been added
and the object added with the edge of highest rDist value
is the smallest ε value for which the two objects are den-
sity connected. In line 1 of the procedure WRITE-OBJECT
the index (denoted by i) of that object in the ordered list is
returned (object is denoted by x), and all objects from the
beginning of the list up to x, excluding x, are written to an
output file, assigning them the same label as the root object
p. After writing the objects to a file, the data structures are
re-initialized and the whole process is repeated for another
object in DL. In the end, all objects that belong to a cluster
are written to an output file, while noise objects are left out.
Lines 12-14 of SSDBSCAN show the standard procedure in
Prim’s algorithm to update the edge values of adjacent ver-
tices of an object q (Adj[q]). SSDBSCAN can be seen as
a procedure that calls Prim’s algorithm a number of times
equal to the number of labeled objects. Since the labeled
dataset is finite, the algorithm will eventually terminate.

For clarity of presentation, we have omitted an obvious
improvement of the algorithm which removes the redun-
dancy in case there are multiple objects in DL that lead to
the same cluster: if we are creating an MST from an object
whose label is c and if another object q with the same label
c is inserted into the tree, we can remove q from the labeled
dataset DL in the algorithm so that we do not construct the
same cluster starting from q in a later iteration.

In the implementation of SSDBSCAN shown above
the input is conceptually a complete graph representing a
dataset D with N objects, which has a space complexity
of O(N2). However, we do not need the complete graph
in main memory at any point in time, since we can com-
pute the weights for edges (rDist for pairs of vertices) as
needed, resulting in an effective space complexity ofO(N).

SSDBSCAN calls Prim’s algorithm a number of times
equals to the number of objects in the labeled dataset.
Prim’s algorithm runs in O(E lg V ) [5], which in our case
corresponds to O(N2 lg N), giving SSDBSCAN, a final
time-complexity of O(nN2 lg N), where n is the number
of labeled objects in the labeled dataset. This time complex-
ity can be improved by changing the heap implementation
used in Prim’s algorithm. If we use a Fibonacci heap [5]
to implement the priority queue, our running time improves

to O(nN2 + nN lg N), that is, O(nN2). In practice we
expect n to be very small, i.e., N � n.

4 Empirical Results

In this section we present the empirical results of SSDB-
SCAN and compare it with DBSCAN and HISSCLU. We
will first discuss the result of SSDBSCAN on the artificial
dataset shown in figure 1. As discussed before, DBSCAN
cannot find the real cluster structure in that example. SS-
DBSCAN (using MinPts = 2), however, finds the intrin-
sic density of each cluster when given three labeled objects,
one from each cluster (figure omitted due to lack of space).

The experiment with the artificial dataset is important
for understanding how the algorithm works in an ideal-
ized case. In real world problems some of the assumptions
made for the algorithm might not hold, and experiments
with benchmark datasets (UCI datasets [2]) are the best way
of verifying the effectiveness of SSDBSCAN. We evaluate
how well SSDBSCAN performs when compared with the
best global ε value from a large set of possible values for
DBSCAN in a given dataset. In order to find the best ε
value we try all possible ε values from 0.1 up to the maxi-
mum possible direct reachability distance in the data set, in
increments of 0.1 (e.g., if the highest direct density reacha-
bility value is 10, we will try all ε values: 0.1, 0.2, . . . , 10).
The value that results in the best performance is shown in
the graphs for DBSCAN. For the performance measure we
used the Rand Statistic [8], which measure the agreement
between two sets of clusters X and Y for the same set of n
objects as: R = a+b

(n
2)

, where a is the number of pairs of ob-

jects assigned to the same cluster in both X and Y , and b is
the number of pairs of objects assigned to different clusters
in both X and Y .

We also compared SSDBSCAN with HISSCLU. How-
ever, the comparison with HISSCLU is not straightforward,
since it requires user intervention to analyze its plots and de-
cide where a cut should be made. In addition, HISSCLU has
three other input parameters which heavily influence the al-
gorithm’s performance. Therefore, we compared HISSCLU
and SSDBSCAN with the datasets used by Böhm and Plant
[4], for which the authors provided values for the input pa-
rameters and for the cut level. We used MinPts = 3 in
all experiments for DBSCAN and SSDBSCAN. Noise ob-
jects were assigned to the cluster of the closest core object,
for all three algorithms, DBSCAN, HISSCLU and SSDB-
SCAN. It is also important to state that all the results pre-
sented in this section are computed on the unlabeled dataset,
not including the objects for which labels were provided to
the clustering algorithm. The following UCI datasets were
used in our experiments (after the name of each dataset we
state the number of instances, attributes and classes in that
dataset): ecoli (336; 8; 8), glass (214; 9; 7), liver (345; 6;

5



Figure 2. Results for the ecoli and glass

Figure 3. Results for the liver and yeast

2) and yeast (1484; 8; 10). The labeled objects were ran-
domly selected, independently of the number of classes in
the dataset. The following parameters were used for HISS-
CLU, as suggested in its paper: ecoli (MinPts = 5, ρ =
2, ξ = 0.5, k = 0.2), glass (MinPts = 3, ρ = 200, ξ =
5, k = 0.2), liver (MinPts = 5, ρ = 20, ξ = 10, k = 0.9),
yeast (MinPts = 5, ρ = 5, ξ = 5, k = 0.2). The input
parameters for the glass dataset were not specified in Böhm
and Plant [4], therefore we set MinPts = 3, which is the
same value used for SSDBSCAN; for ρ and ξ we tried dif-
ferent values and we chose the ones that yielded the best
Rand Statistic on the whole dataset.

The results for SSDBSCAN are an average over 1000 tri-
als, apart from yeast, for which 20 runs were averaged; the
results for HISSCLU are an average over 100 trials for all
except yeast, which was averaged over 10 runs; the results
for DBSCAN are deterministic as it does not use the labels.

The results are depicted in figures 2 - 3. Each plot has
a horizontal line that shows the best performance that DB-
SCAN can achieve and a curve depicting the performance
of SSDBSCAN and HISSCLU when using a number of ran-
domly selected labeled objects. As can be observed, SSDB-
SCAN clearly outperforms the best cut value of DBSCAN,
showing that our approach is indeed taking advantage of
the background knowledge provided by the labeled dataset.
The results also show in most cases a significantly better
performance of SSDBSCAN compared to HISSCLU.

In some of the experiments, the performance of HISS-
CLU dropped when adding more labeled objects. Such a
drop is rare and less pronounced for SSDBSCAN. There is

a discussion in the literature regarding of the usefulness of
a set of constraints [6]. It is observed that some constraints
might actually decrease the performance of an algorithm,
and according to our experiments, SSDBSCAN turns out to
be more robust in this respect than HISSCLU.

5 Conclusion

In this work we presented a novel semi-supervised
density-based clustering algorithm that takes advantage of
background knowledge in the form of labeled instances
to extract the intrinsic density of density-based clusters
in a dataset. We have shown that our algorithm outper-
forms HISSCLU, a hierarchical semi-supervised density-
based clustering algorithm when extracting clusters with a
single cut, as well as DBSCAN, even when providing it with
the best possible global density threshold, using both artifi-
cial and real-world data sets. Furthermore, our approach
does not require user intervention, as it finds the best cut-
values based on the labeled dataset, which makes it a good
option to be part of an automatic KDD process.

References

[1] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. OP-
TICS: Ordering points to identify the clustering structure.
In ACM SIGMOD International Conference on the Manage-
ment of Data, Philadelphia, PA, USA, 1999.

[2] A. Asuncion and D. Newman. UCI machine learning repos-
itory, 2007.

[3] M. Bilenko, S. Basu, and R. J. Mooney. Integrating con-
straints and metric learning in semi-supervised clustering. In
Proc. 21st Int. Conf. on Machine Learning, Banff, Alberta,
Canada, 2004.

[4] C. Böhm and C. Plant. HISSCLU: a hierarchical density-
based method for semi-supervised clustering. In Proc.
11th Int. Conf. on Extending Database Technology, Nantes,
France, 2008.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. MIT Press, 1990.

[6] I. Davidson, K. Wagstaff, and S. Basu. Measuring
constraint-set utility for partitional clustering algorithms. In
Proc. 10th European Conf. on Principles and Practice of
Knowledge Discovery in Databases, Berlin, Germany, 2006.

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, pages 226–231, 1996.

[8] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison-Wesley, 2005.

[9] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Con-
strained K-means clustering with background knowledge. In
Proc. 18th International Conf. on Machine Learning, pages
577–584. Morgan Kaufmann, San Francisco, CA, 2001.

[10] X. Zhu. Semi-supervised learning literature sur-
vey. Technical Report 1530, Computer Sci-
ences, University of Wisconsin-Madison, 2005.
http://www.cs.wisc.edu/∼jerryzhu/pub/ssl survey.pdf.

6


