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Abstract

Learning the dependency structure of a
(Bayesian) belief net involves a trade-off be-
tween simplicity and goodness of fit to the
training data. We describe the results of
an empirical comparison of three standard
model selection criteria — viz., a Mini-
mum Description Length criterion (MDL),
Akaike’s Information Criterion (AIC) and a
Cross-Validation criterion (XV) — applied to
this problem. Our results suggest that AIC
and XV are both good criteria for avoiding
overfitting, but MDL does not work well in
this context.

This report focuses on the challenge of learning the
(Bayesian) belief net BN [Pea88] that has minimum
KL-divergence [KL51] from the true distribution, D
over a set of discrete variables X — i.e., the network
that minimizes!

info( BN; D) = —» Pp(X =2)logPpn(X =z)

from a fixed training sample s drawn iid from D.
As it is easy to find the optimal parameter values
(i.e., “CPtable entries”) for a given structure [CH92,
Hec95], we focus further on selecting the best network
structure — i.e., on “model selection”.

We let h vary over network structures, and h(s) be
the instantiated network formed by using the sample
s to fill in h’s parameters. It is tempting to simply find
the structure h whose instantiation h(s) minimizes the
“training error”

'"Here, x ranges over all possible assignments to X. Also
P, (X = z) is the probability that the distribution w as-
signs to z; we will later view an empirical sample s as a
distribution. Finally, the true KL-divergence is actually
this info( BN; D) term plus the entropy of the distribu-
tion entropy(D) = > Pp(X ==z)logPp(X =1); we
ignore that term as it is independent of the hypothesis be-
ing considered.
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Unfortunately, this will typically “overfit” the data,
and not produce the best info( h(s); D) score. We
therefore need a more sophisticated approach to find
the best structure h.

Algorithms for model selection involve two compo-
nents: a criterion for comparing models, and a search
algorithm, for finding the best model in a given class
(based on that criterion). Handling the bias-variance
trade-off is primarily a matter of choosing the criterion
to be applied. One approach to defining a criterion is
to add a complexity penalty to the training error so
that more complex models have to fit the data consid-
erably better than smaller models, in order to outscore
them. Two standard criteria are

Minimum Description Length (MDL) which seeks

the A that minimizes

1
MDL(h;s) = Flog s

info( h(s); s) + 28]
where k is the number of parameters of h [Ris87]
Akaike’s Information Criterion (AIC) which uses
k1
MDL(h;s) = info(h(s); s) + %
where the loge is simply to convert from nats to
bits [Boz87].

Another approach — called Cross-Validation (XV)
— uses only part of the sample s; C s to set the pa-
rameters, and uses the rest of the sample so = s — 57
to get an unbiased estimate of the true error [Sto74];
i.e., evaluates a model h using

XV(h; s) = info(h(s1); s2)

We empirically compared these three model selection
criteria, in our context of learning belief nets, over
a range of training sample sizes and the true distri-
butions. Because the space of network structures is
huge for even a modest number of variables, a sys-
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Figure 1. Case Study: (a) m = 200

tematic exploration of that space was an unrealistic
goal. Instead, we focussed on “trajectories” through
that space; in particular, trajectories from the simplest
to the most complex structure that include the true
structure. We therefore performed many experiments
of the following form:

Generate the “true model” BNy
e Generate all (g) edges over the n variables

e Randomly order these edges

e Pick a complexity value k € [0..(%)] for the true
model

e Define BN,’s structure as having exactly the first
k edges in the randomized list

e Generate random probabilities for BN,’s param-
eters. (Typically done uniformly, but excluding
extreme values.)

Generate data sets

e Generate samples of various sizes {s;}, each from
the true model BN,

Generate hypotheses

e For i = 0 to (3), let hypothesis h; be the BN-
structure (over n variables) with exactly the first

1 edges in the randomized list.
Actual tests

e Apply each criterion to each hypothesis structure
h; and dataset s;.

We experimentally found that n = 10 was sufficient to
produce interesting results, and that our use of binary-
valued variables had no qualitative impact on results.

We then observed the behaviour of each criterion
across a spectrum of complexities and a range of sam-
ple sizes, and found a remarkably consistent pattern.
Figure 1 presents three “snapshots”, taken at dif-
ferent sample sizes, of the results for one particular
true model. These graphs show the criteria compared
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(b) m =600 (c) m = 1000

across the complexity spectrum (marked out in num-
ber of dependencies, not number of parameters) when
they are evaluated on samples of size 200, 600 and
1000. Four values are plotted for each hypothesis
structure: (ERR) the true error, which is the KL-
divergence of the network with parameters estimated
from the sample, (MDL) the MDL criterion, (AIC)
the AIC criterion, and (XV) the Cross-Validation cri-
terion. To scale everything, the true entropy of the
distribution has been subtracted from each criterion.
The true model is the one with k£ = 20 edges.

Given this set of hypotheses, an ideal learner using a
criteria y(h; s) would pick a hypothesis with the lowest
v-value. So for the m = 200 graph, the MDL-based
learner would pick hg (i.e., the the 0-edge structure),
the AIC-based learner would select hy; and the XV-
based would pick h2;. While all are wrong (recall the
true structure is hgg) note that the structure returned
by MDL, hg, is the worst, in that its KL-divergence
is 0.65, while the answer returned by AIC has KL-
divergence of 0.60 (hi1) and the answer for XV has
KL-divergence of 0.23 (hz;). For m = 600, MDL picks
hi1 (KL of 0.55), AIC picks hgp (KL of 0.1) and XV
picks h2s (KL of 0.1); and for m = 1000, all three
(correctly) pick hag. In all cases, we see that XV finds
a structure that is close to optimal, while MDL does
not, at least for small samples.

The extended paper [VGO00] further compares the com-
plexity penalties of MDL and AIC with the actual
amount of overfitting measured, and observes that,
while AIC does a reasonably good job of matching the
overfitting until the network complexity gets too high,
the MDL penalty is much larger than the amount of
overfitting.

Table 1 summarizes the results of a more comprehen-
sive study: For each (sample-size m, truth complex-
ity k ) combination we carried out 30 experiments of
the type described above. For each experiment, for
each criterion, we took the network that scored the
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Table 1. Comprehensive Study.

k=0 k=10 k=20 k=30
m MDL AIC XV MDL AIC XV MDL AIC XV MDL AIC XV
200
p | 0.0015 0.0074 0.0210 0.0618 0.0138 0.0258 0.3079 0.0483 0.0377 | o.a705 0.2008 0.0477
M | 0.0000 0.0000 0.0117 0.0044 0.0000 0.0096 0.3167 0.0031 0.0031 | o0.4419 0.1861 0.0275
400
© | 0.0000 0.0020 0.0050 0.0277 0.0036 0.0141 0.1658 0.0181 0.0064 | o.4965 0.0864 0.0231
M | 0.0000 0.0000 0.0014 0.0000 0.0000 0.0038 0.1332 0.0000 0.0000 | o0.4884 0.0521 0.0000
600
© | 0.0000 0.0017 0.0016 0.0111 0.0010 0.0049 0.0946 0.0008 0.0033 0.3601 0.0589 0.0143
M | 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0461 0.0000 0.0000 | o0.3143 0.0031 0.0000
800
© | 0.0003 0.0022 0.0032 0.0023 0.0014 0.0047 0.0510 0.0001 0.0084 0.3684 0.0294 0.0020
M | 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 | o.3408 0.0000 0.0000
1000
© | 0.0000 0.0023 0.0027 0.0013 0.0023 0.0036 0.0319 0.0016 0.0027 0.3150 0.0232 0.0032
M | 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0160 0.0000 0.0000 | o.3504 0.0000 0.0000
best and subtracted its error from the lowest error at-  References

tained by any network. We summarize these 30 values
obtained by giving their mean and median, and use a
large font to indicate the “winners” in each cell. Note,
however, the differences are more important than dis-
tinguishing the best: Where MDL “won” (on left), the
other methods also did quite well in attaining low er-
ror; but where MDL did poorly (on right), it did very
poorly relative to the other criteria.

These empirical results show that optimizing for the
MDL criterion can be a risky strategy for learning be-
lief net structures. While MDL does seem to work for
sufficiently large samples, it can be arbitrarily worse
for even slightly smaller samples; therefore there is no
guarantee of graceful degradation. Furthermore, there
is no way to know a priori whether MDL has sufficient
data to be effective. By contrast, we found XV to be
a “safe bet”, one which was never that bad.? (Table 1
shows that XV’s average error never exceeded 0.1; and
in fact, XV was the minimax over the three criteria.)
AIC’s performance was in-between, but closer to XV,
in terms of its risk.

Based on our experience: for learning belief net struc-
tures, if there is no prior knowledge, we advise using
XV; if there is a prior expectation of simplicity, we
advise using AIC; and we advise against the use of
MDL.

For more information, including a more com-
plete description of our data and results, see
http://www.cs.ualberta.ca/~greiner/CRITERIA.

2This is consistent with Cross-Validation’s other name,
“the jackknife” — i.e., a jack of all trades, even if a master
of none.
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