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Abstract
We present a directed Markov random field
(MRF) model that combines � -gram models,
probabilistic context free grammars (PCFGs) and
probabilistic latent semantic analysis (PLSA) for
the purpose of statistical language modeling.
Even though the composite directed MRF model
potentially has an exponential number of loops
and becomes a context sensitive grammar, we are
nevertheless able to estimate its parameters in cu-
bic time using an efficient modified EM method,
the generalized inside-outside algorithm, which
extends the inside-outside algorithm to incorpo-
rate the effects of the � -gram and PLSA lan-
guage models. We generalize various smooth-
ing techniques to alleviate the sparseness of � -
gram counts in cases where there are hidden vari-
ables. We also derive an analogous algorithm to
calculate the probability of initial subsequence
of a sentence, generated by the composite lan-
guage model. Our experimental results on the
Wall Street Journal corpus show that we obtain
significant reductions in perplexity compared to
the state-of-the-art baseline trigram model with
Good-Turing and Kneser-Ney smoothings.

1. Introduction
The goal of statistical language modeling is to accurately
model the probability of naturally occurring word se-
quences in human natural language. The dominant moti-
vation for language modeling has traditionally come from
the field of speech recognition (Jelinek 1998), however sta-
tistical language models have recently become more widely
used in many other application areas, such as information
retrieval, machine translation and bioinformatics.
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There are various kinds of language models that can be
used to capture different aspects of natural language reg-
ularity. The simplest and most successful language mod-
els are the Markov chain ( � -gram) source models, first ex-
plored by Shannon in his seminal paper (Shannon 1948).
These simple models are effective at capturing local lexi-
cal regularities in text. However, many recent approaches
have been proposed to capture and exploit different as-
pects of natural language regularity, sentence-level syntac-
tic structure (Chelba and Jelinek 2000, Roark 2001) and
document-level semantic content (Bellegarda 2000, Hof-
mann 2001), with the goal of outperforming the simple � -
gram model. Unfortunately each of these language mod-
els only targets some specific, distinct linguistic phenom-
ena. The key question we are investigating is how to model
natural language in a way that simultaneously accounts for
the lexical information inherent in a Markov chain model,
the hierarchical syntactic structure captured in a stochas-
tic branching process, and the semantic content embodied
by a bag-of-words mixture of log-linear models—all in a
unified probabilistic framework.

Several techniques for combining language models have
been investigated. The most commonly used method
is simple linear interpolation (Chelba and Jelinek 2000,
Rosenfeld 1996), where each individual model is trained
separately and then combined by a weighted linear com-
bination. The weights in this case are trained using held
out data. Even though this technique is simple and easy to
implement, it does not generally yield effective combina-
tions because the linear additive form is too blunt to cap-
ture subtleties in each of the component models. Another
approach is based on Jaynes’ maximum entropy (ME) prin-
ciple (Berger et al. 1996, Khudanpur and Wu 2000, Rosen-
feld 1996) which was first applied in language modeling a
decade ago, and has since become a dominant technique
in statistical natural language processing. It is now well
known that for complete data, the ME principle is equiva-
lent to maximum likelihood estimation (MLE) in an undi-
rected Markov random field. In fact, these two problems
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are exact duals of one another (Berger, et al. 1996). The
major weakness with ME methods, however, is that they
can only model distributions over explicitly observed fea-
tures, whereas in natural language we encounter hidden se-
mantic (Bellegarda 2000, Hofmann 2001) and syntactic in-
formation (Chelba and Jelinek 2000). Recently Wang et
al. (2003) proposed the latent maximum entropy (LME)
principle, which extends standard ME estimation by in-
corporating hidden dependency structure. However, when
they apply LME to build a composite language model, they
have been unable to incorporate PCFGs in this framework,
because the tree-structured random field component cre-
ates intractability in calculating the feature expectations
and global normalization over an infinitely large configu-
ration space. Previously they had envisioned that MCMC
sampling methods (Wang et al. 2005) would have to be
employed, leading to enormous computational expense.

In this paper, instead of using an undirected MRF model,
we present a unified generative directed Markov ran-
dom field model framework that combines � -gram models,
PCFG and PLSA. Unlike undirected MRF models where
there is a global normalization factor over an infinitely large
configuration space, which often causes computational dif-
ficulty, the directed MRF model representation for the
composite � -gram/syntactic/semantic model only requires
many local normalization constraints. More importantly
it satisfies certain factorization property which greatly re-
duces the computational burden and makes the optimiza-
tion tractable. We learn the composite model by exploit-
ing the factorization properties of the composite model, so
we can use a simple yet efficient EM iterative optimization
method, the generalized inside-outside algorithm, which
enhances the well known inside-outside algorithm (Baker
1979) to incorporate the effects of the � -gram and PLSA
language models. Given that � -gram, PCFG and PLSA
models have each been well studied, it is striking that this
procedure has gone undiscovered until now.

2. A Composite Trigram/Syntactic/Semantic
Language Model

Natural language encodes messages via complex, hierar-
chically organized sequences. The local lexical structure of
the sequence conveys surface information, while the syn-
tactic structure, encoding long range dependencies, carries
deeper semantic information.
Let � denote a set of random variables ���������	��
 taking
values in a (discrete) probability spaces �� � � �	��
 where� is a finite set of states. We define a (discrete) directed
Markov random field to be a probability distribution �
which admits a recursive factorization if there exist non-
negative functions, � � ������� ������� � defined on ���������� "! ��# ,
such that $&%�'(� � �*)+�,��)-�. /! ��# �1032 and � has density
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Figure 1. The observables in natural language consist of words,
sentences, and documents; whereas the hidden data consists of
sentence-level syntactic structure and document-level semantic
content. The figure illustrates a composite chain/tree/table model
incorporating these aspects, where light nodes denote observed
information and dark nodes/triangles denote hidden information.

If the recursive factorization respects to a graph H , then we
have a Bayesian network (Lauritzen 1996). But broadly
speaking, the recursive factorization can respect to a more
complicated representation other than a graph which has a
fixed set of nodes and edges.

Assume that we use a trigram Markov chain to model local
lexical information, a PCFG to model the syntactic struc-
ture and a PLSA (Pritchard et al. 2000, Hofmann 2001)
to model its semantic content of natural language, see Fig-
ure 1. Each of these models can be represented as a directed
MRF model. If we combine these three models, we obtain
a composite model that is represented by a rather complex
chain-tree-table directed MRF model.

A context free grammar (CFG) (Baker 1979) I is a 4-tuple
�KJL�NML��OP�RQ(� that consists of: a set of non-terminal sym-
bols J whose elements are grammatical phrase markers; a
vocabulary of MS0UT�VXW/���.�.�Y��V	Z\[ whose elements, words
V�] , are terminal symbols of the language; a sentence “start”
symbol Q3�^J ; and a set of grammatical production rules
O of the form: _a`cb , where _d�eJ and bf�g�Jih�M��Rj .
A PCFG is a CFG with a probability assigned to each rule,
such that the probabilities of all rules expanding a given
nonterminal sum to one. A PCFG is a branching process
and can be treated as a directed MRF model, although
the straightforward representation as a complex directed
graphical model is problematic.

A PLSA (Hofmann 2001) is a generative model of word-
document co-occurrences using the bag-of-words assump-
tion as follows: choose a document k with probability l,�mkX� ,
select a semantic class n with probability l+��ko`pn+� , pick a
word q with probability l,�mnr`sqL� . The joint probability
model for pair of �mk,�NqL� is a mixture of log-linear model
with the expression tu�mk,�NqL�v0wl,��kx� $zy l,�ne`{q|�}l,�mk~`
n�� . The latent class variables function as bottleneck vari-
ables to constrain word occurrences in documents.
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When a PCFG is combined with a trigram model and
PLSA, the grammar becomes context sensitive. If we view
each �+VXq trigram as ��V ` q , where � ��V���q ��M , then the
composite trigram/syntactic/semantic language model can
be represented as a directed MRF model, where the gen-
eration of nonterminals remains the same as in PCFG, but
the generation of each terminal depends additionally on its
surrounding context; i.e., not only its parent nonterminal
but also the preceding two words as well as its semantic
content node n .

3. Training Algorithm for the Composite
Model

We are interested in learning a composite trigram/syntactic/
semantic model from data. We assume we are given a train-
ing corpus

�
consisting of a collection of documents � ,

where each document contains a collection of sentences,
and each sentence � is composed of a sequence of words
from a vocabulary M . For simplicity, but without loss of
generality, we assume that the PCFG component of the
composite model is in Chomsky normal form. That is,
each rule is either of the form _ ` ��� or _ ` q
where � ��� �SJL�Nq �zM . When combined with trigram
and PLSA models, the terminal production rule _ ` q
becomes �+Vx_Ln&` q . By examining Figure 1, it should
be clear that the likelihood of the observed data under this
composite model can be written as below:� 5
	 B�� 9 : <

�
>� ��

<�� ���� ��� � ���
4��/5
� B�� �

B � �
B"! 9"#%$&'$& (2)

where4 � 5
� B�� �
B � �

B(! 9 : <
�
>� � < � � <) >�* � 5
�,+.- 9 � F �0/ 1 � / ) G
<2 / 3 >�4 / 576%8 >�9 / ) >�*� 5
:�;=<>-?+.@ 9 � F 2 3A5 ) 6%8CB �D/ 1 � /

�
/ ) G

<576FECG >�9 � 5H<I+.J,K 9 � F 576FECG�B �D/ 1 � /
�
G #%#

here tCL	��k+���NM��AOPM��AQ�� is the probability of generating sen-
tence � M in document k with parse tree Q and seman-
tic content sequence O M , �(��k+��� M �Rn+� is the count of se-
mantic content n in sentence � M of the document k ,
�(�R�+Vx_Ln3` q'SNk+��� M ��Q �Rn+� is the count of trigrams �+VXq ,
the non-terminal symbol _ and semantic content n in sen-
tence �NM of document k with parse tree Q and �(�m_ `�P�PSNk+���NM���Q�� is the count of nonterminal production rule
_ `T�P� in sentence �NM of document k with parse tree Q .
The parameters l,�mkf` n�� �Nl,�H��Vx_Lng` qL� �Nl,��_ `U���v�
are locally normalized so that $WV ��X l,�R�+Vx_Lna` qL�\0
2�� $ZY\[ ��] l,��_ `T�P�v��0 2	� $ y �=^ l,��k `sn�� 0a2 .Thus
we have a constrained optimization problem, and there will
be a Lagrange multiplier for �+Vx_Ln , nonterminal _ and doc-
ument k .
3.1. Estimating Parameters of the Composite Model
At a first glance, it seems that estimating parameters of
the composite model is intractable since the composite di-

rected MRF model potentially has an exponential num-
ber of loops, which suggests that loopy belief propaga-
tion (Yedidia et al. 2001) and/or variational approximation
methods (Wainwright and Jordan 2003) have to be used. It
turns out that this is not the case and there is an efficient
and exact recursive EM iterative optimization procedure to
perform this task.
Following Lafferty’s (2000) derivation of the inside-outside
formulas for updating the PCFG parameters from a general
EM (Dempster et al., 1977) algorithm, we derive the gener-
alized inside-outside algorithm for the composite language
model. To apply the EM algorithm, we consider the auxil-
iary function_ 5 �0`�Ba� 9 : �

�

� � � ��� � �
4��@5 � �

B(!cb � B�� � 9�dfe�g 4 ��h 5
� B � �
B � �

Ba! 94i�@5
� B�� �
B � �

B(! 9
Because of the local normalization constraints, the reesti-
mated parameters of the composite model are then the nor-
malized conditional expected counts:�0` 5H<j+kJlK 9
:nm �

>� m � m ��� m �
4i�@5 � �

B(!cb � B�� � 9"o 5H<I+kJlK,p(� B�� �
B"! 9qie0r s?t�dfufvwt0x ufe�qleDy{z�r�JlK�0` 5
:�;=<|-?+k@ 9 (3)

: m �
>� m � m � � m �

4i�@5 � �
B(!cb � B�� � 9"o 5
:�;=<|-?+k@Fp � B � �

B(!EB - 9q}e�r s?t�dfufvwtDx u~e�q,eDy{zAr�@�0` 5
�,+.- 9
:nm � m � � m �

4��/5 � �
B"!wb � B�� � 9"oY5
�,+k-�p � B � �

B - 9q}e�r s?t�dfufvwtDx u~e�qleDy{z�r�-
This looks very similar as the PCFG model. Thus we need
to compute the conditional expected counts:�

�
>� � � � ��� � �

4��@5 � �
B(!wb � B�� � 9"o 5H<I+.J,K,pa� B�� �

B(! 9�
�
>� � � � � � � �

4��@5 � �
B(!wb � B�� � 9"o 5
:�;=<>-?+k@�pa� B � �

Ba!NB - 9� � � � � � �
4��@5 � �

Ba!wb � B�� � 9"o 5
�,+�-�pa� B � �
B -x9

In general, the sum requires summing over an exponen-
tial number of parse trees. However, just as with standard
PCFGs, it is easy to check that the following equations still
hold

� � � � �
4 � 5 � �

B(!wb � B�� � 9"o 5H<I+�J,K,pa� B�� �
B(! 9

: � 5H<I+kJlK 9
4i�@5
� B�� � 9 � 4��@5
� Ba� � 9� � 5H<j+�J,K 9� � � � �

4��@5 � �
B(!wb � B�� � 9"o 5
:�;=<|-�+�@�p(� B�� �

B"!EB - 9
: � 5
:�;=<|-?+k@ 9

4��@5
� B�� � 9 � 4��@5
� B�� � 9� � 5
:�;=<|-?+k@ 9� ��� � �
4��@5 � �

B(!wb � B�� � 9"o 5
�l+.-�pa� B � �
B -x9

: � 5
�,+.- 94��@5
� B � � 9 � 4 � 5
� B�� � 9� � 5
�,+.- 9
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Figure 2. Inside and outside probabilities in the composite tri-
gram/syntactic/semantic model, where each component is influ-
enced by the injected trigram and PLSA nodes.

and it turns out that there is an efficient way of computing
the partial derivative on the righthand side, the generalized
inside-outside algorithm.

Let _�� b denote that, beginning with a nonterminal _ ,
we can derive a string b of words and nonterminals by ap-
plying a sequence of rewrite rules from the grammar with
the flowing-in trigrams and PLSA nodes, where flowing-in
trigrams and PLSA nodes are those that induce the words
of the string b .
Suppose the position of a rule _z` ��� within a tree Q for
sentence � M 0 �*q W�������� ��q��v� in document k can be speci-
fied by a triple �	�R��
��E�,� �����
� � . The partial derivative of
the probability t L �Qr` � M���� kx�(0it L �mk,�c� M � with respect
to the parameter l+��_p` ���v� only involves those parse
trees which use the rule _c` �P� . Consider the event
“ Q ` � M���� k using _ ` ��� in position �	�R��
��R�-� ”. Be-
cause of the Markov property of the directed MRF model,
the probability of this event can be written as a product of
four terms, i.e., the factorization property, as follows:4��@5�� + � � ufq���p����aufq}g <I+kJlK ufq�� e��au x ufe�q�5�� B� "B A 9}9: � 5H<I+kJlK 9 4i�@5HJ"!k@$#&%'%'%a@)( p � � ufq,�	9

4��@5RK*!k@ (,+.- %'%'%a@0/ p � � u~qF�	9
4��@5��1!k@ - %2%'%a@ #�34- <|@0/ +.- %5%'%a@06%p � � ufq,�	9

See Figure 2 (a) for an illustration. The key insight toward
a solution for the composite model is that, in comparison
with the PCFG model, there are additional trigrams which
connect the decomposition in position �	�R��
��E�,� . These de-
pendencies encode additional information from the trigram
model, and significantly influence the parameter estimation
of the non-terminal grammatical production rules (the im-
pact of the PLSA model is implicitly considered, this will
become clear when we derive the estimation formula for
the terminal grammatical production rules). The factoriza-
tion property is the crucial constituent for the success to
derive an efficient and exact recursive algorithm.
From this it is not difficult to see that� 4 � 5�� + � � u~q��	9� � 5H< +.J,K 9
:

�
#	78(97 /4 � 5HJ"!�@$#�%'%'%a@)( p � � ufq,�	9 4 � 5RK:!k@)(2+�-;%'%2%a@ / p � � ufq��	9

4��@5��<!�@=-;%'%2% @$#	3;- <|@0/ +�- %'%'%a@ 6 p � � ufq,�	9

Thus, the conditional expected number of times that the
rule _3`T�P� is used in generating the sentence � M1� �
in document k using the model l is given by� � � � �

4��@5 !cb � B � � 9"o 5H<I+kJlK,p � Ba� �
B"! 9 : � 5H<I+kJlK 9

4��@5 � � ufq��	9
> �
#�7?(57 /A@ # /�5H<�p � � ufq��	9�B # ( 5HJ p � � ufq��	9�B (2+�- /�5RK,p � � ufq,�	9�C

where B # ( 5H<�p � � ufqF�	9 :P4i�/5H<D!k@ # %'%5%a@ ( p � � u~qF�	9
i.e., the inside probability that the nonterminal _ , trigram
parent nodes of q ]N��q ]�E W and document node k derive the
word subsequence q ] ���.�Nq0F in the sentence � M of docu-
ment k ; and

@ # /�5H<�p � � ufqF�	9 : 4��@5��G!�@ - %'%2%a@ #	3;- <|@0/ +�- %'%'%a@06%p � � ufq,�	9
i.e., the outside probability that beginning with the
start symbol Q , trigram parent nodes of qIH E W	�Nq�H E�J
and document node k , we can derive the sequence
q W��.�.��q ]�K W._ q�H E W����.��q�� in the sentence � M of document
k .
Similarly consider the event “ Q ` � M using ��VX_|n `q ��� k in position ����� ”. Because of the Markov property
of the directed MRF model, the probability of this event
can be written as a product of four terms, again the factor-
ization property, as follows:4��/5�� + � � ufq���p4�L�au~q}g :�;=<|-?+k@ ufqM� eN�au x u~e�qo5��m9}9

:DO 2 3A8 5
@ #	3�P @ #	3;- @ # 9 > � 5
�,+.- 9 � 5
:�;=<>-'+k@ 9 C
4 � 5��1!k@=-;%'%'%a@$#�34-�< @$#�+�-;%2%'%a@ 6 p � � u~q��	9

See Figure 2 (b) for illustration. The key insight toward
a solution for the composite model is that comparing with
the PCFG model, there are additional trigram and PLSA
nodes which connect the decomposition in position �	��� to
encode the information of both trigram and PLSA nodes
and make influencial impact for parameter estimation of
the grammatical production rules ��VX_|n ` q . Again, the
factorization property is the crucial constituent for the suc-
cess to derive an efficient and exact recursive algorithm.
Thus we have� ��� � �

4��/5 � �
B"!wb � B�� � 9"oY5
:i;=<>-?+k@Fpa� B�� �

B(! 9Y: � 5
:�;=<>-?+�@�9
4i�@5 � � u~q��	9�

-Q7�#�7 6 O 2 3 ) 8 5
@ #	3�P @ #�34- -i@ # 9 � 5
�,+.-x9 @ #R# 5H<Fp � � ufq��	9
where S is the indicator function.
Now consider the event “ Qe` � MT��� k using ko` n in po-
sition ���}� ”. Because of the Markov property of the directed
MRF model, the probability of this event can be written as
sums of products of three terms as follows:4��@5�� + � � ufqF��p��L�au~q}g>�,+.-�ufqI� eN�aufx ufe�qo5��m9}9

:
�
5 >VU 4��@5��G!�@ - %'%2%a@ #	3;- <|@ #�+.- %'%'%(@06Fp � � ufq��	9

> � 5
�,+k- 9 � 5
@ #�3AP @ #�34- <|-'+k@ # 9�C
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Thus we have� � � � �
4 � 5 � � b � B�� � 9"oY5
�,+k-�pa� B�� � 9 : � 5
�,+.- 9

4i�@5 � � u~q��	9�
-Q7�#�7 6

�
5 >8U � 5
@$#	3�PA@$#	3;-�<>-?+.@$#�9 @ #�#�5H<�p � � ufqF�	9

Just as in the PCFG case, there is an efficient recursive
method for computing the � ’s and

�
’s using the CYK chart-

parsing algorithm (Young 1967). The only modification is
to the definition of � ]�] so that it incorporates additional in-
formation from the trigrams and PLSA nodes. The method
for doing this is almost the same as for PCFG and is im-
plicit in the following recursive formulas:
B.# (�5H<�p � � ufq��	9 : �

E�G
�
#�7 / 78( � 5H<I+.J,K 9�B # /	5H<Fp � � ufq,�	9

B�/ +�-�( 5RK,p � � ufq��	9
B #R# 5H<�p � � ufq��	9 : � ) � 5
�,+k- 9 � 5
@ #�3AP @ #�34- <|-?+k@ # 9
@ # (�5H<�p � � ufq��	9 : �

E / G
�
/�� # � 5HJW+.K <�9�B�/ #�34- 5RK,p � � u~qF�	9
@ / ( 5HJ?p � � ufq��	9

�
�
E�/ G

�
/�� ( � 5HJ +�< K 9�B (2+�- /	5RK,p � � ufq��	9

@ # /�5HJ?p � � u~qF�	9
@ - 6 5H<�p � � ufq��	9 :�O���5H<�p � � u~qF�	9

Chi (1999) proved that the maximum likelihood estimate
of production rule probabilities for a PCFG yields a proper
distribution, i.e., there is no probability mass lost to in-
finitely large trees. Similarly we can show that the max-
imum likelihood estimate of production rule probabilities
for this composite model always yields a proper distribu-
tion. Due to space limitation, we omit the proof here.

Theorem 1 Let � be the set of finite parse trees, 	t be any
intermediate iteration of the EM procedure within the gen-
eralized inside-outside algorithm. Then 	t �
� � 0S2 .
3.2. Smoothing Techniques of the Composite Model

Current smoothing techniques only handle explicit counts,
but in our case there are hidden variables _ and n in param-
eter estimation formula for l,�R�+Vx_Ln�` qL� . In this section,
we show how to extend smoothing methods to situations
where there exist hidden variables.
Notice that the sparse data problem arises from trigram
counts. The Good-Turing estimate (Chen and Goodman
1999) is central to combat this problem. The Good-Turing
estimate states that for any trigram that occurs � times, we
should pretend that it occurs � j times whereo��1: 5
o �� 9�� � +.-

� �
(4)

where ��� is the number of trigrams that occur exactly �
times in the training data. To convert this count to a proba-
bility, we just normalize: for a trigram Vi��q with � counts,

we take

����� 5
:�; @ 9 : o �
� (5)

where � 0 $������� � � �uj . In practice, the Good-Turing
estimate is not used alone, instead it is often enhanced with
back-off technique to combine higher-order models with
lower-order models necessary for good performance.
A procedure of replacing a count � with a modified count
�uj is called “discount” and we define the ratio  � 0 �"!�
as a discount coefficient. The  #� are calculated as follows:
large counts are taken to be reliable, so they are not dis-
counted. In particular, Katz (1987) takes  � 0p2 for all
�%$g� for some � . The discount ratios for the lower counts
�"S� are derived from the Good-Turing estimate applied
to the global trigram distribution and is given as

&
�
: � !

�('
F / +�- G*),+.-0/) /


'
F / +�- G*) +.-0/) /

(6)

When we use (3) to estimate l,�H��Vx_Ln ` qL� , we use
the expected count of �(�R�+Vx_Ln ` qL� where _ andn are hidden. However, when the trigram ��V�q has
count �(�H��V ` qL�2143 , if we discount the expected
count of �(�R�+Vx_LnS` qL� by the ratio  #�;�H��VXqL� , then we
discount the trigrams by the same ratio  #�;�R�+VXqL� since$�5 ��]�6 y �=^  0�;�H��V�qL� �(�H��VX_|ni` q|�|02 0�;�H��V�q|� �(�H��V\`
q|� . Therefore instead of using iterative parameter estima-
tion of (3), we use smoothed iterative parameter estimation
as the following,�0`7 5
:�;=<>-?+.@ 9 :
&
�
5
:�; @ 9 �

�
>� � � � � � � � 4��@5 � �

B(!cb � B � � 9"o 5
:�;=<|-i+ @Fp(� B�� �
B(!NB - 9q}e�r s?t0d~ufvwtDx ufe�q�e0y�z�r�@

When the trigram ��V�q has count �(�R�+V&` qL��083 , we
backoff to the corresponding bigram parameters and let� 7 5
:�;=<|-?+k@ 9 ::9-5
:�; @ 9.% � 7 5
;=<>-?+�@�9
and 9-5
:�; @ 9u: 

' m 8�; � F 2 3A8 G �#< � 7 5
:�;=<>-?+�@�9

' m 8�; � F 2 3�8 G �0< � 7 5
;=<|-?+k@ 9

Similarly we can use Kneser-Ney smoothing technique.
Due to space limitation, we omit the details here.

4. Computing the Probability of Initial
Subsequence Generation

In automatic speech recognition or statistical machine
translation, we are presented with words one at a time, in
sequence. Therefore, we would like to calculate the prob-
ability t�L��Qa` q W q�J(�.����q H �.���N� ; that is, the probability
that an arbitrary word sequence q W q=J �.����q H is the initial
subsequence of a sentence generated by the composite tri-
gram/syntactic/semantic language model. We derive the
generalized left-to-right inside algorithm to perform this
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computation by following the work of (Jelinek and Laf-
ferty, 1991), which assumes that a PCFG model is used.
Let t�L���_���� �R��
x� denote the sum of the probabilities of
all trees with root node _ and document node k resulting
in word sequences whose initial subsequence is q ]-���.��q F .
Thus4 � 5H<���� � B	 9 : B.# (	5H<�9 � �

� / >�4 4 � 5H<I+�@$#L%'%'%a@)(�74-�9
�

�
� / ��� >�4 � 4i�@5H<I+k@ # %2%'%a@ ( 7 - 7 P 9 � %2%'%

�
�

� /
	 	 	 ��� >{4 �4��/5H<j+k@$#L%5%'%(@)(�74-T%'%5%}7
�
9 � %5%'%

Using this notation, the desired probability t L �mQ `
q W�q J �.����q�H �.���E� is denoted by t L �Q���� 2	�E�,� .
Let t  L ��_U` ����0 $ Y � ��] t  L ��_ ` � W � J�� be the sum
of the probabilities of all the rules _ `T� W �IJ whose first
lefthand side element is � W 0 � . Define t  L �m_ � �o�|0
$�� � ! ]���X+# ! t�L	�m_ � � b;� as the sum of probabilities of
all trees with root node � that produce _ as the leftmost
first nonterminal. This term converges, since our underly-
ing composite language model t�L is proper.

Using this definition, we get
4��@5H<���� � B �m9 :�B # / # 5H< 9 � �

E >VU 4��� 5H<D!.JL9�B # / # 5HJ|9
Define the sum of probabilities of all trees with root node_ whose last leftmost production results in leaves � W and� J as4��� 5H<�!.J - J P 9 : 4��@5H<j+.J - J P 9 (7)
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�
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Obviously,
4��@5H<���� � B � � o�9u: �

E�� E � >VU 4��� 5H< + JM-(J=P 9
> B # / # 5HJ - 9 4��"5HJ P ��� � �  B � � o+9� B.# / #�+.-R5HJM-N9 4 � 5HJ P���� � ��� B � � o+9 � %'%5%
� B # / #�+ � 34- 5HJ - !k@ # %'%'%(@ #�+

�
3;- 9 4��/5HJ P ��� � � o B � � o+9

� 4��"5HJM-���� � B � � o+9 C (8)

since to generate the initial subsequence q ]�q ]�E W ���.��q ]�E�� ,
some rule _ `U� W � J must first be applied and then the
first part of the subsequence must be generated from � W
and its remaining part from � J .
Define the sums in the bracket of (8) except the last term as� � � W �A� J�� . Then we have4��@5H<���� � B � � o�9

:
�
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�
E / >VU 4��� 5H<I+.J - 9 465HJ - ��� � B � � o+9
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We have shown that the maximum likelihood estimate of
the composite language yields a proper distribution in The-
orem 1, thus the last term of the above equation tends to
0 as � grows without limit. Then using definition (7) and
successive resubstitutions, we get the final formula4 � 5H<���� � B � � o+9

:
�

E��fE � >VU 4 �� 5H<0! JM- J PR9��|5HJ�- B J=PR9
:

�
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�
�
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Comparing with a PCFG, the only difference is the way that� � � W@�A� J � is recursively calculated by � , which here takes
into account the impact of the trigram and PLSA models.

5. Experimental Evaluation
5.1. Experimental data sets
The corpus used to train our model was taken from the WSJ
portion of the NAB corpus, which was composed of about
150,000 documents spanning the years 1987 to 1989, com-
prising approximately 42 millions words. The vocabulary
was constructed by taking the 20,000 most frequent words
of the training data. The PCFG production rules we use are
extracted from the sections 2-21 of the WSJ treebank cor-
pus. The test set consists of 153,000 words taken from the
year 1989.

5.2. Computation in Testing
Since the representation for a document of the test data is
not contained in the original training corpus, we use “fold-
in” heuristic approach similar to the one used in (Hofmann
2001): the parameters corresponding to the document-
semantic arcs, l,�mk3` n+� , are re-estimated by maximiz-
ing the probability of word subsequence currently seen,
q W �.���.�;��q H , i.e., the initial subsequence of a sentence gen-
erated by the composite language model, while holding the
other parameters fixed.
In this case, we use the recursive gradient ascent to updatel+��ko`pn+� .� 5
�,+.- 9 F / G : � 5
�,+.- 9 F / 34- G

' � dfe�g+4��@5��%���  B A 9� � 5
�l+k- 9 &&& �
' +�( /*)
We can then recursively calculate the gradient of log-
likelihood of the initial subsequence of a sentence with re-
spect to the parameters of document-semantic arc.
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5.3. Experimental design

To serve as a baseline standard of performance, we use
a conventional trigram model with Good-Turing back-
off and Kneser-Ney smoothing. Implementing these ap-
proaches, we obtained perplexity scores of 109 and 103 re-
spectively on test data set.

When we train the PCFG model alone, the perplexity score
on test data is 678. Combining the PCFG model with
Good-Turing back-off and Kneser-Ney smoothing trigram
models by linear interpolation, we obtain the test perplex-
ity score 109 and 102 respectively. Next we train the PLSA
model alone where the number of hidden semantic nodes
n is set to be � ��� 0 2���� , we obtain perplexity score on
test data 1487. When this PLSA model is combined with
Good-Turing back-off and Kneser-Ney smoothing trigram
models by linear interpolation, we find that the test perplex-
ity scores remain unchanged. If we combine these three
models together using linear interpolation, we obtain the
perplexity scores on test data 108 and 102 respectively.

Next we introduce the composite syntactic/trigram
model which is equivalent to the composite syntac-
tic/semantic/trigram language model by setting the se-
mantic node n to be a constant. Using the generalized
inside-outside algorithm to train this composite syntac-
tic/trigram model with Good-Turing back-off and Kneser-
Ney smoothing trigram models, we achieve a perplexity
scores of 94 and 90 on test data of, a 14% and 11% rel-
ative reduction in perplexity respectively.

We then introduce the composite semantic/trigram
model, which is equivalent to the composite syntac-
tic/semantic/trigram language model by setting the
syntatic node _ to be a constant. We fix the number
of possible hidden topics to be � ����0 2���� and use the
generalized inside-outside algorithm to train the composite
semantic/trigram model with Good-Turing back-off and
Kneser-Ney smoothing trigram models. Here we achieve
perplexity scores of 96 and 91 on test data, a 12% and
10% relative reduction in perplexity respectively. Since
the representation for a document of the test data is not
contained in the original training corpus, during testing we
use “fold-in” heuristic approach similar to the one used
in (Hofmann, 2001): the document-semantic parameters
are re-estimated by maximum likelihood estimation while
holding semantic-word parameters fixed, where the empir-
ical distribution is given by the current updated document
history.

Finally we use the generalized inside-outside algorithm to
train the composite trigram/syntactic/semantic model with
Good-Turing back-off and Kneser-Ney smoothing trigram
models and we set the number of hidden semantic node
n is again set to be � ����0 2���� . Again since the rep-

Table 1. Perplexity results for the composite syntactic semantic
trigram model on test corpus.

LANGUAGE MODEL PERPLEXITY PERPLEXITY
GOOD-TURING KNESER-NEY

TRIGRAM (BASELINE) 109 103
PCFG 678
PLSA 1487
SYNTACTIC TRIGRAM 94 90
SEMANTIC TRIGRAM 96 91
SYNTACTIC, SEMANTIC 82 79
TRIGRAM

resentation for a document of the test data is not con-
tained in the original training corpus, during testing we use
“fold-in” heuristic approach as described in the last subsec-
tion: the document-semantic parameters are re-estimated
by recursive gradient ascent of maximum likelihood esti-
mation of the initial subsequence of a sentence while hold-
ing semantic-word and production rule parameters fixed.
This time we achieve perplexity scores of 82 and 79 on
test data, a 25% and 21% relative reduction in perplexity
respectively.

The perplexity results are listed in Table 1 and the perplex-
ity reductions of these results over baseline trigram models
with Good-Turing and Kneser-Ney smoothings are shown
in Figure 3. It shows that linear interpolation is too blunt
to capture subtleties of PCFG and PLSA models, however
our approach of integrating syntactic and semantic sources
of nonlocal dependency information from PCFG and PLSA
models into trigram model results significant perplexity
improvement. Basically PCFG and PLSA models carry
complementary long-range dependency structure and their
gains over trigram model are almost additive. Another ob-
servation is that the gains of using Kneser-Ney smoothing
over Good-Turing smoothing are almost additive too.
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Figure 3. Relative perplexity reductions over baseline trigram
with Good-Turing and Kneser-Ney smoothings by various com-
posite language moddels: 1. Syntactic-trigram, 2. Semantic-
trigram, 3. Syntactic-semantic-trigram.
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6. Conclusion and Discussion

We present an original approach that combines � -
gram, PCFG and PLSA to build a sophisticated mixed
chain/tree/table directed MRF model for statistical lan-
guage modeling, where various aspects of natural
language—such as local word interaction, syntactic struc-
ture, and semantic document information—can be modeled
by mixtures of exponential families with a rich expressive
power that can take their interactions into account simul-
taneously and automatically. The composite directed MRF
model we build becomes context sensitive grammar, and
problems induced seem to be NP hard. However for this
particular model, we show that we can generalize the well-
known inside-outside algorithm to estimate its parameters
in cubic time. To alleviate the sparseness of � -gram counts,
we also generalize various smoothing techniques to handle
cases where there exist hidden variables. The experiments
we have carried out show improvement in perplexity over
current state-of-the-art technique.

Griffiths et al. (2004) recently proposed a generative
composite HMM/LDA (latent Dirichlet allocation) model
which takes into account of both local sentence level syn-
tactic class structures and global document level semantic
contents for purposes of part-of-speech tagging and docu-
ment classification, they have used MCMC to estimate the
parameters for a much simpler model. However we pro-
pose an exact estimation algorithm for a much more com-
plicated model.

One way to improve the quality of the language models is
to use semantic smoothing (Bellegarda 2000, Wang et al.
2005), which has been shown to be effective in improving
the perplexity results. Basically we can introduce an addi-
tional node between each topic node and word node to cap-
ture semantic similarity and subtle variation between words
or introduce additional node between the topic nodes and
the document node to take into account of semantic sim-
ilarity and sub-topic variation within each document and
among documents.

Blei et al. (2003) state that PLSA is not a well-defined gen-
erative model of documents, and there is no natural way to
represent a document not seen in the original training cor-
pus, this is why the “fold-in” heuristic procedure has to be
used during testing to reestimate the semantic content. Blei
et al. proposed LDA model to overcome this problem. It
would be interesting to integrate LDA model into our com-
posite language model and in this case variational method
may have to be used.
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