
Proteome Analyst – Transparent High-throughput Protein Annotation: Function,
Localization and Custom Predictors

Duane Szafron DUANE@CS.UALBERTA.CA
Paul Lu PAULLU@CS.UALBERTA.CA
Russell Greiner GREINER@CS.UALBERTA.CA
David Wishart DSW@REDPOLL.PHARMACY.UALBERTA.CA
Zhiyong Lu ZHIYONG@CS.UALBERTA.CA
Brett Poulin POULIN@CS.UALBERTA.CA
Roman Eisner EISNER@CS.UALBERTA.CA
John Anvik JANVIK@CS.UALBERTA.CA
Cam Macdonell CAM@CS.UALBERTA.CA
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8 CANADA

Abstract

Modern sequencing technology permits
sequencing of entire genomes, whose gene
sequences require annotation. It is too time
consuming to predict the properties of each
protein sequence manually and to organize the
results of many prediction tools by hand. The
prediction process must be automated, but the
predictions must also be transparent. That is, the
rationale for each prediction should be easily
examinable by anyone that wishes to use the
prediction. Proteome Analyst (PA) is a web-
based system for predicting the properties of
each protein in a proteome. PA has three
interesting features. First, it is a single web-
based system that allows the user to select a wide
range of analytic tools and automatically apply
them to each protein in a proteome. In essence,
PA provides one-stop automatic high-throughput
analysis. Second, PA has the ability to explain its
predictions to users. PA is based on established
machine learning techniques, but makes every
prediction transparent to its users. Third, PA
allows users to create their own transparent
custom predictors without programming.

1. Introduction

High-throughput sequencing technology has made it
possible for even the smallest laboratory to sequence the
genome of organelles, viruses and bacteria. Indeed there
are now more than 1200 genome sequences deposited in
public databases (http://www.ebi.ac.uk/genomes/) and
this number is growing rapidly. Given the size and
complexity of these data sets, most researchers are

compelled to use automated annotation systems to
identify or classify individual genes/proteins in their
genomic data. A number of systems have been developed
over the past few years that permit automated genome-
wide or proteome-wide annotation. These include
GeneQuiz (Andrade et al., 1999), GeneAtlas (Kitson et
al., 2002), EnsEMBL (Hubbard et al., 2002), PEDANT
(Frishman et al., 2001), Genotator (Harris, 1997), Magpie
(Gaasterland and Sensen, 1996) and GAIA (Overton et
al., 1998). These use web-based tools to identify genes,
parse data, translate sequences, search against public
databases, identify domains or motifs and perform
predictive analyses. Many of these packages provide
user-customizable searches and graphical, hyperlinked
output. The level of interpretation or inference offered by
these annotation systems varies widely, with some
offering only raw data (lists of homologs, calculated
properties, etc.) in a consolidated format and others
inferring function or ontology through detailed analysis.

Our Proteome Analyst (PA) system focuses on the task of
prediction (classification). Our results show that
classification can be used for many annotations. The most
obvious is general-function, but we are also working on
sub-cellular localization, specific function and protein-
protein interaction are others we are working on.

To use classification, we require an ontology or
“dictionary” of class terms. Consequently, a number of
controlled vocabularies or ontologies of protein function
have started appearing. Among the first was the enzyme
classification scheme (E.C. number) developed by the
IUBMB and first employed in the ENZYME database
(Bairoch, 1993). Later, Riley (1993) developed
functional classification schemas for E. coli and other
microbes. Variations on these functional vocabularies
were added as other genomes and genome annotation

2

systems were published or developed (Blattner et al.,
1997; Andrade et al., 1999). More recently, these
ontologies have become somewhat more consolidated
with the establishment of the Gene Ontology Consortium
(Ashburner et al., 2000). The Gene Ontology (GO)
consortium uses a controlled vocabulary to provide
functional, process and component classification of
proteins through a dictionary of about 9,125 terms.
However the GO vocabulary may not be suitable for all
applications or in all situations. Obviously some choice
or vocabulary “customization” would help.

In addition to the choice of the controlled vocabulary, the
rules of protein/gene assignment or annotation have to be
sufficiently well defined to permit computer automation
and to support transparent explanation. A number of
approaches that incorporate text processing (word
counting) and artificial intelligence (neural nets, hidden
Markov models) have been developed in automated
genome annotation systems (Raychaudhuri et al., 2002;
Xie et al., 2002; Schug et al., 2002; Gaasterland and
Sensen, 1996). However, these approaches do not
necessarily lend themselves to “expert” validation or
transparent explanation since the decision process is
hidden. We have developed a web-based system called
Proteome Analyst (PA), to address these issues of:

1) customizable or flexible ontologies,

2) web-accessible automation and

3) transparency in proteome annotation,

PA makes extensive use of machine learning (ML)
techniques. In general, a classifier predicts one of a fixed
number of classes for each query item (Mitchell 1997).
Here, the classes are from a biological ontology and the
query items are protein sequences.

A classifier must be built before it can be used. A
common technique is to apply a known ML algorithm to a
set of labeled training items to produce a classifier. In our
case, each training item consists of a primary protein
sequence and the ontological class it has been assigned by
an expert. For example, the GeneQuiz (GQ) web-site
(http://jura.ebi.ac.uk:8765/ext-genequiz) has a list of
sequences from many organisms and their respective GQ
ontological classes. Therefore, a training set can be taken
directly from this site. Alternately, the SWISS-PROT
database (Bairoch and Apweiler 1997) contains PIR
numbers for many sequences and the GO web-site
(www.geneontology.org) provides tables to map PIR
numbers to their ontological classes. These can be used to
construct a training set. In this paper, we use GQ data for
training our general-function classifiers.

In general, a ML classifier algorithm requires features to
be associated with each training item. The existence or
absence of the features in each training item, along with
the known class for each item, are used to build a
classifier. In PA, a feature is a word or a phrase found in
the SWISS-PROT database entries of homologs to the

protein in question. Features are not provided in the
training set – they are computed automatically by PA.
Once built, a classifier takes a list of sequences with
unknown classes and uses the existence or absence of
features to predict their classes.

In addition to pre-built classifiers, we also show how PA
can be used to create custom classifiers. For example,
Nair and Rost (2002) used a classifier to predict the
localization of proteins in the cell. We show how PA can
be used by a molecular biologist with no programming
experience to quickly train a custom classifier that
improves their results. As another example, we train a
sample custom classifier for K+-Ion channel proteins
(Gallin and Spencer 2001).

In the context of PA, transparency is the ability to
provide formally sound and intuitively simple reasons for
predictions. PA bases its predictions on well-understood
concepts of conditional probabilities. Its explanations use
ordered lists of anomalies and stacked bar-graphs (Figure
9) that clearly display the evidence for each prediction.

Although there are a variety of tools for protein
annotation, PA makes the following scientific
contributions: First, PA provides a single, integrated,
high-throughput and web-based interface to a number of
different analytical tools. Entire proteomes can be
analyzed according to (currently) 33 properties, including
protein function and sub-cellular localization, without the
need for human intervention. Second, PA allows the user
to create custom predictors in a simple train-by-example
way. Third, provides clear and transparent explanations
for each of its predictions in a novel and intuitive manner.

2. Systems and Methods

Proteome Analyst is web-based. The user may choose to
either analyze a proteome or train a custom classification-
based predictor. In this section, we explain both.

2.1 Analysis of a Proteome

To analyze a proteome, the user must upload a FASTA
format file containing the sequences to be analyzed. The
user only needs to provide a name for the proteome, and
to navigate to the location of the file to be uploaded. PA
uploads the proteome file from the user’s file system,
extracts the sequences, and stores them in a MySQL
database (http://www.mysql.com).

PSI-BLAST (Altschul et al.) is the only tool that is always
run. It is used to find homologs. The user may change
various parameters of PSI-BLAST such as the number of
iterations, the database in which to search for homologs,
or the scoring matrix used. Other tools, like PSIPRED
(Jones 1999) for doing secondary structure prediction, are
optional. Optional tools can be configured to run only
under certain conditions – e.g. if the top homolog of a
sequence has an E-value in a specific range.

3

Two important tools are a classifier-based predictor and
PACardCreator. Currently, a user may select from several
pre-built general-function classifiers that use the GQ
ontology and were trained on sequences from individual
organisms: E.Coli, Yeast, Drosophila or a multi-organism
trained classifier trained with sequences from all three
organisms. Alternately, a user may select any custom
classification-based predictor that has been trained as
described in the next sub-section.

The PACardCreator generates a PACard for each
sequence – a summary of all the predicted properties of
each protein in a proteome. The top of a typical PACard is
shown in Figure 1. A PACard is based on the E.Coli
cards from the CyberCell Database (CCDB) (http://
redpoll.pharmacy.ualberta.ca/~bahram/CCDB.html).

Figure 1. The top part of a sample PACard.

Currently PA fills in up to 33 different fields: Name, PA
Predicted Class, GeneOntology, Specific Function, Pfam
Domain/Function, EC Number, Specific Reaction,
General Reaction, PROSITE Motifs (Falquet et al. 2002),
PSI-BLAST, Important Sites, Inhibitor, Interacting
Partners, Sequence, Secondary Structure, Location,
Metabolic Importance, Copy Number, RNA Copy No.,
Similarity, Number Of Amino Acids, Molecular Weight,
Transmembrane, Cys/Met Content, Structure Class,
Quaternary Structure, Cofactors, Metals Ions, Kcat Value
(1/min), Specific Activity (micromol) and Km Value
(mM). The underlined fields are computed and the others
are predicted.

First, PA attempts to find homologs in the SWISS-PROT
database using PSI-BLAST. For most of the PACard
fields, we simply fill in the value taken from the
associated field of the SWISS-PROT database entry for
the top homolog, the 1-nearest-neighbor, as a default
predictor for fields. However, if one of the top homologs
is a sequence from E.coli, then we use the CCDB entry of
this homolog (instead of the SWISS-PROT entry) to
predict many of the fields in the PACard. This is because
E.coli is one of the most accurately annotated proteomes
and is well summarized in the CCDB.

We use a more sophisticated approach to predict the
values for some of the fields. In particular, the
production-version of PA currently uses a classifier to

predict the general-function of each protein using the GQ
ontology and the beta version of PA uses a classifier for
the location (sub-cellular localization) field. As PA
evolves, we will replace many of the other simple
predictors with more sophisticated ones. The rest of this
paper focuses on such predictors.

Figure 2 shows the analysis results by ontology class,
displaying the ontological class predicted for this
instance, together with the probability that this instance
belongs to the class. In addition, it also gives the top two
homologs found during the PSI-BLAST search and
provides a link to the full PSI-BLAST output in standard
format. It also gives a link to the full Classifier output
(Figure 3), the PACard (Figure 1), and any other tools
that the user requested. In this case, there is a link to a list
of PROSITE Motifs that PA found in each sequence.

Figure 2. Proteins by ontological class.

Figure 3 shows that the predicted ontological class
(Transcription) of this sequence has a probability of
76.7%. Other possibilities are Energy metabolism at
20.6%, or Replication at 2.7%. A link is provided to an
explanation of how the prediction probabilities were
computed. This Explain facility is discussed later in the
paper and is one of the most important characteristics of
PA. We believe it is essential for widespread acceptance
of computational prediction techniques in bioinformatics.

Figure 3. The full classifier output for PRS4_Yeast.

4

2.2 Training a Custom Classifier

The production-version of PA includes several classifiers
that predict general-function. However, a user can also
train custom classifiers without doing any programming.
The first step in training a custom classifier is to provide a
name for the classifier and a corresponding training file in
FASTA format. Each sequence in the file must have a
FASTA tag that starts with a known class label. For
example, Figure 4 shows part of a training file for a
custom K-ion channel classifier, where the two training
sequences have known class labels KV1 and KV2.

>Kv1<VIC0 potassium voltage-gated channel,
shaker-related subfamily, member 2 [Homo
sapiens].
mtvatgdpadeaaalpghpqdtydpeadhecce...
>Kv2<VIC171 potassium channel protein shab11
- fruit fly (Drosophila melanogaster).
mvgqlqggqaagqqqqqqqatqqqqhskqqlqq...

Figure 4. The format of a classifier training file.

Once the classifier has been trained, the user may view a
classifier information page (Figure 5) that contains three
lists that summarize the training. The first list shows the
training sequences that PA excluded, since the PSI-
BLAST did not produce any usable features. The second
list contains training sequences that are most likely
labeled incorrectly, sorted from the highest to the lowest
probability of being mislabeled. The third list contains the
rest of the training sequences, sorted from the highest to
the lowest probability of being labeled correctly. The user
may ask why PA infers that a training sequence was
labeled correctly or incorrectly by selecting an Explain
hyperlink or looking at the raw PSI-BLAST results.

Figure 5. Classifier training results information.

3. Algorithms

As shown in Figure 6, classification-based prediction is a
two-step process: training/learning and prediction. In the
training/learning step, a classifier is built using a ML

classification algorithm by analyzing a set of training
sequences, each tagged by a known class label. In the
prediction step, the generated classifier is used to predict
the class label of an unknown query sequence.

Figure 6. The training and predicting phases of classification.

PA uses a pre-processing step that maps each sequence to
a set of features, as shown in Figure 7. The sequence is
first PSI-BLASTed against the SWISS-PROT database.
The SWISS-PROT entry of each of the top three
homologs (whose E-value is less than 0.001) is parsed to
extract a feature set (described below). The union of the
features for all three homologs forms the feature set for
the original sequence. If no homologs match the E-value
cutoff or if all features are removed by feature selection
(see the next sub-section) then the sequence will have no
features, so no prediction will be made.

Figure 7. Computing features for a protein sequence.

The features are from the SWISS-PROT KEYWORDS
field and any Interpro numbers (Apweiler 2001)
contained in the DBSOURCE field. We tried three
different feature extraction techniques. The full phrase
approach used each semi-colon delimited phrase as a
single feature. The simple token approach used all
individual words as separate features and the stemming
approach used stemmed individual words as features. For
example, Figure 8 shows part of the SWISS-PROT entry
for a homolog with the features used by PA in boldface.

DBSOURCE swissprot: locus MPPB_NEUCR, ...
 xrefs (non-sequence databases): ...
 InterProIPR001431,...
KEYWORDS Hydrolase; Metalloprotease; Zinc;
 Mitochondrion; Transit peptide;
 Oxidoreductase; Electron transport;
 Respiratory chain.

Figure 8. Extracting features from a SWISS-PROT entry.

The full phrase approach would produce 9 features. The
simple token approach produces 12 features. The 6 single

Machine-
learning

Algorithm
Classifier

Unknown
Sequence

prediction

training

Training
Sequences

Predicted
Class

Training
SequencesTraining

Sequences

Swiss-Prot

Psi-Blast
HomologSequence

Feature

HomologHomologFeature
parser

FeatureFeatureFeature

5

word tokens are the same, but the 3 double word features
are split into 6 single word features. The stemming
approach (Sahami 1999) extends the simple token
approach by stemming each feature. For example, if
another SWISS-PROT entry contained the feature
transporter, it would be stemmed to transport so that the
features would match. The full phrase approach produced
the most accurate classifiers, so we use it in PA.

3.1 Feature Selection – Wrappers

Unfortunately, PA extracts thousands of features from the
SWISS-PROT database and standard ML algorithms do
not scale well with a large number of features. Some
features, like Complete proteome and 3D-structure appear
very often, and so have little predictive value. Therefore,
they are put into a list of stop-words that are immediately
filtered from the feature sets during training.

Since manually selecting or filtering features is tedious
and error-prone, we investigated an automatic feature
selection technique. The information content [Mitchell
1997] is computed for each feature generated by the set of
training sequences. Informally, the information content of
a feature is a measure of how well that feature
differentiates between different classes in the ontology.
For example, a feature that occurs in every training
sequence of every class has information content 0, while a
feature that occurs in every training sequence of a single
class, but no other classes, has high information content.

We use a wrapper (Kohavi and John 1997) to select the
subset of all the features, whose information content is
above a threshold. When PA trains a classifier, it actually
trains a series of classifiers with different wrapper
thresholds. The first classifier uses all of the features.
Each subsequent classifier is trained after removing an
additional 5% of the features that have the lowest
information content (Mitchell 1977). After the 20th
round, only 5% of the features are left. We use 5-fold
cross-validation (described in the next sub-section) to
compare the classification accuracies of these 20 rounds
and choose the information content threshold that
produces the highest prediction accuracy.

3.2 Classifier Techniques

We tried four different ML techniques in PA: Naïve
Bayes (NB) (Mitchell 1997), Tree-augmented Naïve
Bayes (TAN) (Friedman et al. 1997), Artificial Neural
Network (ANN) (Mitchell 1997) and Support Vector
Machines (SVM) (Burges 1998). The simplest of these
techniques is NB. Given a description for an instance, the
NB classifier returns the probability that this instance
belongs to each possible class, Pi, for each of the k
classes, C1 … Ck.:

where +Fj and -Fj, respectively denote that the j-th feature
appears or doesn’t appear in the description. Using Bayes
rule and the (very strong) assumption that features are
independent, given the class, this corresponds to:

where +cij and -cij respectively denote the number of
training instances with class label Ci that include and do
not include the feature Fj, the total number of training
instances with class label Ci is denoted ni and the total
number of training instances is denoted n . K is a
normalization constant to make the sum of the
probabilities 1 . We also use a Laplacian correction
(Mitchell 1997) to avoid indeterminate forms: 0/0 as
explained in a later section.

TAN’s are similar to NB’s, but can include a limited
range of dependencies between pairs of features. We use a
three-level ANN, with the number of input nodes equal to
the number of features, a single layer of hidden units and
a number of output units equal to the number of ontology
classes. We used 10 hidden units, but the experiments
showed that varying this number had little effect. Training
consisted of 100 cycles through the training set. A simple
SVM learns how to classify objects into two classes using
hyper-planes that separate the training data by a maximal
margin. We used the linear SVM kernel (Burges 1998).
We compare the accuracy of classifiers using 5-fold cross
validation (Mitchell 1997).

4. Experminents

4.1 General-Function Prediction

We began by building a series of classifiers to predict the
general-function of proteins, based on the GQ ontology.
Each classifier was trained using training data from a
single organism obtained from the GQ web-site
(http://jura.ebi.ac.uk:8765/ext-genequiz). We selected
three organisms with highly-annotated sequences in the
SWISS-PROT database: E.coli (2370 sequences), Yeast
(2359 sequences) and Fly (Drosophila melanogaster)
(3842 sequences).

We began by evaluating the effects of wrapping. For
example, the unwrapped Naïve Bayes classifier had an
accuracy of 82.4%. However, the accuracy changes as a
function of the percentage of features that were filtered by
a wrapper. The best accuracy of 82.5% was achieved by
removing 15% of the features and the accuracy was still at
the original 82.4% level if 55% of the features are
removed. Each of the ML techniques had different
improvements to prediction accuracy when wrappers were
used. For example, the TAN classifier improved from
67% to 77.2% on E.coli. Even in cases where the wrapper
did not significantly increase accuracy, it is still very
helpful, since removing many features has two

†

Pi = P C = Ci |
+F1,

-F2,...,+
+Fm()

†

Pi =
(+ci1¥

-ci2 ¥ ...¥+cim)
K * n * ni()m-1

6

advantages. First, it produces faster classifiers, which is
important in the high-throughput domain. Second, it
simplifies the prediction explanation process. Table 1
compares the best accuracy (after wrapping) of the ML
techniques described in the previous section. ANNs and
SVMs have the best prediction accuracy, by about 10%.

Table 1. Accuracy of four classifier algorithms with wrappers.

ORGANISM NB TAN ANN SVM

E. COLI 82.5% 77.24% 93.1% 87.1%
YEAST 78.8% 74.0% 95.2% 85.1%
FLY 76.6% 72.9% 91.8% 81.1%

We then trained several custom classifiers to determine
whether the same ML techniques can be used to
accurately predict other PACard fields.

4.2 K+-Ion Channel Proteins

We performed a case study to determine how well our
four wrapped ML algorithms would fare when each
sequence had a large number of homologs across several
different ontological classes. We wanted to determine if
our techniques could automatically sift through the
features and identify the right features.

Voltage-gated potassium channels (VKC) are intrinsic
membrane proteins that respond to changes in
transmembrane electric field by changing shape and
selectively allowing potassium ions to pass through the
lipid bi-layer (Gallin and Spencer 2001). We obtained 78
protein sequences that were divided into four classes
(KV1 – 23 sequences, KV2 – 19 sequences, KV3 – 17
sequences and KV4 – 19 sequences) from W. Gallin’s
lab. Many of the VKC sequences have close homologs
that lie in classes other than their own class.

PA produced an NB classifier that initially made only 3
errors during 5-fold cross validation. However, one error
was a labeling error in the training set. We eliminated the
other two errors by modifying the feature extraction
algorithm. Originally, we performed three PSI-BLAST
iterations before picking the top 3 homologs to use for
feature extraction. We found that when there are many
homologs in different ontological classes, better accuracy
can be obtained by using only a single PSI-BLAST
iteration (which is equivalent to a Blast-P computation).

The reason is that multiple PSI-BLAST iterations tend to
promote sequences from the most prevalent organisms in
the SWISS-PROT database, at the expense of sequences
from minority organisms, even though the minority
sequences may have better similarity. The lesson is that
when you train a classifier for predicting properties that
differentiate based on small differences, a single iteration

is better. After making this change, the cross-validation
accuracy increased to 100% on the K-Ion training set.

4.3 Sub-cellular Localization

In the 2002 ISMB conference, Nair and Rost (2002)
presented some interesting results on predicting sub-
cellular localization, using keywords from SWISS-PROT.
They shared their training data (3146 sequences) and
ontology (10 classes) with us and we constructed a PA
custom classifier, using only their raw primary sequence
data and sub-cellular class labels. We did not do any
manual feature identification. We also used their full set
of sequences, instead of the smaller set of 1146 sequences
that produced their good prediction results (81.5%
accuracy on 36.9% coverage). PA automatically produced
a wrapped NB classifier with 87.8% accuracy on 100%
coverage, using 5-fold cross validation.

5. Discussion

It is not only necessary for a protein prediction tool to be
accurate, but it is also necessary that it can clearly explain
its predictions to the user. This is important for two main
reasons. First, it helps biologists to develop confidence in
the tool and second, it can help us find and correct errors
that occur in prediction.

5.1 Explaining a Prediction/Classification

Proteome Analyst (PA) provides an explanation
mechanism to help users understand why a classifier
made a particular classification. It allows a user to
examine the classified protein itself, as well as the
proteins on which the classifier was trained. The user can
then examine which particular features added the most
evidence to a classification. We will use the protein
PRS4_Yeast as an example. If the user clicks the Explain
hyperlink of the PRS4_Yeast protein of Figure 2, or the
Explain hyperlink from the output graph of Figure 3, an
Explain page (Figure 9) is displayed.

Each line in the graph represents a class in the ontology
and five sub-bars of a particular color represent the
presence of 5 features in the training sequences. In fact, a
sub-bar may represents the absence of a feature, as
described in the next sub-section. However, for
simplicity, in this sub-section, we will assume that sub-
bars mark the presence of a feature (and this is the case in
Figure 9) where the features are: nuclear protein,
ipr003960, ipr003959, ipr003593 and atp-binding.

7

Figure 9. Part of the Explain page for PRS4_Yeast.

Each composed bar on a single line represents the
combined probability that the protein is in the class
represented by the line. The red nuclear protein sub-bars
occur in the class lines of Transcription and Replication
and in no other class lines. This indicates that this feature
only occurred in the training data of these two classes.
The relative lengths of the sub-bars indicate the relative
number of times the feature occurred in the different
training sets. However, the relationship is exponential, not
linear (as described in the next sub-section).

Similarly, the yellow sub-bar represents the occurrence of
the feature ipr03593, which only appeared in training data
for the classes: Cellular processes, Replication,
Transcription and Regulatory functions and it appeared
the most times (by a small margin) in Cellular Processes.
It is interesting that the strongest piece of counter-
evidence (against Transcription) is the existence of the
feature ipr003960 (purple bar), which in the training data,
only occurred for sequences in the Cellular Processes
class.

5.2 Explaining A Predictor/Classifier

PA allows the user to inspect all of the training data that
contained a feature by clicking a hyperlink. In effect, this
is not explaining a particular prediction – it is explaining
how the predictor works. For example, PA displays all of
the training sequences that contain the feature, ipr003960,
sorted by class, as shown in Figure 10.

From this feature (token) information page, the user can
obtain the SWISS-PROT entry of the training sequence
and try to determine if it was mislabeled in the training set
or if there is a legitimate divergence of function between
the query protein (PRS4_Yeast) and the homolog in the
training sequence (FTSH_ECOLI). In this case, since the
feature is an Interpro number, the Interpro site
(http://www.ebi.ac.uk/interpro) can be accessed for more
information. In fact, ipr3960 is a sub-family of ipr3959
and represents a large family of ATPases whose key
feature is a shared conserved region of about 220 amino
acids that contain an ATP-binding site. The PA Explain

8

mechanism lets the user browse the evidence for any
prediction, right back to the training data for the predictor
being used. A more detailed description of the
explanation facility can be found in (Szafron et al. 2003).

Figure 10. Second level of Explain – viewing the feature
ipr003960 in the training set.

5.3 The Importance of Transparency

The PA Explain mechanism is the most obvious example
of prediction transparency in PA. The first level can be
used to understand how a particular protein prediction
was made. The second level can be used to understand the
internal structure of a predictor – how its training data
affects its predictions. Prediction transparency is very
important for two reasons. First, it is hard to accept
predictions unless you understand how they were made.
After using the Explain mechanism, you gain confidence
that the predictor is working properly. Second, even the
best predictors will make wrong predictions! They should
not be trusted blindly.

There are three important situations in which
classification-based predictors fail. First, a classifier is
only as good as its training data and the current databases
that are used to obtain training data are far from perfect.
This is why PA clearly labels “suspicious” training data
as probably mislabeled, after it constructs any new
classifier. This is another example of transparency in PA.
PA may be directed to use these suspicious sequences in a
classifier, but it clearly identifies them. A more
conservative user can retrain a new classifier, without
these suspicious sequences. We have found many
suspicious sequences while training classifiers.

The second way that predictors can fail is if there is not
enough training data to uniquely identify a single
prediction class. In PA, this is characterized by a full-
classifier graph (e.g. Figure 3) where there are multiple
bars with significant probabilities. The third way is to
pick an inferior classifier algorithm, which cannot
adequately use the training data to differentiate between
query sequences. The difference in accuracies of the four

classifiers in Table 1 is an illustration of this since the
same training and query sequences were used for all four.
A trend in ML in general, and recently in bioinformatics,
has been to always select the algorithm with the best
accuracy. If we had followed that advice we would be
using an ANN or SVM classifier in PA. But we are not!
ANN and SVM do not produce classifiers with good
transparency. In the production version of PA, we have
opted for a classifier with up to 10% worse accuracy so
that we can provide transparent predictions. We believe
that this is essential in this domain, where even the best
predictors make errors due to bad training data or not
enough training data and these errors must be found.
Would you prefer a predictor that predicts sub-cellular
localization correctly 87% of the time with clear
explanations or one with prediction accuracy of 92%
whose predictions cannot be explained?

Why did our custom classifier attain such high-accuracy
on the whole sub-cellular localization dataset, when we
used the SWISS-PROTT database for features and so did
Nair and Rost (2002)? The PA Explain feature made it
easy to find the answer. Thirteen of the fourteen most
important features that the PA-built classifier used were
INTERPRO numbers, not KEYWORD entries.

We have constructed Proteome Analyst (PA), a web-
based tool for high-throughput prediction of protein
features. We support the construction of custom
classification-based predictors with no programming
knowledge required. Every prediction made by PA can be
explained in a transparent way. PA is available at:
www.cs.ualberta.ca/~bioinfo/PA.

Acknowledgements

We would like to thank Cynthia Luk, Samer Nassar and
Kevin McKee for their contributions to the original
prototype of PA during the summer of 2001. We would
also like to thank molecular biologists, Warren Gallin and
Kathy Magor for their valuable feedback in using
Proteome Analyst and Nair and Rost for providing us
with their sub-cellular localization training data. This
research was partially funded by research or equipment
grants from the Protein Engineering Network of Centres
of Excellence (PENCE), the National Science and
Engineering Research Council (NSERC), Sun
Microsystems and the Alberta Ingenuity Centre for
Machine Learning (AICML).

References

Altschul, S. F., Madden, T.L., Schäffer, A.A., Zhang,, J.,
Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25,
3389-3402.

Andrade M.A., Brown N.P., Leroy C., Hoersch S., de
Daruvar A., Reich C., Franchini A., Tamames J.,

9

Valencia A., Ouzounis C., Sander C. (1999) Automated
genome sequence analysis and annotation.
Bioinformatics, 15, 391-412.

Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A.,
Birney, E., Biswas, M., Bucher, P., Cerutti, L., Corpet,
F., Croning, M.D.R., Durbin, R., Falquet, L.,
Fleischmann, W., Gouzy, J., Hermjakob, H., Hulo, N.,
Jonassen, I., Kahn, D., Kanapin, A., Karavidopoulou,
Y., Lopez, R., Marx, B., Mulder, N.J., Oinn, T.M.,
Pagni, M., Servant, F., Sigrist, C.J.A., Zdobnov, E.M.
(2001) The InterPro database, an integrated
documentation resource for protein families, domains
and functional sites. Nucleic Acids Research, 29, 37-40.

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler
H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S.,
Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L.,
Kasarskis A., Lewis S., Matese J.C., Richardson J.E.,
Ringwald M., Rubin G.M., Sherlock G. (2000) Gene
ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet., 25, 25-29.

Bairoch A. (1993) The ENZYME data bank. Nucleic
Acids Res., 21, 3155-3156.

Bairoch A., Apweiler R. (1997) The SWISS-PROT
protein sequence database: its relevance to human
molecular medical research. J. Mol. Med., 75, 312-316.

Blattner F.R., Plunkett G. 3rd, Bloch C.A., Perna N.T.,
Burland V., Riley M., Collado-Vides J., Glasner J.D.,
Rode C.K., Mayhew G.F., Gregor J., Davis N.W.,
Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B.,
Shao Y. (1997) The complete genome sequence of
Escherichia coli K-12. Science, 277, 1453-1474.

Burges, C.J.C. (1998) A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery, 2, 121-167.

Falquet L., Pagni M., Bucher P., Hulo N., Sigrist C.J,
Hofmann K., Bairoch A. (2002) The PROSITE
database, its status in 2002. Nucleic Acids Res., 30,
235-238.

Friedman, N., Geiger, D., Goldszmidt, M. (1997)
Bayesian network classifiers. Machine Learning
Journal, 29, 131-163.

Frishman D., Albermann K., Hani J., Heumann K.,
Metanomski A., Zollner A., Mewes H. W. (2001)
Functional and structural genomics using PEDANT.
Bioinformatics, 17, 44-57.

Gaasterland T., Sensen C.W. (1996) MAGPIE: automated
genome interpretation. Trends Genet., 12, 76-78.

Gallin, W.J. and Spencer, A.N. (2001). Evolution of
Potassium Channels. In Archer, S.L. and Spencer A.N.
(eds), Potassium Channels in Cardiovascular Biology,
Kluwer, Dordrecht, 3-16.

Harris N.L. (1997) Genotator: a workbench for sequence
annotation. Genome Res., 7, 754-762.

Hubbard T., Barker D., Birney E., Cameron G., Chen Y.,
Clark L., Cox T., Cuff J., Curwen V., Down T., Durbin
R., Eyras E., Gilbert J., Hammond M., Huminiecki L.,
Kasprzyk A., Lehvaslaiho H., Lijnzaad P., Melsopp C.,
Mongin E., Pettett R., Pocock M., Potter S., Rust A.,
Schmidt E., Searle S., Slater G., Smith J., Spooner W.,
Stabenau A., Stalker J., Stupka E., Ureta-Vidal A.,
Vastrik I., Clamp M. (2002) The Ensembl genome
database project. Nucleic Acids Res., 30, 38-41.

Jones, D.T. (1999) Protein secondary structure prediction
based on position-specific scoring matrices. J. Mol.
Biol., 292, 195-202.

Kitson, D.H., Badretdinov, A., Zhu, Z.Y., Velikanov, M.,
Edwards, D.J., Olszewski, K., Szalma, S., and Yan, L.
(2002) Functional annotation of proteomic sequences
based on consensus of sequence and structural analysis.
Brief Bioinformatics, 3, 32-44.

Kohavi, R. and John, G.H. (1997) Wrappers for feature
subset selection. Artificial Intelligence, 97, 273-324.

Mitchell, T.M. (1997) Machine Learning. McGraw-Hill,
N.Y.

Nari, R. and Rost, B. (2002) Inferring sub-cellular
localization through automated lexical analysis.
Bioinformatics, 18, S78-S86.

Overton GC, Bailey C, Crabtree J, Gibson M, Fischer S,
Schug J. (1998) The GAIA software framework for
genome annotation. Pac Symp Biocomput., 291-302.

Raychaudhuri S., Chang J.T., Sutphin P.D., Altman R.B.
(2002) Associating genes with gene ontology codes
using a maximum entropy analysis of biomedical
literature. Genome Res., 12, 203-214.

Riley M. (1993) Functions of the gene products of
Escherichia coli. Microbiol Rev., 57, 862-952.

Sahami, M. (1999). Using Machine Learning to Improve
Information Access. Ph.d. thesis, Computer Science
Department, Stanford University.

Schug J., Diskin S., Mazzarelli J., Brunk B.P., Stoeckert
C.J. Jr. (2002) Predicting gene ontology functions from
ProDom and CDD protein domains. Genome Res., 12,
648-655.

Szafron, D., R. Greiner, P. Lu, D. Wishart, C. MacDonell,
J. Anvik, B. Poulin, Z. Lu and R. Eisner (2003)
Explaining Naive Bayes Classifications, TR03-09, Dept.
of Comp. Science, U. of Alberta

Xie H., Wasserman A., Levine Z., Novik A., Grebinskiy
V., Shoshan A., Mintz L. (2002) Large-scale protein
annotation through gene ontology. Genome Res., 12,
785-694.

