To appear in the

Proceedings of the Fourteenth International Conference on Artificial Intelligence (IJCAI-95),

Montreal, August 1995.

Practical PAC Learning

Dale Schuurmans
Department of Computer Science
University of Toronto

Toronto, Ontario M5S 1A4, Canada

dale@cs.toronto.edu

Abstract

We present new strategies for “probably ap-
proximately correct” (pac) learning that use
fewer training examples than previous ap-
proaches. The idea is to observe training exam-
ples one-at-a-time and decide “on-line” when to
return a hypothesis, rather than collect a large
fixed-size training sample. This yields sequen-
tial learning procedures that pac-learn by ob-
serving a small random number of examples.
We provide theoretical bounds on the expected
training sample size of our procedure — but es-
tablish its efficiency primarily by a series of ex-
periments which show sequential learning actu-
ally uses many times fewer training examples in
practice. These results demonstrate that pac-
learning can be far more efficiently achieved in
practice than previously thought.

1 Introduction

We consider the standard problem of learning an accu-
rate classifier from examples: given a target classifica-
tion scheme ¢: X — Y defined on a domain X, we are
interested in observing a sequence of training examples
({(z1,e(21)), ..., (xs, c(24))) and producing a hypothesis
h:X —Y that agrees with ¢ on as much of the domain as
possible. Here we adopt the standard batch training pro-
tocol, where after a finite number of training examples
the learner must produce a hypothesis h, which is then
tested ad infinitum on subsequent training examples.
In practice, domain objects can be represented in
many different ways (e.g., boolean or real-valued vectors,
or structured descriptions like strings, graphs, terms,
etc.), and so too can hypotheses (e.g., decision trees,
neural networks, nearest neighbor classifiers, etc.). How-
ever, regardless of the specific representation used, the
central question is always how best to extrapolate the
classifications of a few domain objects to an accurate
classification scheme over the entire domain.

Motivation: Classification learning is by far the most
studied in machine learning research. The immense in-
terest in this problem arises from the fact that classi-
fication itself is an important subtask in many appli-

Russell Greiner
Siemens Corporate Research

Princeton, NJ 08540, USA

greiner@scr.siemens.com

cations — in fact, comprising the central function of
most expert systems [Clancey, 1985]. The importance
of learning in this context is that we often lack the
requisite knowledge needed to specify an appropriate
classifier, and yet have access to many correctly clas-
sified examples. In such situations, we can attempt
to exploit the wealth of available data to overcome
inadequate prior knowledge — and hence, use learn-
ing as an effective classifier synthesis tool. In fact,
there are numerous examples where learning systems
have produced classifiers that outperform the best avail-
able “hand-coded” systems, e.g., [le Cun, et al., 1989;
Weiss and Kulikowski, 1991].

Although empirical research tends to examine the per-
formance properties of particular hypothesis guessing
strategies on specific domains, the underlying goal of
classification learning research is to uncover whatever
general principles might underly the effective extrapola-
tion of training object classifications to entire domains.
However, it has often been observed that there really is
no such thing as a “general purpose” extrapolation strat-
egy [Schaffer, 1994] — a particular strategy performs well
on a specific application only by fortuitous predisposi-
tion: 1t just happens to “guess right” on unseen domain
objects, whether by prior knowledge or luck. To guaran-
tee success, one must supply prior constraints.

The current trend towards theoretical analysis in ma-
chine learning represents a fundamental shift in emphasis
away from discovering “universal” extrapolation strate-
gies, towards explicitly acknowledging the role played
by prior constraints in yielding successful extrapolation.
The role of a theoretical analysis is not to prescribe prior
knowledge/constraints, but to determine the best that
can be achieved given whatever is known beforehand.

1.1 Pac-learning theory

The most influential analysis of classification learning
is the theory of “probably approximately correct” (pac)
learning introduced by Valiant [1984]. Rather than spec-
ulate about the mechanisms that might underly “gen-
eral purpose” classification learning, Valiant’s idea was
to characterize those situations where successful learning
could be provably achieved, and where it is demonstrably
impossible.

Problem: Pac-learning theory adopts an “i.i.d. ran-
dom examples” model of the learning situation, which

assumes domain objects are independently generated by
a fixed distribution Py and labelled according to a fixed
target concept ¢: X — {0, 1}. Under this model, the er-
ror of a hypothesis h: X — {0, 1} with respect to ¢ and
Py is given by Pc{h(z) # c¢(z)}. Here we consider the
difficulty of meeting the so-called pac-criterion: produc-
ing a hypothesis h with error at most ¢, with probability
at least 1 — 6, for specified accuracy and reliability pa-
rameters € and 6. Of course, the difficulty of achieving
this criterion depends on how much we know about ¢
and Py beforehand. Pac-learning theory adopts a model
of prior knowledge where we assume the target concept
¢ belongs to some known class C'; but nothing is known
about the domain distribution Fs. Given this model, we
naturally consider what can be achieved in the “worst
case, distribution-free” sense:

Definition 1 (Pac-learning problem) A learner L
solves the pac-learning problem (X, C,¢,8) (or “pac(e,§)-
learns C'”) if, for any ¢ in C and Py, L produces a hy-
pothesis h such that Py {h(z)#c(x)} < € with probability
at least 1—6 (over possible training sequences).

For example, we might be interested in solving the
problem (X = R'% C = halfspace,e = 0.01,6 = 0.05),
where domain objects are described by 10 real-valued
attributes, the target concept is known to be some linear-
halfspace of IR'?, and we wish to produce a hypothesis
with 1% error with probability at least 95%. Our goal is
to solve these learning problems as efficiently as possi-
ble — i.e., using a minimum of data and computational
resources. The primary focus of this paper is on improv-
ing the data-efficiency of pac-learners, rather than their
computational-efficiency.

Results: Some of the most important technical results
of pac-learning theory concern the data resources needed
to solve pac-learning problems. Intuitively, it should
take more training examples to pac-learn a complex con-
cept class than a simple one, since it is harder to disam-
biguate possible target concepts from a complex class.
The question is: how can one measure the representa-
tional complexity of a concept class C' so as to precisely
determine the number of training examples needed to
pac(e, §)-learn C'?7 It turns out that just such a measure
is provided by the Vapnik-Chervonenkis (VC) dimension
of C:! Ehrenfeucht et al. [1989] have shown that, for any
concept class C' with ve(C) = d, the minimum number
of training examples needed by any learner to pac(e, §)-
learn C'is at least t gy v (C €, §) = max { ‘é;el , % In %} .
Furthermore, there is a simple fized-sample-size learn-
ing procedure, F, that always meets this lower bound to
within constant and log factors, and hence learns with
near-optimal data-efficiency; see Figure 1. In particu-
lar, Blumer et al. [1989] have shown that for any? con-

!The VCdimension measures how “fine grained” C is by
the maximum number of domain objects C can independently
label [Vapnik and Chervonenkis, 1971]. This is an abstract
combinatorial measure which applies to arbitrary domains
and concept classes. Moreover, it often gives intuitive results
(e.g., the class of halfspace concepts on IR" is defined by n+1
“free parameters” and also has a VCdimension of n + 1).

2C must satisfy certain (benign) measurability constraints

Procedure F (C, ¢, §)

CoLLECT Tg(C,¢€,6) training examples, sufficient to elimi-
nate all e-bad concepts from C with prob. at least 1—6.

RETURN any h € C that correctly classifies every example.

Figure 1: Procedure F

cept class C, Tpeuw(C, €, 6):max{% log, %, %log2 %}
random training examples are sufficient to ensure F
pac(e, é)-learns C', where d = ve(C). (This result has
since been improved by Shawe-Taylor et al. [1993] to
Teran(C,e,6)= 5(1—1—\/2) (len % +1n %) .) Overall, these
are powerful results as they characterize the necessary
and sufficient training sample sizes needed to pac-learn
any concept class C' in terms of a “tight” linear function
of its VCdimension.

1.2 Issue

However, despite these impressive results, pac-learning
theory has arguably had little direct impact on the actual
practice of machine learning. Why? Beyond criticisms of
certain modelling assumptions (e.g., noise-free examples,
bivalent classifications, etc.— which actually have been
addressed the pac-framework, cf. [Haussler, 1992]), the
most prevalent criticism of pac-learning theory is that
the actual numbers of training examples it demands are
far too large to be practical.

Example: Consider the (X = R!° C' = halfspaces, ¢ =
0.01,6 = 0.05) problem mentioned earlier. Noting that
ve(C) = 11, we can simply use Tpppw to determine a
sufficient sample size for Procedure F. But here we find
Tpenw demands 91,030 training examples! (Even the
improved Tsr 45 demands 15,981 examples in this case.)
This seems like an outrageous number given the appar-
ently modest parameter settings. Moreover, these results
compare poorly to the empirical “rule of thumb” that,
for a concept class defined by w free parameters, roughly
i w? training examples are needed to achieve an er-
ror of ¢ [Baum and Haussler, 1989]. Applied here, Typumms
demands only 1,100 training examples — an order of
magnitude fewer than Tersp. (Of course, this rule of
thumb comes with no guarantees, but it does give an
indication of how many training examples practitioners
would deem “reasonable” for this problem.) Further-
more, Typpw and Tsr . are orders of magnitude larger
than the best known lower bound ¢z x+, Which demands
only 32 training examples in this case! See Table 1 in
Section 3 for a direct comparison.

This shows that, although the theoretical upper and
lower bounds are tight up to constant and log factors,
they give results that are orders of magnitude apart in
practice. This has drastic consequences for the applica-
bility of the theory, since in practice it is often training
data, not computation time, that is the critical resource.
I.e., cutting the training sample size in half would be a
significant improvement in most applications, even if this
came with a slight increase in overall computation time.

[Blumer, et al., 1989], which we will assume throughout.

The apparent inefficiency of pac-learning has lead to
much speculation about the sources of difficulty. The
predominant “folk wisdom” is that the large sample
sizes follow from the worst case nature of the pac-
guarantees [Haussler, 1990] — that is, the worst case
bounds are inherently unreasonable because they must
take into account “pathological” domain distributions
and target concepts which force large training sample
sizes (moreover, the argument continues, these patho-
logical situations do not arise in “typical” applications).
In fact, this belief motivates much research that makes
distributional assumptions in order to improve data-
efficiency, e.g., [Benedek and Itai, 1988; Aha, et al., 1991;
Bartlett and Williamson, 1991]. However, notice that
this line of reasoning is actually quite weak: First of
all; no-one can demonstrate that these “pathological”
situations really exist (for this would be tantamount to
improving the lower bound tzux\). Secondly, it is clear
from the previous example that the current bounds are
loose, and can likely be substantially improved — e.g.,
Tsrap and tgyy differ by roughly a factor of 64 1n %

Approach: In this paper we investigate an alternative
view: perhaps the simplistic (collect; find) learning pro-
cedure F is not particularly data-efficient. This raises the
obvious question of whether alternative learning strate-
gies might be more data-efficient than F. Here we investi-
gate sequential learning procedures that observe training
examples one-at-a-time and autonomously decide “on-
line” when to stop training and return a hypothesis.
The idea is that we should be able to detect situations
where an accurate hypothesis can be reliably returned,
even before the sufficient sample size bounds have been
reached (e.g., we might detect that C' has been reduced
to a single possible target). The hope is that, in this
way, we can significantly reduce the number of training
examples observed, while still meeting the ezxact same
pac-criterion as before: namely, that an e-accurate hy-
pothesis be returned with probability at least 1—6 for any
target concept c€C and distribution Py. An underlying
assumption here is that we are willing to incur a slight
computational penalty to obtain a significant improve-
ment in data-efficiency. This is motivated by the fact
that training data is usually the most critical resource in
practical learning applications.

The remainder of this paper develops a few simple
sequential learning procedures that (i) are correct pac-
learners, (ii) are provably data-efficient, and (i) use
many times fewer training examples in empirical case
studies.

2 Sequential pac-learning

A sequential learner L consists of a stopping rule T,
that maps training sequences to stopping times, and a
hypothesizer Hy, that maps finite training sequences to
hypotheses. Our basic strategy for constructing sequen-
tial pac-learners is to take an arbitrary consistent hy-
pothesizer H for C' (which produces hypotheses h € C
that correctly classify every observed training example),
collect H’s hypotheses, and test these against subsequent
training examples until one proves to have sufficiently

Procedure R (C,¢, 6, H)

FIX a sequence {6;}7° such that E’Si = 6. Call H to obtain
an initial hypothesis ho.

SEQUENTIALLY observe training examples (z:,y:), t =
1,2,...:
IF current hypothesis h; makes a mistake, call H to
obtain a consistent h;y1 (drop h;, begin testing hiy1).

RETURN current hypothesis h; if it correctly classifies
%ln % consecutive training examples.

Figure 2: Procedure R

small error. The main challenge is finding an appropri-
ate stopping rule that guarantees the pac-criterion, while
observing as few training examples as possible.

Note that, in general, a sequential learner observes a
random, rather than fixed, number of training examples.
Thus, to compare the data-efficiency of our approach
with previous techniques, we must compare a distribu-
tion of sample sizes to a fixed number. There are a num-
ber of ways one could do this, but we focus on what is
arguably the most natural measure: comparing the av-
erage (i.e., expected) training sample size of a sequential
learner with the fized sample size demanded by previous
approaches to solve the same pac-learning problem.

Obvious approach: Perhaps the most obvious strat-
egy for sequential pac-learning is based on the idea of
repeated significance testing: test a series of hypothe-
ses generated by H until one correctly classifies a suffi-
cient number of consecutive training examples; see Pro-
cedure R in Figure 2.3 Although this is a plausible ap-
proach (which, in fact, works well in practice), it is hard
to prove reasonable bounds on R’s expected sample size.
The problem is that R rejects “good enough” hypotheses
with high probability, and yet takes a long time to do
so (i.e., R rejects hypotheses of error ¢ with probability
1 — 6, but this takes % expected time). Thus, if H pro-
duces a series of “borderline” hypotheses, R will take a
long time to terminate (expected time about %, which is
not very good). Fortunately, there is a better approach.
Better approach: Here we introduce a novel learning
procedure, S (Figure 3), which is also based on repeated
significance testing, but avoids the apparent inefficiency
of R’s “survival testing” approach. S is based on two
ideas: First, instead of throwing away H’s hypotheses
after a single mistake, S saves hypotheses and contin-
ues testing them until one proves to have small error.
Second, S identifies accurate hypotheses by using a se-
quential probability ratio test (sprt) [Wald, 1947] to test
each candidate “on-line” (in parallel); Figure 4. Thus,
S never rejects a potentially acceptable hypothesis, and
quickly identifies any sufficiently accurate candidate.
Procedure S is a correct pac-learner in the exact same
sense as F: The key property of S is that its call to sprt

#Variants of Procedure R have been proposed by many au-
thors in the past [Linial, et al., 1991; Oblow, 1992], primarily
to achieve “nonuniform” pac-learning. However, the goals of
nonuniform pac-learning fundamentally differ from what we
are trying to accomplish here (see Footnote 6).

Procedure S (C,¢, 6, H)

FIX a sequence {§; = WZ—‘EQ 7° and a constant £ > 1. Initialize

a list of hypotheses with ho, obtained by calling H.
SEQUENTIALLY observe training examples (z¢,y:), t =

1,2,...:

IF the most recent hypothesis h; makes a mistake, call

H to add a new, consistent hypothesis h;y1 to the list.

TEST all hypotheses in the list (in parallel) by calling
sprt(hi(z)#c(z), <, €, 6;, 0)

for each h; (when generated).

RETURN the first generated hypothesis h; sprt accepts.

Figure 3: Procedure S

eventually accepts any —-good hypothesis with proba-
bility 1 (wpl), but only accepts an e-bad hypothesis h;
with probability at most é;. This implies that S even-
tually halts wpl, and returns an e-good hypothesis with
probability at least 1 — é, for any target concept c€ C
and domain distribution Py (thus, achieving the exact
same worst case pac-guarantees as F).4 This property
also allows us to prove a reasonable upper bound on the
average number of training examples S observes for any
target concept c€C and domain distribution Fx.

Theorem 1 For e > 0, § > 0, and any (well behaved)
concept class C with ve(C') = d: using a consistent hy-
pothesizer H for C' and any constant k > 1, Procedure S
observes an average training sample size of at most

ET5(C,e,6) < (#) L ([2.12kd + 3]In 145 4+ 1n L)

k=1=Ink J ¢ €
for any target concept ¢ € C and distribution Py.

Although this is a crude bound, it is interesting to note
that it scales the same as Tggrw and Tsras. Moreover,
this bound actually beats Tszrw and Tsr 45 for small val-
ues of § [Schuurmans, 1995]. However, as shown below,
S actually performs much better in practice than any
bounds we can prove about its performance. Since this
is not a possibility for fixed-sample-sized approaches, we
expect S to perform much better than Tsgrw and Tsrax
in practical applications.

Before demonstrating S’s advantage in empirical tests,
we first note that there are inherent limits to the data-
efficiency even of sequential learning.

Theorem 2 For sufficiently small e and 6, and any con-
cept class C' with ve(C) = d > 2: any learner that al-
ways observes (for any fized ¢ € C and Py) an average
training sample size less than

tavg(C,€,6) = max{%, %

cannot meet the pac(e, 8)-criterion for all c€ C and Px.

Notice that this lower bound scales the same as t g5+ 10
terms of € and vo(C') — which shows that no new con-
cept classes become pac-learnable merely by considering
a sequential over fixed-sample-size approach.

*Provided vo(C) < oo (details omitted). Proofs of all
results mentioned in this paper (and more) are outlined in
[Schuurmans and Greiner, 1995]. Complete details appear in
[Schuurmans, 1995].

Procedure sprt (¢(z), a, r, bace, 6rej)
FOR boolean random variable ¢(z), test
Hace: Px{¢(z)=1} < a vs. Hyej: Px{¢(z)=1} > r, with:

— probability of deciding H .. given Hy.; bounded by éacc,
— probability of deciding H,.; given Hycc bounded by éyc;.

SEQUENTIALLY observe ¢; = ¢(z¢), t =1,2,...
t a —a
Se=3 0 il g+ (1—¢,)Ini=2.
RETURN “accept” if ever S; > In1/8qcec.
RETURN “reject” if ever S; < Inbrej.

; monitoring:

Figure 4: Procedure sprt

3 Empirical efficiency

Although the theoretical advantage we can demonstrate
for S is only slight, we expect S to perform much better in
practice than any bounds we can prove about its perfor-
mance. This is because S’s actual data-efficiency in any
particular case study is determined by the specific case
at hand, and not by the worst case situation (or, worse
yet, what we can prove about the worst case situation).
In fact, in empirical studies, S proves to be far more
efficient than any bounds we can prove about its per-
formance, and many times more efficient than Tggxyu or
Tsras. Thisis easily demonstrated by a simple example.

Illustration: We tested Procedure S on the problem
(X =IR", C=halfspaces, ¢=0.01,6=0.05) with the fol-
lowing setup: Training objects were generated accord-
ing to a uniform distribution on [—1, 1]* and labelled by
a fixed target halfspace (defined by a “diagonal” hyper-
plane passing through the origin 0” with norm directed
towards 17). The constant k was set to 3.14619 (so that
—1 1 =), and we supplied S with a hypothesizer I
that finds consistent halfspace concepts.” We ran Pro-
cedure S 100 times for n = 10 and obtained the results
shown in Table 1. Notice that S’s average training sam-
ple size of 3,402 is about 5 times smaller than Tsr 45,
27 times smaller than Tgggw, and only about 3 times
larger than 73, ,,..,. It is important to emphasize that S
obtains these empirical sample size improvements while
maintaining the ezact same worst case pac-guarantees
as before (that an e-accurate hypothesis is returned with
probability at least 1 — §). These results are in fact rep-
resentative over the entire range of parameter settings:
S’s empirical advantage actually improves for increased
problem dimension n (Figure 5), and is maintained at
higher accuracy and reliability levels [Schuurmans, 1995].
Overall, S appears to be pac-learning with near-practical
data-efficiency in this example.

Interestingly, S also outperforms the simplistic proce-
dure R on this problem. Figure 6 shows that, R performs
nearly as well as S on easy problems (low dimension, ac-
curacy, reliability), but S’s advantage grows significantly
as these parameters are scaled up.

®Specifically, we used the BFGS secant optimization pro-
cedure [Dennis and Schnabel, 1983] with a “relaxation” ob-
jective function [Duda and Hart, 1973].

Explanations: These results demonstrate a clear ad-
vantage for sequential over fixed-sample-size learning:
we solve the exact same pac-learning problem using far
fewer training examples in this case. Of course these pre-
ceding results are anecdotal, and it is tempting to explain
away the advantage as a mere artifact of the specific ex-
perimental setup. However, we have found that these
experimental results are, in fact, quite robust.

First, the previous experiment only tested a single do-
main distribution (uniform), which could happen to be a
particularly “easy” one for S. To counter this claim, we
repeated the experiment with various domain distribu-
tions to see if any could seriously affect S’s performance.
In particular, we considered three different transforma-
tions of the uniform[—1, 1]” distribution: spherical (non-
linear compression towards origin), pyramidal (compres-
sion from opposite corners towards hyperplane), and ac-
cretive (translation towards discrete pointsin {—1,1}").
Surprisingly, none of these transformations had any no-
ticeable effect on S’s performance [Schuurmans, 1995]; as
demonstrated in Figure 7 for the pyramidal case.

A second reason for S’s advantage might be that the
specific target concept (diagonal halfspace) is a partic-
ularly “easy” one for S — i.e., H could somehow be
biased to guess similar hypotheses. However, this is eas-
ily shown not to be the case: We repeated the original
experiment on 10 different target halfspaces, each suc-
cessively closer to “axis-parallel,” and found that none
of these made any appreciable difference; Figure 8.

Third, it could be the case that the class of halfspaces
concepts happens to be “easy” among classes with com-
parable VCdimension. This turns out to be partly
true: We have been able to construct alternative con-
cept classes which force S to observe slightly more train-
ing examples; see Figure 9. However, we have yet to de-
vise any concept class (with the same VCdimension) that
can even double S’s original performance on halfspaces.
In fact, S’s performance often improves for different con-
cept classes (particularly finite ones). Overall, it appears
that halfspaces is not a remarkably hard or easy class for
a given VCdimension.

Another explanation of S’s advantage over F is that
Tsrap might possibly be a gross overestimate of the true
worst case situation (which seems likely, given the gap
between Tsrap and tgpyky). Of course, this means that
any current advantage enjoyed by S could potentially
be overcome by future improvements to Ter.z — but
notice that we can enjoy S’s improved performance im-
mediately, without having to wait for theoreticians to
improve the bounds. (Ensuring the correctness of F re-
quires one to prove some bound is sufficient; this is not
a requirement for Procedure S since its correctness is
completely decoupled from its efficiency.)

A final explanation of S’s advantage is that sequential
learning might be inherently more efficient than fixed-
sample-size learning. Clearly, since the sequential ap-
proach generalizes the fixed-sample-size approach, it can
be no worse than F. The question is how substantial
an advantage can be obtained in principle? This is left
largely unanswered by our empirical results, and remains
an interesting open topic for future research.

For (X = IR'?, C = halfspaces, e = 0.01,6 = 0.05):

Sufficient: Tesaw = 91,030
Improved: Teran = 15,981

Folklore: T ums I~ 1,100
Necessary: teuxyv = 32

After 100 trials, Procedure S used:

avg Ts = 3,402
maxTy = 5,155
minTy = 2,267

Table 1: A direct comparison of training sample sizes for the
pac-learning problem (/R'°, halfspaces, ¢ = 0.01, 5 = 0.05).

TeEaW
30000 Tsrap
20000 —
10000 —
max Tg
[st ave Ty
e min Tg
0
[[[
n=2>5 10 15 20

Figure 5: Scaling in input dimension n. Number of train-
ing examples observed for (IR", halfspaces, ¢ = 0.01, 6 = 0.05)
with n =1, 2, 3, 5, 10, 15, 20. (Results of 100 runs each.)

TSTAB(0.0l)

6000 — -lavg TR(0.01)
.- _ ~avg Tg(0.01)
4000 —| ,."':,//
L=
~77
-
2000 — -
/ avg TR(0.05)
e a2 E T T N avg Tg(0.05)
0 | | |
n=>5 10 15 20

Figure 6: Comparing S versus R. Number of training ex-
amples observed for (IR", halfspaces, e, § = 0.05) with n =
1,2,3,5,10,15,20 and € = 0.01, 0.05. (Zsram(0.05) and
Tseprw not shown.)

Tstas
15000 —
10000 —
5000 —{ -t T ..--{ maxTg
———————————————————— avg Tg
----------------------------------- min Tg
0 | | |
a = 0.25 0.5 1.0 2.0 4.0
dilated uniform compressed

Figure 7: Comparing different domain distributions. Re-
sults for (IR'®, halfspaces, ¢ = 0.01, § = 0.05) under pyramidal
transformations of the uniform[—1,1]'® distribution. X-awis:
power factor of transformed dot products.

TsTaB
15000 —
10000 —
5000 — -------- 7" B coomooo | maxTyg
——————————————————— avg TS
--------------------------- minTS
0
[[[[
axes=2 4 6 8 10

Figure 8: Comparing different target concepts. Results
for (IR'°, halfspaces, ¢ = 0.01,6 = 0.05) with “diagonal” tar-

get concepts depending on r = 1,2,...,10 relevant axes.
30000 TsraB
20000 —
10000 — . {disj- w-chains
__________ halfspaces

d=15 10 15 20

Figure 9: Comparing different concept classes with matching
VCdimensions. Average Tg for (IR",C;,e =0.01,6 = 0.05)
with Cy = halfspaces, C> = disj-w-chains, and vc(C;) =
2,3,4,6,11,16,21. (The class of disj-w-chains is defined by
é copies of a d-dimensional “product chain” of concepts,
where the concepts in different copies are mutually exclusive

[Schuurmans, 1995]. This class has VCdimension d.)

Advantages: Despite the empirical nature of these re-
sults, sequential learning holds many clear advantages
over fixed-sample-size learning for solving pac-learning
problems: First, the sequential approach decouples the
actual data-efficiency of a pac-learner from the precise
bounds we can prove about its performance a priori.
Thus, the actual data-efficiency of a sequential learner
depends on the specific case at hand, not on what we
can prove about the worst case situation. Consequently,
the sequential approach automatically takes advantage
of beneficial situations like “easy” target concepts and
domain distributions [Oblow, 1992], or a “good” hypoth-
esizer that makes lucky guesses — without the system
designer having to explicitly notice that these beneficial
situations exist a priori! More importantly, the true
worst case data-efficiency of sequential learning depends
on the true worst case convergence properties of the con-
cept class, not on the particular bounds we happen to
be able to prove at the time (i.e., if bad concepts are
eliminated sooner than proven bounds, then S automat-
ically stops sooner). So, in effect, we are able to exploit
the optimal worst case bounds right now, even though
we are unable to prove exactly what they are.

Computation: We also note that Procedure S only in-
troduces reasonable computational overhead over Pro-
cedure F; and in fact, is often more computationally-
efficient than R! Although, at first glance, S appears to
be extremely space-inefficient, this rarely amounts to a
significant expense in practical applications. The point
is that, in practice, it is the task of finding consistent
hypotheses (calling H) that takes most of the work —
storing hypotheses once found (updating statistics, etc.)
does not require much overhead in comparison. Conse-
quently, R is often slower than S (even though it uses
less space) simply because R tends to call H more often.

4 Additional results

Special cases: We have obtained even stronger results
in slightly restricted settings [Schuurmans and Greiner,
1995]. For example, a variant of Procedure S can serve
as a sequential “mistake bounded to pac” conversion
procedure that is provably more efficient than Little-
stone’s fixed-sample-size procedure [Littlestone, 1989]
(and which uses 30 times fewer training examples in em-
pirical tests). We also obtain stronger improvements for
the case of distribution specific pac-learning (where we
assume the learner knows Ps, but not the target concept
c€ C). Notice that a sequential approach is still possi-
ble in this case; and, in fact, a variant of Procedure S
can pac-learn concept spaces (C, Px) using 5 times fewer
training examples than the best known fixed-sample-size
procedure developed in [Benedek and Itai, 1988].

Range of applicability: Beyond improving data-
efficiency, sequential learning is also applicable to a much
wider range of pac-learning problems than fixed-sample-
size learning. For example, Procedure S can be directly
applied to “nearest neighbor” and “decision-tree” hy-
pothesizers (like CART [Breiman, et al., 1984]) which
implicitly consider concept classes of infinite VCdimen-
sion. No fixed-sample-size bound can ever be sufficient

in these cases, and yet Procedure S can be applied to
pac-learn these classes “as is.” The only catch is that
we can no longer place a uniform upper bound on S’s
expected training sample size.®

5 Conclusion

Research directions: There are numerous directions
for future research. First, since our empirical results
address “artificial” learning problems, it would be in-
teresting to test these procedures on “real world” data
sets (e.g., as contained in the UCI repository of machine
learning databases) to verify that the same empirical ad-
vantages can be realized there. Another important re-
search direction is to extend our techniques to deal with
classification noise, which remains the main barrier be-
tween the results presented here and real applications.
Finally, one can also consider a slightly different learning
scenario which perhaps has more practical applications
than pac-learning: rather than first fixing the accuracy
and reliability parameters and then determining a suffi-
cient sample size, it is much more natural to take a fized
sample size, fix a reliability parameter, and produce an
estimate of the accuracy achieved by the learner’s final
hypothesis. In this regard, we are currently investigat-
ing a variant of Procedure S which produces hypotheses
with small (but reliable!) error estimates.

Contributions: We have described a novel pac-learning
procedure, S, that uses far fewer training examples
than previous approaches. Procedure S is, in effect,
generic test procedure that can pac-learn arbitrary con-
cept classes C' (with finite VCdimension), provided only
that we can supply a hypothesizer H that produces con-
sistent concepts from C'. This procedure introduces little
computational overhead, and yet substantially reduces
the number of training examples needed to pac-learn in
practice — as demonstrated in numerous case studies
where S used many times fewer training examples than
the previous best known approaches, while still main-
taining the ezact same worst case pac-guarantees.

In a way, these results exploit the empirical advan-
tage demonstrated by practical learning algorithms over
the theoretical bounds, to improve the efficiency of pac-
learning. Overall, our results show how pac-learning can
be far more efficiently achieved in practice than previ-
ously thought — countering the claim that pac-learning
can never be feasibly achieved in real applications.

Acknowledgments

Thanks to Steven Shapiro for his help with the imple-
mentations.

6 Tt is important not to confuse the idea of sequential
with nonuniform pac-learning [Linial, et al., 1991; Oblow,
1992]. Although nonuniform pac-learning procedures also
use “on-line” stopping rules very similar to R, they do not
share the same theoretical advantages shown for S. Sequen-
tial pac-learning seeks to obtain a uniform improvement in
data-efficiency for all cases permitted by our prior knowledge,
whereas nonuniform pac-learning sacrifices data-efficiency in
some situations to obtain an improvement in others. These
two concerns are in fact orthogonal.

References

[Aha, et al., 1991] D. Aha, et al. Instance-based learning al-
gorithms. Machine Learning, 6(1):37-66, 1991.

[Bartlett and Williamson, 1991] P. Bartlett and R. William-
son. Investigating the distributional assumptions of the
pac learning model. In COLT-91, pages 24-32, 1991.

[Baum and Haussler, 1989] E. Baum and D. Haussler. What
size net gives valid generalization? Neural Computation,
1:151-160, 1989.

[Benedek and Itai, 1988] G. Benedek and A. Itai. Learnabil-
ity by fixed distributions. In COLT-88, pages 80-90, 1988.

[Blumer, et al., 1989] A. Blumer, et al. Learnability and the
Vapnik-Chervonen. dimension. JACM, 36:929-965, 1989.

[Breiman, et al., 1984] L. Breiman, et al. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

[Clancey, 1985] W. Clancey. Heuristic classification. Artifi-
cial Intelligence, 27:289-350, 1985.

[Dennis and Schnabel, 1983] J. Dennis and R. Schnabel. Nu-
merical Methods for Unconstrained and Nonlinear Equa-
tions. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[Duda and Hart, 1973] R. Duda and P. Hart. Pattern Clas-
sification and Scene Analysis. Wiley, New York, 1973.

[Ehrenfeucht, et al., 1989] A. Ehrenfeucht, et al. A general
lower bound on the number of examples needed for learn-
ing. Information and Computation, 82:247-261, 1989.

[Haussler, 1990] D. Haussler. Probably approximately cor-
rect learning. In AAAI-90, pages 1101-1108, 1990.

[Haussler, 1992] D. Haussler. Decision theoretic generaliza-
tions of the PAC model. Inf. and Comp., 100:78-150, 1992.

lle Cun, et al., 1989] Y. le Cun, et al. Backpropagation ap-
plied to handwritten zip code recognition. Neural Compu-
tation, 1:541-551, 1989.

[Linial, et al., 1991] N. Linial, et al. Results on learnability
and the Vapnik-Chervonenkis dimension. Information and
Computation, 90:33-49, 1991.

[Littlestone, 1989] N. Littlestone. From online to batch
learning. In COLT-89, pages 269-284, 1989.

[Oblow, 1992] E. Oblow. Implementing Valiant’s learnability
theory using random sets. Mach. Learn., 8:45-73, 1992.

[Schaffer, 1994] C. Schaffer. A conservation law for general-
ization performance. In Proceedings ML-94, 1994.

[Schuurmans and Greiner, 1995] D. Schuurmans and
R. Greiner. Sequential PAC learning. In COLT-95, 1995.

[Schuurmans, 1995] D. Schuurmans. Effective Classification
Learning. PhD thesis, U. Toronto, Computer Sci., 1995.

[Shawe-Taylor, et al., 1993] J. Shawe-Taylor, et al. Bound-
ing sample size with the Vapnik-Chervonenkis dimension.
Discrete Applied Mathematics, 42:65-73, 1993.

[Valiant, 1984] L. Valiant. A theory of the learnable. CACM,
27(11):1134-1142, 1984.

[Vapnik and Chervonenkis, 1971] V. Vapnik and A. Chervo-
nenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and
its Applications, 16(2):264-280, 1971.

[Wald, 1947] A. Wald. Sequential Analysis. Wiley, 1947.

[Weiss and Kulikowski, 1991] S. Weiss and C. Kulikowski.
Computer Systems that Learn. Morgan Kaufmann, 1991.

