Appears in the

Proceedings of the Third International Conference on Knowledge Representation and Reasoning,

25-29 October 1992, Cambridge, MA.

Learning Useful Horn Approximations

Russell Greiner*
755 College Road East
Siemens Corporate Research
Princeton, NJ 08540

greiner@learning.siemens.com

Abstract

While the task of answering queries from an
arbitrary propositional theory is intractable in
general, it can typically be performed efficiently
if the theory is Horn. This suggests that it
may be more efficient to answer queries us-
ing a “Horn approximation”; i.e.; a horn the-
ory that is semantically similar to the original
theory. The utility of any such approximation
depends on how often it produces answers to
the queries that the system actually encounters;
we therefore seek an approximation whose ex-
pected “coverage” is maximal. Unfortunately,
there are several obstacles to achieving this goal
in practice: (i)} The optimal approximation de-
pends on the query distribution, which is typi-
cally not known a priori; (ii) identifying the op-
timal approximation is intractable, even given
the query distribution; and (7ii) the optimal ap-
proximation might be too large to guarantee
tractable inference. This paper presents an ap-
proach that overcomes (or side-steps) each of
these obstacles. We define a learning process,
ApCowmpP, that uses observed queries to esti-
mate the query distribution “online”, and then
uses these estimates to hill-climb, efficiently,
in the space of size-bounded Horn approxima-
tions, until reaching one that is, with provably
high probability, effectively at a local optimum.

1 Introduction

Many performance systems compute answers to queries
based on the information present in a knowledge base.
Unfortunately, this can involve reasoning from an ar-
bitrary propositional theory, which is inherently in-

*Some of this work was performed at the University of
Toronto, where it was supported by the Institute for Robotics
and Intelligent Systems, and by an operating grant from
the National Science and Engineering Research Council of
Canada. Both authors thank Bart Selman, Alon Levy, Rad-
ford Neal, Sheila Mcllraith, Narendra Gupta and the anony-
mous referees for providing many helpful comments on this

paper.

Dale Schuurmans
Department of Computer Science
University of Toronto

Toronto, Ontario M5S 1A4
dale@cs.toronto.edu

19

PS*(S,W,x)
Y

W E o >~ Y
N
g %

S kE o > (a(X,0) DK
N
N

Figure 1: Flow Diagram of PS*(S,W,X)

addressing ¥ =7 o

tractable (assuming P # NP) [Coo7l, GJ79]. We de-
scribe a technique that “approximates” an arbitrary the-
ory, transforming it into a representation that admits
more efficient, if less categorical, reasoning [EBBKS89].
In particular, our work extends the “knowledge compi-
lation” method of Selman and Kautz [SK91]: Given a
general propositional theory X, their compiler will com-
pute a pair of “bracketing” Horn theories S and W, with
the property that S = ¥ = W.! Figure 1 shows how the
resulting “compiled system” PS = PS%(S,W,X) uses
these bracketing theories to determine whether a query o
follows from X. If W = o, PS returns “yes”; otherwise,
if S |£ o, then PS returns “no”. Notice that these are
the correct answers; i.e., W |= o guarantees that ¥ |= o,
and S [£ o guarantees that ¥ [£ 0. Moreover, these
tests are efficient; in fact, linear in the size of S, W and
o [DG84], provided —o is Horn.?

!We call each such S a “Strengthening” of the initial the-
ory, and each such W an “Weakening”. We assume each
general theory is in clausal form — i.e., expressed as a set
(conjunction) of clauses, where each clause is a set (disjunc-
tion) of atomic literals, each either positive or negative. A
theory is Horn if each clause includes at most one positive
literal.

2We can actually allow the query o to be a conjunction of
“Horn-dual” propositions (CHD), where a proposition o is a
Horn-dual iff its negation —o is horn. Notice CHD strictly
includes CNF.

This paper extends [SK91]’s interesting results by ad-
dressing several unresolved issues.

Issuk 1: WHICH a? It is not clear what PS should do
if W}t o and S | o. For instance, we can consider
various different classes of performance systems, each
identified by its superscript: In particular, a PSTPE sys-
tem will simply return IDK (for “I don’t know”) in this
situation, PSYY# will “guess” at an answer, while the
sound PSP will spend as long as necessary to compute

whether ¥ |= 0.

Of course, we want this problematic situation to occur
rarely; we therefore prefer S and W theories that cover
a maximal number of queries, as this means a minimal
number of queries will fall through to the final « stage.
[SK91] suggests restricting S (resp., W) to be a “weak-
est Strengthening”, s, (resp., a “strongest Weakening”,
ws), which are the obvious extrema:

50(X8,5) <=
VT[SETEYX & Horn(T)] = S=T

ws(Z, W) <—
VTEETEW & Horn(T)] = W=T

That article argues that such extrema are appropriate,
as they cover a maximal number of queries. (To illus-
trate this idea, let W be a weakening that is not the
strongest one — ie, X = w, = W where W [£ w;,.
Then there are queries ¢ such that PS(S,w,,Y) would
return Yes quickly, but PS(S, W, X) will fall through to
the problematic «(X, o) step.)

There are, however, several complications associated
with these extrema.

Issuk 2: INTRACTABLE COMPILATION. The task of
finding either extremum is intractable [SK91, p906],
meaning they cannot be found efficiently (if P # N P).

IssUE 3: MULTIPLE STRENGTHENINGS. There can be
several weakest strengthenings. (For example, {a} and
{b} each qualify as a weakest strengthening for aVb; i.e.,
each satisfy s, ({aV b}, -).)

IsSUE 4: EXPONENTIALLY LARGE WEAKENING. The
cost of the first step of the PS(S, W, X) process — wviz.,
determining whether W |=” ¢ — is linear in the size
of W; unfortunately (the unique) strongest weakening
ws can be exponential in the size of the initial X. This
means the resulting PS“(S, ws, X) system can still be in-
tractable (even if we use a trivial « = IDK, that simply
returns IDK), as its first step can require exponential
time.3

The rest of the paper presents an algorithm, AbDCowmp,
that addresses (and/or explicitly side-steps) each of these
concerns. Section 2 describes this algorithm and shows
how it deals with most of the issues; Section 3 then
discusses several extensions to cope with the remaining
points. The proof that ADCoMmp works correctly appears
in Appendix A.

3Notice that we encounter different problems when seek-
ing optimal weakenings and strengthenings: There is a unique
optimal weakening, but its size can be exponentially larger
than |X|. By contrast, there can be many different optimal
strengthenings; however each is essentially the same size as
32; Subsection 2.4.

2 The ApCowmP Algorithm

The basic idea underlying our approach is to learn a
reasonably-sized approximation that is likely to be good
enough for the anticipated queries. Subsection 2.1 first
motivates this approach; the rest of the section describes
the ADCoMmP algorithm (“Abpaptive CoMPiler”) that im-
plements these ideas. Subsection 2.2 states the funda-
mental theorem that specifies ADCoMmP’s functionality
(whose proof appears in Appendix A). Subsection 2.3
provides the statistical foundations to motivate why
this algorithm is feasible. Subsections 2.4 and 2.5 then
present further details of the structure of the AbComp
algorithm; and Subsection 2.6 discusses the algorithm’s
computational efficiency.

2.1 Owur Approach

Tractable Inference. Given our objective of finding a
representation of the given theory that admits efficient
reasoning, we will (for now) consider only polynomial-
sized weakenings (as this guarantees that W = o can be
answered efficiently) and to PSTPK (S, W, 3) systems (as
they are guaranteed to run efficiently, simply terminating
with IDK whenever W £ ¢ and S |=). These restric-
tions avoid the problems mentioned Issue 1 (WHICH
a?) and IssuE 4 (EXPONENTIALLY LARGE WEAKEN-
ING); Extension 6 in Section 3 will later return to these
issues.

To state this more precisely: Given any propositional
theory X, define Approxg (X) to be to the set of all Horn
approximations of ¥ whose sizes are at most K, i.e.,

(S, W) € Approxg (X)) <

SEXEW & Horn(W)
IS|<K & |W|<K

& Horn(S) &

where the size of a horn theory |7’ is the number of
clauses in 7.* We identify each such Horn approximation
(S, W) € Approxg (X) with the associated performance
system PSTPE (S W, X).

Utility of Horn Approximations. Issue 3 (MULTI-
PLE STRENGTHENINGS) noted there are many possible
weakest strengthenings of a given theory; there are also
many different K-sized strongest weakenings. How can
we decide which to use? We adopt a pragmatic posi-
tion: the optimal system is the one that has the best
expected performance over the natural distribution of
queries, based on a scoring function. For now, we define
the scoring function to be simply the approximation’s

5 Given any approximation (S, W) and query

coverage.
o, let ¢((S, W), o) =l d(W, o) + (1 = d(S, o)) where

AT, o) def {1 if TEo

0 otherwise .

*As the number of literals in each clause is at most L
(where L =total number of variables), this measure is within
a constant factor of the other obvious ways of measuring the
size of a theory.

®Extension 6 in Subsection 3 considers other scoring func-
tions. Notice higher scores are preferable.

Hence, ¢({(S,W), o) = 1 iff o is “covered” by (S, W), in
that either W = o or S [£ 0.

This cost function evaluates (S, 1W)’s performance for
a single query. Our approximations, however, will have
to solve an entire ensemble of problems; we clearly pre-
fer the approximation that is best overall. We therefore
define the “utility of the approximation (S, W)” to be
the expected value of this ¢({S, W), -) scoring function,
over the natural distribution of queries.

To state this more precisely: Given Q, the set of all
possible (CHD) queries, let P: Q — [0, 1] be the station-
ary distribution of the queries, where P(q) is the proba-
bility of encountering the query ¢ € Q. Then the utility

measure used to evaluate an approximation T = (S, W)
is its expected score with respect to P,
cr] Y o opl = Y Plo)xe(T,0).

oEQ

Our basic goal is to identify an “optimal K-sized
approximation”, which is an approximation T,,; €
Approxg (X) whose expected score is maximal:

Y.t € Approxg(X) &
VY € Approxg(X) C[Y,p:] > C[T]

Hence, we are seeking a (reasonably-sized) horn ap-
proximation that is good for the given distribution of
quertes. Unfortunately, there are two major obstacles to
achieving this goal; these are described in the next two
points, and then addressed in the next subsections.

Learning. First, under the realistic assumption that
the distribution P is unknown, there is no a prior:i way
of determining the values of C[-], and hence of determin-
ing which T is optimal. Fortunately, we can use learn-
ing techniques (read “statistical methods”) to reliably
estimate this distribution, and then use these estimates
to compute a near-optimal approximation; see Subsec-
tion 2.3.

Hill-Climbing. Second, even given this distribution
P, the task of finding an optimal approximation is in-
tractable; this is the essence of ISSUE 2 (INTRACTABLE
CoMPILATION). The ADCoMP process, defined below,
avoids this problem by hull-climbing in the space of horn
approximations, climbing from some initial approxima-
tion to successively better ones, until reaching a local
peak.

2.2 ApCowmpP’s Behavior

The basic code for the ADComP algorithm appears in
Figure 2. Its inputs are an initial theory X, error
and confidence parameters ¢, § > 0, and a resource
bound, the polynomial function K(-). Its output is a
near-optimal approximation (S,,Wy,), as specified be-
low. ADCOMP observes a sequence of queries,® printing

SThese queries are from the user of the performance sys-
tem, who is posing queries relevant to one of his application.
In general, we need only assume that he is drawing these
queries from a stationary distribution, and that this is the
same distribution that will be used later, when the resulting
performance system PS?(Sy, Wi, X) is actually being used.

out an answer (Yes, No or IDK) to each, as it computes
its approximations of X.

ApCoMP makes use of a particular set of transfor-
mations, 7° U 7", each mapping approximations to
approximations. Subsections 2.4 and 2.5 define these
transformations more precisely; for now just observe that
each 79 € T° maps strengthenings to strengthenings
and the set NE1GHS[S] = {75(S)|7° € T5} defines S’s
neighbors. Similarly, each 7% € TW maps weakenings
to weakenings, and W’s neighbors are NEIGRW(W) =
(W) |V e T).

In essence, ADCoMP first computes an initial S; and
then climbs from S; to one of its neighbors, S; €
NEIGHS[S], if S2 is statistically likely to be superior
to Sy, based on the sequence of observed queries. This
constitutes one hill-climbing step; in general, AbDComPp
will perform many such steps, climbing from S; to S,
to Ss, etc., until reaching a near optimal S,,. In parallel
with this process, ADCOMP also uses these queries to
hill-climb from an initial (computed) W, to a neighbor
Wy € NEIGHW W], and then on to W3 € NEIGHW[W5],
etc., until reaching a near optimal W,,. ADCoMP re-
turns the resulting (S,, Wp,), whose expected score is,
with probability at least 1 — ¢, at an “e-local optimum”
with respect to these transformations 7° U TW:

Theorem 1 The ADCoMP(X, ¢, 6, K(-)) process in-
crementally produces a series of weakenings (Wi, Wa,
.., W) and (independently) a sequence of strengthen-
ings (S1,S2,...,Sn) such that, with probability at least
1-4,
1. each successive approximation has an expected score
that is strictly better than its predecessor’s; i.e.,

C[(Si-f'l:VVj)] > C[(‘SZ’VV])]
p CHSZ"VVJ'%-l)] > C[(‘SZ’VV])]

2. the final approzimation (S,, Wy,) is an e-local opti-
mum; 1.e., its expected score is within € of the best
expected score among its neighbors:

VreT% C{Su,Wn)] > O (1(Sn), W)]—

VreTW: Cl(Sa W)l > CL{Sh, 7(Win)) 1 —c.
Moreover, ADCOMP requires only polynomial time (and
hence only a polynomial number of samples) to decide
whether to move from S; to Sip1 (resp., from W; to

Wjt1) or terminate with a final S, (resp., with a final
a.

m /-

(The proof appears in Appendix A.)

2.3 Statistical Foundations
Notice first that C[(S;, W;)] =

where

D[W;] + (1-D[S]),

> P(o) x d(T, o)

oEQ

is the likelihood that the theory 7' will entail a query,
over the distribution of queries. As we are only consid-
ering transformations that affect only one of W; or S;,
an approximation (S;, W;) is, with probability at least

Algorithm ApCowmp(X, 6, ¢, K())
Init: j — 0, S; — INITIALS(ZH,EN), (W1,Q1) — INITIALWN(Zg, XN, K(X)),
FoundGoodS «— False, FoundGoodW «— False

Loop
o j — j+1, Ne1GHS «— {7(S;) }&» NEIGHW — {7V[w;, Q;](W;) }e

2 2% 7% max{|NEiGuS|, [INetGHW|}
nj E—zln oY

/* Get Samples, Print Answers */
Get n; samples, Q; ={01,02,...,0,,} from the user
For each sample o; € Q; do
If for some W € {W;} UNEIGEW, W [o;
then Print “o;: Yes”

ElselIf for some S’ € {S;}UNEIGHS, S0y
then Print “o;: No”
Else Print “o; : IDK”

End For

/* Iterate or Terminate, wrt Strengthenings */

If —FoundGoodS then
If for some S’ & NEIGHS,

a(s;, Q) - d(s, Q) = 5

then S;4; — ¢,

Else /* Here, d(Sj,Q;)— d(s’, Q;) <5 for all 8’ € NEIGHS */
FoundGoodS «+— True
Sfinal < Sj
End If

/* Iterate or Terminate, wrt Weakenings */
If —FoundGoodW then
If for some W &€ NEIGHW,
€

d(w/’ Qj) - d(wj7 Qj) > 5

then W1, —W, Q4 — UpPDATEN(W;,Q;)

Else /* Here, d(W, Q;)—d(W,;,q;) <5 for all W € NEIGHW #*/
FoundGoodW « True
Weinat < Wj
End If

Until: FoundGoodS & FoundGoodW
Return PSTPE(Ssin0, Wiina, X)

End ApComp

Figure 2: Basic ADCoMP algorithm (see description in Subsection 2.2)

1 — 6, within € of a local optimum if W; is within ¢
of a locally optimal weakening, and S; is within € of a
locally optimal strengthening, each with probability at
least 1 — %. We can therefore decouple the task of find-
ing a good strengthening from that of finding a good
weakening, and handle each separately.

We would like ADComP to climb from a current S; to
a new Sj41 € NEIGHS[S;] if Sj41 is statistically likely
to be strictly better than S;. (Similarly, from W; to
Wit1 € NEIGHW[W;], etc.) The next subsections define
appropriate sets of transformations, 7° and 7% the
rest of this subsection specifies when to make each such
transition.

When is S, better than S3? By definition, S, is bet-
ter than Sz whenever D[S, | < D[Sg], or equivalently,
when D[S3]—D[Sa] > 0. The value of D[Sg] — D[S, |
depends on the distribution, P, which unfortunately is
unknown.

We can however use a set of samples to estimate this
quantity, and then use statistical methods to bound our
confidence of the accuracy of these estimates. To do
this, let the variable A; = d(Ss, 0;) — d(Sa, 03) be
the difference in the coverage between Sz and S, for
the query o;. As each query is selected according to
a fixed distribution, these A;s are independent, identi-
cally distributed random variables whose common mean
is 4 = D[Sp | — D[S«], which is the quantity we want to
estimate. Now let

= -—j{jd (Sp, 0;) — d(Sa,)
= (Sﬁ {oitiz) — d(Sa, {oi}izy)

be the sample mean of n samples.” This average will
tend to the population mean p as n — oo; ie, g =
limy~.0 Y5,. Chernoff bounds [Che52] provide the prob-
able rate of convergence: the probability that “Y, is
more than u + 57 goes to 0 exponentially fast as n in-
creases; and, for a fixed n, exponentially as # increases.
Formally,®

Pr{Y, > p+p] s

Pr(Y, > u—]

The ApCowmP algorithm uses these formulae and the
observed values of various d(S;j, o) and d(77(S;), o),
to determine both how confident we should be that
D[S;] > D[S'] and also whether any “7°-neighbor”
of S; (i.e., any 7¢(S;)) is more than e better than S;.
(Of course, similar conditions apply for strengthenings:
Wo is better than Wj whenever D[W,] — D[Wg] > 0,
etc.) See the proof in Appendix A.

€

(4)

<
< 6—2nﬁ2

2.4 Finding a good Horn Strengthening
A “horn-strengthening” of the clause v = {ay, ..

"Notice d(T, Q) = IQI ZGGQ
and any set of queries Q.

8See [Bol85, p. 12]. N.b., these inequalities holds for essen-
tially arbetrary distributions, not just normal distributions,
subject only to the minor constraint that the random vari-

ables {d;} be bounded.

-y Ak,

, for any theory T

=by, ..., be } is any maximal clause that is a subset of
v and is Horn — i.e.; each horn-strengthening is formed
by simply discarding all but one of the positive literals.
Here, there are k horn strengthenings of this v, each
of the form v; = {a;, —b1,...,7b;}. (E.g., the 2 horn
strengthening of the non-Horn clause vy = aVbV-cV-d
are 3 =aV-cV-dand 2 =6V -V ad.)

We can write ¥ = Xy U X, where each element of
Yy is a Horn clause, and each element of ¥y = {y!}7,
is a non-Horn clause. [SK91] proves that each weak-
est strengthemng is of the form So = Xy UXY, where

= {y'}m, such that each v € ¥4 is a horn-
strengthemng of some 7* € Y. By identifying each
Horn-strengthened theory with the “index” of the posi-
tive literal used (i.e., 'yij = {aj», —bi, . .,ﬁbé(i)}), we can
consider any Horn-strengthened theory to be a set of the

MmSWMMLJW»_EHU“myNW”Wﬁm}
Notice that each of these strengthenings S; is “small”,
in fact, |S;| = |XZ].

We can navigate about this space of Horn-

strengthened theories by incrementing or decrement-
ing the index of a specific non-Horn clause: That
is, define the set of 2m transformations 7° =
{r}, 77}, where each 7 (resp., 77) is a func-
tion that maps one strengthening to another, by in-
crementing (resp., decrementing) the “index” of k'#
clause — e.g., T;:-(S<3,9,...,ik,...,5)) = S(B,Q,...,ik+1,...,5);
and 77 (S(3,0,....ix,....5)) = S(3,9,..ix—1,...5). (Of course,
the addition and subtraction operations wrap around.)

The ADCOMP process, therefore, starts with an ar-
bitrary horn-strengthening — here, the Sy 1 . 1) re-
turned by INITIALS(X g, Xn) — and then hill-climbs in
this space of horn-strengthened theories, using the set of
7% transformations defined above. It will terminate on
reaching an S; which is an e-local optimum. (Notice this
S; is not necessarily a weakest strengthening.)

2.5 Finding a good Horn Weakening

[SK91] proves that there is a unique optimal weak-
ening, ws, and presents the LUB algorithm for
computing it. Their algorithm is equivalent to
INITIALWN(XZ g, ¥, 00), using the process shown in
Figure 3. The final wy, = INITIALWN(Z g, Xy, 00) is
the set of all horn implicates of the initial theory. It is
easy to see that this w, will have the largest possible
D[-] value over all weakenings, for any distribution. Un-
fortunately, it can also be exponentially larger than the
original theory [KS92].

As mentioned above, we avoid this potential blow-
up by considering only weakenings of size at most
K = K(X), where K(-) is a user-supplied polynomial
function.® Our goal, therefore, is to find the weaken-
ing of this size that is maximally categorical, over the
distribution of queries.

ApCowmpP performs a (tractable) hill-climbing search
through the space of K-sized Horn weakenings of X,
attempting to find one that has good empirical cover-
age (an e-locally optimal expected score). As we are

°To avoid degeneracies, we will assume that K (X) > |X].

Algorithm INITIALWN(Xg, Xy, K)

W — Xg;
Repeat
j—Jj+1

Q‘_EN;

Done «— True;

J=0

For each we W, and each n €

If w and n resolve

Then Let A be the resolvent of w and n
If /* A is NOT subsumed by any clause in W U */
Vo e WUQ: ag A
Then Done «— False
/* Remove from W, € all clauses that A subsumes */
W — {weW|AZw}
Q — {neQ|AZn}
If A is horn,
Then /* add A to W */

Else
End If
End If
End If
End For
Until Done or |W|=K

Return (W, Q)
End INITIALWN

— W U {A}

/* A is non horn; add A to */

or |Q=K or j=K

Figure 3: INiTIALWN Algorithm, adapted from LuB in [SK91, p907]

only considering reasonably-sized theories, the result of
this search is a useful Horn weakening of ¥ from which
we can perform tractable inference, thus addressing Is-
SUE 4 (EXPONENTIALLY LARGE WEAKENING).

ADpCoMP uses the INITIALWN algorithm to gen-
erate an initial bounded weakening (Wp,€;) =
INITIALWN(XZ g, X, K). (Notice this process is effi-
cient, as INITIALWN will perform at most K iterations.)
ApCoMP then uses a “l-step variant” of INITIALWN
to climb to successive weakenings. In particular, given
(W;,Q;) at iteration j, ADComP will consider climb-
ing from W; using the transformations!® 7W [W;, Q;] =
{Th1,ﬂ1,h2 }h1,h2EWj;n1EQj1 where Th17n1,h2(VVj) returns

e {}, if hy does not resolve with n;.
Otherwise, let A be the result of resolving h; with
ny.

e {}, if XA is not horn, or if A is subsumed by any
element of W;.
Otherwise,

o W U{A} —{mx}x, if Ais horn and subsumes each
ne € Wj. (Of course, there must be at least one
such 7.)

Otherwise,
o W U{A}, if || < K.

Otherwise,

10We write the set of transformations as 7" [W;, ;] to
indicate that it depends on the current weakening and its
non-horn complement, (W;, ;) and so can change from one
weakening W; to the next, W;41.

o W;U{A}—{h2}, if Aishorn and does not subsume
any clause in Wj (i.e., Th, n, n, replaces hy with A

in ;). o.

The resulting set of weakenings
W = Th, om0 (W) &
W\ Thynane € TV W, Q]
&w#{}

includes all and only the non-{} values 7, n, »,(Wj).

NeEIGEW(W;) =

Example: Imagine INITIALWN returned the initial pair

Wi { —a, =b, d }
Q {aVvbV-c, aVeVv—d}

and let K = 3, meaning W is filled to its capacity. Here,
there are |Wi| x |Q1] x |[Wi| = 3 x 2 x 3 = 18 different

transformations:

TVIW, Q] =

T=a,avbv-c,~a Taa,avbV=c,=b T-ag,avbv-ac,d

T-a,avevad,~a Taa,avevad, =b Taa,avbv-d, d
T=b,avevad, na

Td,avev—d, d

Notice most transformations are degenerate, sim-
ply returning {} — including all 3 of the form
Td, aviv-e, -(W1) = {} as d does not resolve with aVbV-c.
The three transformations 74 qvev-gq,. are also degen-
erate, as the resolvent of d and a V ¢ V —d, namely
a Ve, is not horn. (But see Issue 5 in Subsection 3.)

To illustrate a non-degenerate transformation, observe
Tﬂa,avbv—'c,d(Wl) = {b \ -¢, Ta, _'b} Herea as |W1| =
K, we had to remove one element of Wi, namely d, to
make space for bV —c¢, the resolvent of —a and aVbV-c. If
K had been larger, then 7.4 qvsvac, a(W1) could simply
add in this new bV —¢, producing the 4-element weak-
ening {bV —¢, na, —b, d}. O

If one of the W' = 74, n, 0, (W;) € NEIGEW(W;)
neighbors passes Equation 3 and becomes the new “cur-
rent weakening” W;1, ADComP will use the UPDATEN
process to compute a new €2;41. UPDATEN first resolves
each clause in the new Wj;, with each clause in Q;,
then forms Q; 4, by adding all the unsubsumed non-Horn
clauses to Q;, and removing all subsumed clauses. (This
is like the set of 7W[W;,Q;] = {7hy n, .} transforma-
tions, but adding non-horn clauses to €;, rather than
horn clauses to W;.) To keep |41] < K, UPDATEN
may have to delete an existing clause from ; before
adding a new resolvent. (This choice is arbitrary; we
could, for example, simply remove the “oldest” clauses
in €; until the size bound is reached. Of course, there
are many other approaches.)

Example: To continue with the earlier example, sup-
POS€ Tag, aviv-e, d(W1) = {bV —¢, ma, —b} passes Equa-
tion 3 and so becomes Ws. To compute Qy, Up-
DATEN first resolves each h € Wy with each n € O
(producing { bV ¢, aV-e, aVbV —d, ¢V —d}),
then adds to ©; the non-horn propositions, forming
{aVvbV—e, aVeV-d, aVbVv-d}. It then removes all
subsumed clauses, leaving Qs = { aVeV-d, avVbV-d }.
O

Notice each resulting theory W' can have no more
clauses than Wj; hence, |W'| < |W;| < K. Moreover,
there are only O(K?) possible transformations and each
of these new weakenings can be computed efficiently.

2.6 Efficiency

Each of ApCowmpP’s individual steps is tractable:
The only potentially problematic steps involve asking
whether T =7 o, where T'is S;, 75(S;), W; or 7 (W;).
However, as each of these theories is horn and of bounded
size (at most K), each of these computations is efficient.

As an important aside, notice that ADCOMP is us-
ing this battery of efficient tests to approximate the in-
tractable ¥ =7 o test: correctly concluding that ¥ = o
whenever either W; £ o or 7 (W;) £ o for any
™ ¢ TW and that ¥ [£ o whenever S; [£ o or
75(S;) I o for any 7° € 7°. ApComp will return IDK
only if none of these tests succeeds — i.e., if W; [~ ¢ and
W) Eoforal ™ e TV S Eoand 79(S) E o
for all 75 € T°.

ApCowmp can perform at most |7V [W;, Q]| + |77
such derivations for each sample query, which is also a
polynomial in the relevant parameters. Observe, more-
over, that each iteration of the ADCoMP process can
involve only a polynomial number of samples (n; from
Equation 1). The only part of this process that is not
necessarily bounded by a polynomial is the number of it-

erations required. However, this is not necessarily prob-
lematic, as ADCoOMP is essentially an anytime system
[DB88], returning successively better and better horn
approximations.

In fact, our ADCoMP can be viewed as a natural ex-
tension of the anytime compiler discussed in [SK91], as
each system runs in parallel with a performance system
that is using the current best approximation to return re-
sponses to the queries presented. AbCowmp differs (1) by
using the set of observed queries to guarantee with prov-
ably high probability that each of the approximations
truly is an improvement over its predecessors; (2) by
avoiding the intractable ¥ |= o test while learning; and
(3) by guaranteeing that the approximations produced
will admit tractable inference.

3 Extensions

This section discusses various extensions to our basic
approach and the ADCoMP algorithm shown in Figure 2.

Extension 1. Minor Adjustments: ADCOMP uses a
single value of K to bound the sizes of W; and Q; and as
the time limit for the INITIALWN process. An obvious
variant would permit the user to supply several values,
to separately specify the different size constraints and
time bound.

Notice also that AbComp could perform a quick
post-processing on the final strengthening S, (resp., fi-
nal weakening W,), to convert this horn theory into a
possibly smaller horn theory by resolving its clauses to-
gether and removing all subsumed expressions.

Extension 2. ApCowmP works in “batch” mode —
using a collection of n; (Equation 1) samples to de-
cide whether to iterate from S; to S;41 or to stop im-
proving the strengthening, and also whether to iterate
from W; to Wj41, etc. [GJ92] presents PALO, a re-
lated algorithm (but designed for a different task) that
can make these decisions after each individual sample.
PALO can potentially require fewer samples on each it-
eration than ADCoMP, as PALO will consider climb-
ing to a (probabilistically) better element or terminat-
ing, after seeing each sample. We have designed an al-
gorithm, ADComP*, that basically uses PALO’s tech-
niques, but handles ADCoMP’s application, and con-
firmed that ADCoMP™ does satisfy Theorem 1.%!

Extension 3. In general, ADCoMP must compute the
values of d(W’, o) — d(W;, o) for each W' that isa TW-
neighbor of W;. We can always obtain this information
by constructing these neighboring W's, and using them
to compute the relevant values of d(IW’, o). Alterna-
tively, there are often ways of computing these values,
based only on running the original W;. As an example,
imagine that W; |= o, and let {h;} C W, be ¢’s support
in W; (ie., {hi} E o). Clearly W' |= ¢ will hold for
each W' € NEIGEW(W;) whenever {h;} C W' as well.
Hence, we can guarantee that d(W;, o) — d(W’, ¢) =0

'We chose to present the simpler ADCOMP version for
pedagogic reasons, as ADCoMP* is much more difficult to
explain.

in this context. (Of course, this same idea also applies
to computing the values of d(S;, o) — d(S5’, 7).)
Extension 4. We can consider using other transforma-
tions, especially when seeking an optimal weakening. For
example, [KS92] suggests a way of shrinking the size of
some horn weakening by adding new vocabulary terms
to the initial theory; it would be easy to also include
transformations that implement this idea. Other recent
papers, including [DE92], propose other techniques for
finding good (not necessarily horn) approximations.

Extension 5. The set of 7% transformations described
in Subsection 2.5 will not always allow ADCOMP to ex-
plore the entire space of K-sized weakenings. Consider,
for example, the theory X = W7 Uy, where

Wy, = {-ave, —bVe}
Ql = {Cl\/b}

Notice that all transformations in 7% [Wy, Q] are de-
generate, as there are only two resolvents of elements
in Wy with elements in Qy (viz.,, a Vb and bV ¢) and
neither is horn. As Wj has no neighbors, ADCoMP can-
not consider any alternative weakenings, meaning it will
necessarily miss the superior weakening, Wops = {c}.

However, notice that we could have reached this
Wopt weakening in two steps, if we had used transforma-
tions that could produce new non-horn clauses. Given
such transformations, we could then form the new pair
(Wa, Qa), where Wy = Wy, and Qs = { aVb, bVe, aVe }.
Now, by resolving the clauses in Wy with those in Q,
we would produce the desired W3 = {c} (along with
Qz={bVve}).

Unfortunately, there is a basic problem with this
approach: The score of any weakening/non-horn-
complement pair (W, Q) depends only on the observed
categoricity of the weakening part W (i.e., on the val-
ues of d(W, o) used to approximate D[W]). This means
that the score of (W, €') is necessarily the same as the
score of (W, Q), even though Q' is different from Q. Thus,
(W, Q') can never be strictly better than (I, Q), and so
ApCowmP will never climb to it. This is why ApComp
does not even generate these equal-cost neighbors.

There is an obvious alternative. Given (W,), the al-
ternative ADCoMmp; algorithm produces new non-horn
components, {Q;}, as well as new weakenings, {W;}.
Just like ADCoMmP, this algorithm also compares the val-
ues of d(W, Q) with each d(WW;, @), over a prescribed set
of queries Q. If any W’ € {W;} passes the Equation 3
test, ADComP; will climb to this new weakening. Oth-
erwise, if none of the alternative weakenings {W; } looks
much better, ADComp; will randomly pick one of the al-
ternative non-horn theories, Q' € {Q;}, and climb “side-
ways” to the weakening-pair (I, Q). This produces a
new neighborhood — a different set of neighboring weak-
enings {W;} and of neighboring non-horn components
{Q;}. ApCowmpr; will then compare Ws score with each
its neighbors, and climb to an W* € {W/} if d(W", Q')
is sufficiently better than d(W, Q') for the (new) set of
sample queries @’. If none qualify, ADComP; will again
walk side-ways, to one of the neighboring Q" € {Q}};
and so forth.

Of course, we may not want to wander about on
this equal-score plateau forever. The ADCoMP; vari-
ant will permit only MaxPlateauWalks steps before
terminating its search for a good weakening, where
MaxPlateauWalks € Z%1 is a user-specified parame-
ter. Another variant is ADComP3: If none of the
Wjs appears better, ADCompP3 will stochastically de-
cide whether to walk to a new Q' € {Q;} (with prob-
ability PlateauWalkProb) or to terminate. Here, this
PlateauWalkProb € [0, 1] is a user-specified parameter.

Each of these three variants will have to prevent loop-
ing (i.e., walking from Q; to Q3 to ...and back to),
perhaps by imposing some ordering on the ; theories,
and only going from Q; to a new Q;4; with a strictly
larger value. Also, each variant may use some bias on
the set of Q;s, to prefer some over others.

Extension 6. The ADCoMP process uses the function
K(-) to bound the size of the weakening. In essence, this
function quantifies how much time the user will allow
the system to spend in answering a query, before insist-
ing that it stop and return IDK. Hence, by selecting an
appropriate K () function, the user can direct AbComp
to the class of approximations that optimizes his implicit
utility measure which embodies a particular tradeoff be-
tween efficiency and categoricity.

In general, the user may want to use a more general
measure for ranking different approximations, which can
depend on other factors as well. For example, is complete
accuracy important? If not, how does it tradeoff with
time concerns? Is incompleteness (in the form of using
“IDK”) better than errors? ...or are these two equally
bad?

We can provide the user with greater flexibility
by allowing him to specify his own scoring function,
¢ Approx (X) x @ — R, where ¢;(T, o) indicates how
well the approximation Y does at solving 0.'? Following
[GE91], we allow this scoring function to be a combina-
tion of various factors, including accuracy, categoricity
and efficiency. Given any such ¢;, our goal is to find
the performance system (call it PS;,) whose expected ¢;
score is maximal.

To illustrate the range of possible scoring functions,
we can, for example, define ¢y to be a scoring function
that imposes a very high penalty for incorrect or incom-
plete answers. If this penalty is sufficiently high, the op-
timal PS,, system will necessarily be sound and complete
with respect to 3, meaning it will have to use « = SN D.
The ADCoMmP system presented above implicitly uses a
different function, call it ¢1, that does not impose as se-
vere a restriction: As it does not insist on completeness
but does require (poly-time) efficiency, ¢; prefers perfor-
mance systems that return /DK if the approximation
does not cover the query. Hence, the ¢i-optimal perfor-
mance system uses o« = IDK rather than o« = SND,
in addition to imposing a limitation on the size of the
approximations.

A slightly different criterion, encoded by the ¢ func-
tion, would explicitly use both computational time and

2The set Approxs (%) = U:o:1 Approxy(X) includes all

horn approximations, of arbitrary size.

categoricity to rank approximations: s ((S, W) o) is the
time PS = PS(S,W,X) spends answering o if PS finds
a definite answer, or a large negative value, B, if PS
returns IDK. Here the size of B could indirectly deter-
mine, for example, whether @« = IDK was better than
a = SN D, and also the allowed size of the W set.

This suggests a way of addressing IssuE 1 (WHICH
a?): wiz., by using a variant, call it ADCoMP,, that
searches for a good a-function in parallel with its search
for good weakenings and strengthenings. The particular
¢; function specified will determine whether the optimal
performance system should use « = SND or « = GUE
or « = IDK, or possibly some other pre-defined « func-

tion. (See [GS92].)

Future Work. First, we are currently implementing
ApComP and plan to test it empirically in order to
determine just how categorical and efficient it really
is, both on real world problems and on “hard” cases
[MSL92]. We also plan to compare ADCoMP with other
theorem proving processes, including incomplete systems
like GsAT [SLM92]. We anticipate that these studies will
give us insights on many of the issues mentioned above,
including the different ways of handling the “plateau
problem” mentioned in Extension 5. Second, we are
currently looking for a less sample-hungry variant of
ApCowmpP, perhaps based on a statistical stopping cri-
terion that is less generous than the Chernoff bounds
(Equation 4). A third extension is to find better sets of
transformations, especially for moving about the space
of horn weakenings. We will also consider other types
of non-Horn approximations: syntactically defined for-
mula from which derivation is efficient. The final task
is to extend these ideas from propositional logic to full
first-order predicate calculus.

4 Conclusion

It is often critical for an agent to use its knowledge to
produce answers efficiently. Unfortunately, this task is
intractable in general. [SK91] presents a way around
this problem, describing an algorithm that produces a se-
mantically similar Horn approximation from which many
queries can be answered efficiently. Our paper extends
that work by providing a more utilitarian objective func-
tion, one that prefers approximations that produce an-
swers efficiently to most anticipated queries. It then de-
fines the ADCoMmpP algorithm, that effectively finds near
optimal approximations: ADCOMP uses a set of queries
to estimate the distribution of anticipated queries, then
uses this information to hill-climb in the space of possi-
ble approximations until reaching one that is, with high
probability, near a local optimum. We also discuss var-
ious extensions to this algorithm, to permit it to use a
more general user-specified utility measure, which can
embody the user’s tradeoffs between efficiency and accu-
racy, etc.

Our approach differs from earlier approaches to the-
ory approximation in a number of significant ways:
[1] ADCoMP uses a set of observed queries to “learn”
an approximation that is essentially at a local opti-
mum within the class of possible approximations; [2] this

near-optimal approximation is guaranteed to perform
tractable inference; and [3] ADCoMP learns this near-
optimal approximation without computing answers to
queries using original theory, meaning it can find effec-
tive approximations efficiently.

A Proof of Theorem 1

Theorem 1 The ADCoMP(X, €, 8, K) process incrementally
produces a series of weakenings (Wo, W1, ..., Wy,) and (inde-
pendently) a sequence of strengthenings (So, S1,...,Sn) such
that, with probability at least 1 — 6,

1. each successive approximation has an expected score that
s strictly better than its predecessor’s; i.e.,

St Wy)] > (S, W)]
CUSL W) > (S, Wj)]
and
2. the final approzimation (Sy, Wp,) is an e-local optimum;
i.e., its expected score is within € of the best expected
score among its netghbors:

VreTS: Cl{Sn, W)] Cl(r(Sn),Wmn)]—¢
VreT": C[{Sn, Wn)] Cl {Sn, 7(Wim))] — €.
Moreover, ADCOMP requires only polynomial time (and hence
only a polynomial number of samples) to decide whether to

move from S; to Siz1 (resp., from W; to Wjy1) or terminate
with a final S, (resp., with a final Wy,). O.

2
2

Proof: Subsection 2.6 above already established
ApCoMP’s computational efficiency.

To prove parts 1 and 2 of the theorem: Consider first a
single iteration of the ADComp algorithm, and consider
only the strengthenings. Notice there are two ways that
ApCoMP can make a mistake:

1. If some S’ € NEIGHS appears to be better than S;
but is not; or

2. If some S’ € NEIGHS is really more than ¢ better
than S;j, but appears not to be.

Let
. P [35" € NEIGHS. d(S;, Q;) — d(S', Q;) >
= Pr
! and D[S;] < D[S’]
i _ p, [358" € NEIGHS. d(S;, Q;) — d(5', Q) <
Pr = and D[S"] < D[S;] — ¢

be the respective probabilities of these events. Now ob-
serve that
o<

P [
S'e€NeighS

d(Sj¢Qj)_d(Sl¢Qj)Z% :|
and D[S'] - D[S;]1<0

o]

I

< 3 el 6)

5/€NeighS

_2<g%ln 252 72 max{|NeazghS|, |NezghW|}) (%)2
< |NEIGHS|e
36

= |NEIGHS

| |2j2 72 max{|NeighS|, |NeighW|}

1 36
<

j2 272

Line 5 uses Chernoff bounds (Equation 4).'3 Similarly,

ho< Z Pr[d(Sjan)_d(S/,Qj)fg
T SieNaigns and D[S;] —D[S'] > ¢
(e)? 1 36
< Z 6_2”1(5) <
> > 9553
5'€NeighS J* 27

Hence, the probability of ever making either mistake
at any iteration is under

=L ; .1 36 1 36
7 J < _ -
Zpl+p2 = ijQWZ 32272
j=1 j=1
3 =1 72 §
= 65— - = = - Z
WZ;jZ 6 2

The same arguments, mutatis mutandis, hold for find-
ing good weakening: the probability of either climbing
to an inferior weakening, or stopping at a weakening
that is not an e-local optimum, is also bounded by 6/2.
Hence, the probability of either making a mistake for
the strengthenings, or weakenings, is under % + % =6,
as desired. a.

References

[Bol85] B. Bollobas.
Press, 1985.

Herman Chernoff. A measure of asymptotic
efficiency for tests of a hypothesis based on
the sums of observations. Annals of Mathe-

matical Statistics, 23:493-507, 1952.

Stephen A. Cook.
theorem-proving procedures.
pages 151-58, 1971.

Thomas Dean and Mark Boddy. An analysis
of time-dependent planning. In Proceedings

of AAAI-88, pages 49-54, August 1988.
Mukesh Dalal and David Etherington.

Tractable approximate deduction using lim-
ited vocabulary. In Proceedings of CSCSI-92,
Vancouver, May 1992.

William F. Dowling and Jean H. Gallier. Lin-
ear time algorithms for testing the satisfiabil-
ity of propositional horn formula. Journal of
Logic Programmang, 3:267-84, 1984.

[EBBK89] David W. Etherington, Alex Borgida,
Ronald J. Brachman, and Henry Kautz.
Vivid knowledge and tractable reasoning:
Preliminary report. In Proceedings of IJCAI-
89, pages 1146-52, 1989.

Russell Greiner and Charles Elkan. Measur-
ing and improving the effectiveness of repre-
sentations. In Proceedings of IJCAI-91, pages
518-24, Sydney, Australia, August 1991.

Random Graphs. Academic

[Che52]

The complexity of
In STOCTI,

[CooT1]

[DBSS]

[DE92]

[DG84]

[GE91]

1*This relies on the fact that the distribution of queries
is stationary, meaning that, for any given pair of strength-
enings S; and S’, the values of the random variables A; =
d(S;, 0:)—d(S’, o;) are drawn from a stationary distribution.

[GIT9]

[GI92]

[GS92]

[KS92]

[MSL92]

[SK91]

[SLM92]

Michael R. Garey and David S. Johnson.
Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman
and Company, New York, 1979.

Russell Greiner and Igor JuriSica. A statisti-
cal approach to solving the EBL utility prob-
lem. In Proceedings of AAAI-92, San Jose,
1992.

Russell Greiner and Dale Schuurmans.
Learning useful horn approximations. Tech-
nical report, Siemens Corporate Research,

1992.

Henry Kautz and Bart Selman. Speeding in-
ference by acquiring new concepts. In Pro-

ceedings of AAAI-92 San Jose, July 1992.

David Mitchell, Bart Selman, and Hector
Levesque. Hard and easy distribution of sat
problems. In Proceedings of AAAI-92, San
Jose, July 1992.

Bart Selman and Henry Kautz. Knowledge
compilation using horn approximations. In
Proceedings of AAAI-91, pages 904-09, Ana-
heim, August 1991.

Bart Selman, Hector Levesque, and David
Mitchell. A new method for solving hard sat-
isfiability problems. In Proceedings of AAAI-
92, pages 440-46, San Jose, July 1992.

