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Abstract

Bayesian belief nets (BNs) are often used for classification
tasks — typically to return the most likely “class label” for
each specified instance. Many BN-learners, however, attempt
to find the BN that maximizes a different objective function
(viz., likelihood, rather than classification accuracy), typi-
cally by first learning an appropriate graphical structure, then
finding the maximal likelihood parameters for that structure.
As these parameters may not maximize the classification ac-
curacy, “discriminative learners” follow the alternative ap-
proach of seeking the parameters that maximize conditional
likelihood (CL), over the distribution of instances the BN will
have to classify. This paper first formally specifies this task,
and shows how it relates to logistic regression, which cor-
responds to finding the optimal CL parameters for a naı̈ve-
bayes structure. After analyzing its inherent (sample and
computational) complexity, we then present a general algo-
rithm for this task, ELR, which applies to arbitrary BN struc-
tures and which works effectively even when given the in-
complete training data. This paper presents empirical evi-
dence that ELR works better than the standard “generative”
approach in a variety of situations, especially in common sit-
uation where the BN-structure is incorrect.

Keywords: (Bayesian) belief nets, Logistic regression, Classifica-
tion, PAC-learning, Computational/sample complexity

1 Introduction
Many tasks require producing answers to questions — e.g.,
identifying the underlying fault from a given set of symp-
toms in context of expert systems, or proposing actions on
the basis of sensor readings for control systems. An increas-
ing number of projects are using “(Bayesian) belief nets”
(
���

) to represent the underlying distribution, and hence the
stochastic mapping from evidence to response.

When this distribution is not known a priori, we can try to
learn the model. Our goal is an accurate BN — i.e., one that
returns the correct answer as often as possible. While a per-
fect model of the distribution will perform optimally for any
possible query, learners with limited training data are un-
likely to produce such a model; moreover, this is impossible
for learners constrained to a restricted range of possible dis-
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Figure 1: (a) Naı̈veBayes structure; (b) TAN structure
tributions that excludes the correct one (e.g., instantiations
of a given

���
-structure).

Here, it makes sense to find the parameters that do well
with respect to the queries posed. This “discriminative
learning” task differs from the “generative learning” that is
used to learn an overall model of the distribution [Rip96].
Following standard practice, our discriminative learner will
seek the parameters that maximize the conditional likelihood
(CL) over the data, rather than simple likehood — that is,
given the data �����! #"%$� '&)( , we will try to find parameters *
that maximize +  �,.-0/214365 �7 98#$: 0; , rather that the ones that
maximize +  ,.-0/21 3 5 �  "<$  ; [Rip96].

Optimizing the CL of the root node of a naı̈ve-bayes struc-
ture can be formulated as a standard logistic regression prob-
lem [MN89; Jor95]. General belief nets extend naı̈ve-bayes-
structures by permitting additional dependencies between
the attributes. This paper provides a general discrimina-
tive learning tool ELR that can learn the parameters for an
arbitrary structure, even given incomplete training data. It
also presents empirical evidence, from a large number of
datasets, that demonstrates that ELR works effectively.

Section 2 provides the foundations — overviewing be-
lief nets, then defining our task: discriminative learning the
parameters (for an arbitrary fixed belief net structure) that
maximize CL. Section 3 formally analyses this task, pro-
viding both sample and computational complexity; we also
note how this compares with corresponding results for gen-
erative learning. Seeing that our task is NP-hard in general,
Section 4 presents a gradient-descent discriminative learning
algorithm for general BNs, ELR. Section 5 reports empirical
results that demonstrate that our ELR often performs better
than the standard learning algorithms (which maximize like-
lihood), over a variety of situations: In particular, when the
learner has complete data, we show that ELR is often su-
perior to the standard “observed frequency estimate” (OFE)
approach [CH92], and when given partial data, we show ELR
is often superior to the EM [Hec98] and APN [BKRK97] sys-



tems. We also demonstrate that the ELR is especially useful
in the common situation where the given BN-structure is in-
correct. [GZ02] provides the proofs of the theorems, as well
as a comprehensive literature survey.

2 Framework
We assume there is a stationary underlying distribution 1 5 � ;
over � (discrete) random variables

��� ���	� "�
�
�
7"
����( ;
which we encode as a “(Bayesian) belief net” (BN) — a
directed acyclic graph

� � � � "���"9* & , whose nodes
�

represent variables, and whose arcs � represent dependen-
cies. Each node �  �� �

also includes a conditional-
probability-table (CPtable) �  � * that specifies how �  ’s
values depend (stochastically) on the values of its parents.
In particular, given a node � � � with immediate parents�����

, the parameter ����� � represents the network’s term for1 5 � ��� 8 � ��! ; [Pea88].
The user interacts with the belief net by asking queries,

each of the form “ 1 5�" � � 8$# � $ ; �&% ” where " � � is
a single “query variable”, # �'� is the subset of “evidence
variables”, and � (resp., $ ) is a legal assignment to " (resp.,# ). We will focus on the case where all queries involve the
same variable; e.g., all queries ask about Cancer (but see
the ALARM example in Section 5.6).

Following standard practice, we will assume there is a sin-
gle distribution from which we can draw instances that cor-
respond to queries with their labels, and let (*) 5 �,+ $ ; be the
probability of the unlabeled query $ being asked and � be-
ing the response. ([GGS97] explains the need to distinguish(*) 5 � ; from 1 5 � ; ; see also Section 5.6.)

Given any unlabeled query ��#  � $� ( , the belief net B
will produce a distribution over the values of the query vari-
able; our associated -/. classifier system will then return the
value -0. 5 $ ; �'132 /�4 16587 � � 59" � �08 # � $ ;)( with the largest
posterior probability.

A good belief net classifier is one that produces the ap-
propriate answers to these unlabeled queries. We will use
“classification error” (aka “0/1” loss) to evaluate the result-
ing

�
-based classifier -0.

err 5 � ; � +;:=<�> 7@? (*) 5 $A+ � ;CB;D 5 -0. 5 $ ;AE� � ; (1)

where D 53F E��G ; �IH if F E�'G , and �&J otherwise.1
Our goal is a belief net

�/K
that minimizes this score, with

respect to the query L response distribution (*) 5 � + � ; . While
we do not know this distribution a priori, we can use a sam-
ple drawn from this (�) distribution, to help determine which
belief net is optimal. (This (*) -based “training data” is the
same data used by other classifiers.) This paper focuses on
the task of learning the optimal CPtable * for a given BN-
structure M � � � "N� & .
Conditional Likelihood: Our actual learner attempts to op-
timize a slightly different measure: The “(empirical) log
conditional likelihood” of a belief net

�
is

LCL O$P 5 � ; � + :Q<*> 7@? (�) 5 $R+ � ;SB , - /95 � 5 � 8#$ ; ; (2)
1When helpful, we will also consider mean squared error:TVU	WYX[ZA\	] +_^a`�b cedgfih X�jlknmo\�p�q ZrXsm*t jn\vuxwyX�mzt9j,\|{ � .

Given a sample } , we can approximate this as~
LCL

���n� 5 � ; � �� � � + :Q<*> 7e?e� � ,.-0/95 � 5 � 8 $ ; ; (3)

[MN89; FGG97] note that maximizing this score will typ-
ically produce a classifier that comes close to minimizing
the classification error (Equation 1). Note also that many
research projects, including [BKRK97], use this measure
when evaluating their BN classifiers.

While this
~
LCL

���n� 5 � ; formula closely resembles the
“log likelihood” function�

LL
���n� 5 � ; � �� � � +_:=<*> 7@?e� � ,.-0/ 5 � 5 ��"<$ ; ; (4)

used by many BN-learning algorithms, there are some
critical differences. As noted in [FGG97],�
LL �Q�3� X�Z�\�] �t U�ti���^acNb `�d|� �

�a�*� X*ZrX�m�t|j�\n\l� �^acNb `�d|� �
�a�*� X*ZrX�j�\n\��

where the first term resembles our LCL 5 � ; measure, which
measures how well our network will answer the relevant
queries, while the second term is irrelevant to our task. This
means a BN

�y�
that does poorly wrt the first “

~
LCL

���g� 5 � ; -
like” term may be preferred to a

�A�
that does better —

i.e., if
�
LL
���n� 5 � � ; � �LL

���n� 5 � � ; , while
~
LCL

���n� 5 � � ;/�~
LCL

���n� 5 � � ; .
3 Theoretical Analysis

How many “labeled queries” are enough — i.e., given any
values � "��&� J , how many labeled queries are needed to
insure that, with probability at least HA� � , we are within �
to optimal? While we believe there are general comprehen-
sive bounds, our specific results require the relatively benign
technical restriction that all CPtable entries must be bounded
away from J . That is, for any  ¡� J , let¢6£ 3,¤o¥ 5 M�; � � � � ¢6£ 5 M�; 8$¦§�3��� � � * "��3��� �R¨© �( (5)

be the subset of BNs whose CPtable values are all at least  ; see [NJ01]. We now restrict our attention to these belief
nets, and in particular, letZSª« b ¬®­n¯ ]±°�² ��³ °�´nµ,¶ LCL ·|¸ X*Z�\�teZ'¹�ºi» ¬v¼½¯ X�¾¿\@À (6)

be the BN with optimal score among
¢�£ 3,¤o¥ 5 M�; with re-

spect to the true distribution (*) 5 � ; .
Theorem 1 Let M be any belief net structure with Á CP-
table entries * � �*�3�
Â@� ��Â)(  �Ã �iÄÅÄ Æ , and let Ç� � ¢6£ 3,¤§¥95 M�;
be the BN in

¢�£ 3,¤o¥ 5 M�; that has maximum empirical log
conditional likelihood score (Equation 3) with respect to a
sample ofÈ ¥ > Æ 5 � "�� ; � ÉËÊ Á �
Ì ,�Í 5 Á �
� ; ,.-0/nÎ 5 H  ;zÏ
labeled queries drawn from (*) 5 � ; . Then, with probability at
least

HÐ� � , Ç� will be no more than � worse than
�/KÑ > 3,Ò§¥ .



A similar proof show that this same result holds when
dealing with err 5 � ; rather than LCL 5 � ; .

This 1 � " -learning [Val84] result can be used to bound
the learning rate — i.e., for a fixed structure M and con-
fidence term � , it specifies how many samples È are re-
quired to guarantee an additive error of at most � — note theÉ 5 ���� � ,.-0/ � ��� ; dependency.

As an obvious corollary, observe that the sample com-
plexity is polynomial in the size ( Á ) of the belief net even if
the underbound   is exponentially small   �'É 5 H��	��
 ; .

For comparison, Dasgupta [Das97, Section 5] proves thatÉËÊ � Á�
Ì ,=Í 5 Á�§� ; ,�Í�Î05 � ; ,=Í Ì 5 H� ;@Ï (7)

complete tuples are sufficient to learn the parameters to
a fixed structure that are with � of the optimal likelihood
(Equation 4). This bound is incomparable to ours for two
reasons: First, as noted above, the parameters that optimize
(or nearly optimize) likelihood will not optimize our objec-
tive of conditional likelihood, which means Equation 7 de-
scribes the convergence to parameters that are typically infe-
rior to the ones associated with Equation 1, especially in the
unrealizable case; see [NJ01]. Second, our Equation 1 in-
cludes the unavoidable   term.2 Nevertheless, ignoring this  , our asymptotic bound is a factor of

É 5 � ,=ÍvÎ 5 � ; ,�Í Ì 5 H�� � ; ;
smaller; we attribute this reduction to the fact that our
conditional-likelihood goal is more focused than Dasgupta’s
likelihood objective.3

The second question is computational: How hard is it
to find these best parameters values, given this sufficiently
large sample. Unfortunately. . .
Theorem 2 It is

� 1 -hard to find the values for the CP-
tables of a fixed BN-structure that produce the smallest (em-
pirical) conditional likelihood (Equation 3) for a given sam-
ple.4 This holds even if we consider only BNs in

¢6£ 3�¤o¥ 5 M�;
for   ��É 5 H�� � ; .

By contrast, note that there is an extremely efficient al-
gorithm for the generative learning task of computing the
parameters that optimize simple likelihood from complete
data; see OFE, below. (Although the algorithms for optimiz-
ing likelihood from incomplete data are all iterative.)

2Unfortunately, we cannot use the standard trick of “tilt-
ing” the empirical distribution to avoid these near-zero probabili-
ties [ATW91]: Our task inherently involves computing conditional
likelihood, which requires dividing by some CPtable values, which
is problematic when these values are near � . This also means
our proof is not an immediate application of the standard w�
�� -
learning approaches. See [GZ02].

3Of course, this comparison of upper bounds is only suggestive.
Note also that our bound deals only with a single query variable; in
general, it scales as � X�� � \ when there are � query variables.

4The class of structures used to show hardness are more com-
plicated than the naı̈ve-bayes and TAN structures considered in
the next sections. Moreover, our proof relies on incomplete in-
stances (defined below). While we do not know the complexity of
finding the optimal-for-CL parameters for naı̈ve-bayes structures
given complete instances, the fact that there are a number of it-
erative algorithms here (for the equivalent task of logistic regres-
sion [Min01]) suggests that it, too, is intractable.

4 Learning Algorithm
Given the intractability of computing the optimal CPtable
entries, we defined a simple gradient-descent algo-
rithm, ELR, that attempts to improve the empirical score~
LCL

���n� 5 � ; by changing the values of each CPtable
entry �3��� � . To incorporate the constraints ����� �;¨ J

and+ � �6��� � ��H , we used a different set of parameters —
“ �§��� � ” — where each�3��� � � � ����� �+ ��� � � � � � � (8)

As the �  s sweep over the reals, the corresponding �g� Â � � ’s
will satisfy the appropriate constraints. (In the naı̈ve-
bayes case, this corresponds to what many logistic regres-
sion algorithms would do, albeit with different parame-
ters [Jor95]: Find � "�� that optimize 1 � > � 5�" � � 8$# �$ ; � � � �"! �	#%$ < � +'& � �)(�! �+*,$ < . Recall that our goal is a
more general algorithm — one that can deal with arbitrary
structures.)

Given a set of labeled queries, ELR descends in the direc-
tion of the total derivative wrt these queries, which of course
is the sum of the individual derivatives:

Lemma 3 For the labeled query
� $o+%� � , - ~LCL .0/ 1�2

�43 5 � . �
-
����� � �

687%9 : q Z X<;,t|m�=gj�\®u�Z X<;�t9j�\|{Ru q Z X<>?=";,t9j@=gm§\vuxZrX%>?=A;,t|j�\|{
.

Our ELR also incorporates several enhancement to speed-
up this computation. First, we use line-search and conju-
gate gradient [Bis98]; Minka [Min01] provides empirical
evidence that this is one of the most effective techniques for
logistic regression. Another important optimization stems
from the observation that this derivative is

J
if � and

�
are� -separated from # and " — which makes sense, as this

condition means that the ����� � term plays no role in comput-
ing

� 5 � 8#$ ; . We can avoid updating these parameters for
these queries, which leads to significant savings for some
problems [GZ02].

5 Empirical Exploration
The ELR algorithm takes, as arguments, a BN-structureM � � � "N� & and a dataset of labeled queries (aka instances)} � ����$  "<�  &)(  , and returns a value for each parameter �g��� � .
To explore its effectiveness, we compared the err 5 � ; per-
formance of the resulting *CBEDGF with the results of other
algorithms that similarly learn CPtable values for a given
structure.

We say the data is “complete” if every instance specifies
a value for every attribute; hence “ H � � � � "�
�
�
7"IH � � � � ”
is complete (where �<HS��"�
�
�
!",H � ( is the full set of evi-
dence variables) but “ H Ì � � Ì ",HKJ � � J ” is not. When the
data is complete, we compare ELR to the standard “ob-
served frequency estimate” (OFE) approach, which is known
to produce the parameters that maximize likelihood (Equa-
tion 4) for a given structure [CH92]. (E.g., if L	M of the

H�J�J" � H instances have N Î � J , then OFE sets �	OQP ÃSR � T Ã � �L	M �8H�JgJ . Some versions use a Laplacian correction to avoidJ �6J
issues.) When the data is incomplete, we compare ELR
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Figure 2: CHESS domain: (a) ELR vs OFE, complete data, structure is “Incorrect” (naı̈ve-bayes); (b) ELR vs OFE, complete
data, structure is “Correct” (POWERCONSTRUCTOR); (c) ELR vs EM,APN, complete data, structure is “Incorrect” (naı̈ve-bayes)
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Figure 3: Comparing NB+ELR with (a) NB+OFE (b) TAN+OFE (c) TAN+ELR

to EM [Hec98] and APN [BKRK97],5 which descends to pa-
rameter values whose likelihood is locally optimal.

This short article only reports on a few experiment, to il-
lustrate the general trends; see [GZ02] for an exhaustive ac-
count of our experiments. Here we present only the results
of the ELR � ELR � algorithm, which used the � terms (Equa-
tion 8), as we found its performance strictly dominated the
ELR � version which used � directly

5.1 Naı̈veBayes — Complete, Real World Data
Our first experiments dealt with the simplest situation:
learning the Naı̈veBayes parameters from complete data —
which corresponds to standard logistic regression [NJ01].6
Recall that the Naı̈veBayes structure requires that the at-
tributes are independent given the class label; see Fig-
ure 1(a).

Here, we compared the relative effectiveness of ELR with
various other classifiers, over the same 25 datasets that
[FGG97] used for their comparisons: 23 from UCIrvine
repository [BM00], plus “MOFN-3-7-10” and “CORRAL”,
which were developed by [KJ97] to study feature selec-
tion. To deal with continuous variables, we implemented
supervised entropy discretization [FI93]. Our accuracy
values were based on 5-fold cross validation for small
data, and holdout method for large data [Koh95]. See
[GZ02],[FGG97] for more information about these datasets.

We use the CHESS dataset (36 binary or ternary attributes)
to illustrate the basic behaviour of the algorithms. Fig-
ure 2(a) shows the performance, on this dataset, of our
NB+ELR (“Naı̈veBayes structure + ELR instantiation”) sys-

5While the original APN � [BKRK97] climbed in the space of
parameters ��� , we instead used a modified APN 	 system that uses
the 
 � values (Equation 8), as we found it worked better.

6While the obvious tabular representation of the CPtables in-
volves more parameters than appear in this logistic regression
model, these extra BN-parameters are redundant.

tem, versus the “standard” NB+OFE, which uses OFE to in-
stantiate the parameters. We see that ELR is consistently
more accurate than OFE, for any size training sample. We
also see how quickly ELR converges to the best performance.
The ELR-OFE line corresponds to using OFE to initialize the
parameters, then using the ELR-gradient-descent. We see
this has some benefit, especially for small sample sizes.

Figure 3(a) provides a more comprehensive comparison,
across all 25 datasets. (In each of these scatter-plot figures,
each point below the ����
 line is a dataset where NB+ELR
was better than other approach — here NB+OFE. The lines
also express the 1 standard-deviation error bars in each di-
mension.) As suggested by this plot, NB+ELR is signifi-
cantly better than NB+OFE at the ������� ����� level (using a
1-sided paired-t test [Mit97]).

5.2 TAN — Complete, Real World Data

We next considered TAN (“tree augmented naı̈ve-bayes”)
structures [FGG97], which include a link from the classi-
fication node down to each attribute and, if we ignore those
class-to-attribute links, the remaining links, connecting at-
tributes to each other, form a tree; see Figure 1(b).

Figure 3(b) compares NB+ELR to TAN+OFE. We see that
ELR, even when handicapped with the simple NB structure,
performs about as well as OFE on TAN structures. Of course,
the limitations of the NB structure may explain the poor per-
formance of NB+ELR on some data. For example, in the
CORRAL dataset, as the class is a function of four inter-
related attributes, one must connect these attributes to pre-
dict the class. As Naı̈veBayes permits no such connection,
Naı̈veBayes-based classifiers performed poorly on this data.
Of course, as TAN allows more expressive structures, it has
a significant advantage here. It is interesting to note that our
NB+ELR is still comparable to TAN+OFE, in general.

Would we do yet better by using ELR to instantiate TAN
structures? While Figure 3(c) suggests that TAN+ELR is
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Figure 4: (a) Comparing TAN+ELR vs TAN+OFE;(b,c) Incomplete Data: Comparing NB+ELR with (b) NB+APN; (c) NB+EM
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Figure 5: Incomplete data: Comparing TAN+ELR with (a) TAN+APN; (b) TAN+EM; (c) NB+ELR

slightly better than NB+ELR, this is not significant (only
at the � � J 
 � level). However, Figure 4(a) shows that
TAN+ELR does consistently better than TAN+OFE — at a
� � J 
 J�� M level. We found that TAN+ELR did perfectly on
the the CORRAL dataset, which NB+ELR found problematic.

5.3 NB, TAN — Incomplete, Real World Data
All of the above studies used complete data. We next ex-
plored how well ELR could instantiate the Naı̈veBayes struc-
ture, using incomplete data.

Here, we used the datasets investigated above, but mod-
ified by randomly removing the value of each attribute,
within each instance, with probability

J 
 � M . (Hence, this
data is missing completely at random, MCAR [LR87].) We
then compared ELR to the standard “missing-data” learning
algorithms, APN and EM. In each case — for ELR, APN and
EM — we initialize the parameters using the obvious variant
of OFE that considers only the records that include values for
the relevant node and all of its parents.

Here, we first learned the parameters for the Naı̈veBayes
structure; Figure 2(c) shows the learning curve for the
CHESS domain, comparing ELR to APN and EM. We see
that ELR does better for essentially any sample size.

We also compared these algorithms over the rest of the 25
datasets; see Figures 4(b) and 4(c) for ELR vs APN and ELR
vs EM, respectively. As shown, ELR does consistently better
— in each case, at the � � J 
 J � M level.

We next tried to learn the parameters for a TAN structure.
Recall the standard TAN-learning algorithm computes the
mutual information between each pair of attributes, condi-
tioned on the class variable. This is straightforward when
given complete information. Here, given incomplete data,
we approximate mutual information between attributes �  
and � & by simply ignoring the records that do not have val-
ues for both of these attributes. Figures 5(a) and 5(b) com-

pare TAN+ELR to TAN+APN and to TAN+EM. We see that
these systems are roughly equivalent: TAN+ELR is perhaps
slightly better than TAN+EM (but only at �;� J 
 H ), but it
is not significantly better than TAN+APN. Finally, we com-
pared NB+ELR to TAN+ELR (Figure 5(c)), but found no sig-
nificant difference.

5.4 “Correctness of Structure” Study

The Naı̈veBayes-assumption, that the attributes are indepen-
dent given the classification variable, is typically incorrect.
This is known to handicap the Naı̈veBayes classifier in the
standard OFE situation [DP96].

We saw above that ELR is more robust than OFE, which
means it is not as handicapped by an incorrect structure. We
designed the following simple experiment to empirically in-
vestigate this claim.

We used synthesized data, to allow us to vary the
“incorrectness” of the structure. Here, we consider an
underlying distribution 1 R over the � L H binary variables� " "IH � "IH Ì "�
�
�
!"IH���( where (initially)wyX*���x\	] ��� � wyX*� W��nt � �x\	] ��� 	 wyX*� W
�gt§u �x\	] ��� �

(9)
and our queries were all complete; i.e., each instance of the
form

�# � ��
 H � "�
 H Ì "�
�
�
!"�
 H�� & .
We then used OFE (resp., ELR) to learn the parameters for

the Naı̈veBayes structure from a data sample, then used the
resulting BN to classify additional data. As the structure was
correct for this 1 R distribution, both OFE and ELR did quite
well, efficiently converging to the optimal classification er-
ror.

We then considered learning the CPtables for this
Naı̈veBayes structure, but for distributions that were not
consistent with this structure. In particular, we formed the� ����� distribution 1�� by asserting that H ��� H Ì � 
�
�
 �
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Figure 6: (a,b) Comparing ELR to OFE, on increasingly incorrect structures for (a) Complete Data; (b) Incomplete Data;
(c) Using range of query values, and “incomplete” data on ALARM;��� (i.e., ����� �	��
 � �
��� ����� � , ����� �	��
����
��� � ��� � for
each � ��� � � � ) in addition to Equation 9. Hence, ��� corre-
sponds to the � � � case. For ��� � , however, the � -th
distribution cannot be modeled as a Naı̈veBayes structure,
but could be modeled using that structure augmented with� � � links, connecting

�	��� �
to
���

for each � �!� � � � .
Figure 6(a) shows the results, for " � � , based on 400

instances. As predicted, ELR can produce reasonably accu-
rate CPtables here, even for increasingly wrong structures.
However, OFE does progressively worse.

5.5 “Correctness of Structure”, Incomplete Data

We next degraded this training data by randomly removing
the value of each attribute, within each instance, with proba-
bility ��� � . Figure 6(b) compares ELR with the standard sys-
tems APN and EM; we see that ELR is more accurate, in each
case.

5.6 Nearly Correct Structure — Real World Data

We next asked whether ELR could find the best parame-
ters for more complicated structures. Due to space limita-
tion, this paper will report on only two situations; [GZ02]
presents other examples. First, we considered the more-
nearly-correct structures learned using the POWERCON-
STRUCTOR system [CG02; CG99]. We know that this sys-
tem will converge to the correct belief net, given enough data
(and some other relatively benign assumptions).

Figure 2(b) shows the results for CHESS: again ELR
works effectively — and better than OFE. (Comparing Fig-
ure 2(a) to Figure 2(b) shows that ELR was not that hampered
by the poorness of the Naı̈veBayes structure, but OFE was.)

To see how well ELR would perform on the correct struc-
ture, but given incomplete training data, we considered the
ALARM network #%$'&($*) � [BSCC89], which has a known
structure involving +-, nodes, .0/ links and � ��� parameters.

Here, we had to define the appropriate query distribution.
From [HC91], we know that 1 of the ALARM variables typ-
ically appear as query variables, and a disjoint set of �2,
variables can appear as evidence. We therefore generated
queries by uniformly selecting, as query variable, one of the1 query variables, and then, for each of the �3, evidence vari-
ables, including it with probability �54-� — hence on aver-
age a query will include �2,64-� evidence variables. (Note that
different instances used different variables as the class la-
bel [CPT97]; here it was critical to distinguish 7280�09 � from���09 � [GGS97].) We then specify values for these evidence
variables based on the natural joint distribution for these ev-

idence variables. Figure 6(c) shows that ELR works more
effectively here.

5.7 Other Experiments
The studies so far focus on the common situation where the
model (“BN-structure”) we are instantiating is likely simpler
than the “truth” — e.g., we used naı̈ve-bayes when there
probably were dependencies between the attributes. Here,
we have a great deal of evidence that our ELR algorithm,
which tries to optimize conditional likelihood, works bet-
ter than generative algorithms, which optimize likelihood.
[GZ02] considers other (less typical) situations, where the
model is more complex than the truth. In a nutshell, we ob-
served, as expected, that discriminative learning (here ELR)
will often over-fit in this situation, and so produce results
that are often inferior to the generative learners. We were
able to reduce this effect by initializing the parameters with
the OFE values (in the complete data case); notice many
discriminative learners do this, especially when (like here)
these values are “plug-in parameters [Rip96].

5.8 Summary of Empirical Data
Our empirical studies using the UCI datasets suggest, when
given complete training data,

TAN+ELR � TAN+OFE
NB+ELR � NB+OFE

and when dealing with incomplete data,

NB+ELR � :
NB+APN
NB+EM ;

where “ � ” indicates statistical significance at the � � ��� � �
level or better. (While many of the other comparisons sug-
gest an ELR-based systems worked better, those results were
not statistically significant.)

We see that ELR proved especially advantageous when
the BN-structure was incorrect — i.e., whenever it is not
a < -map of the underlying distribution by incorrectly claim-
ing that two dependent variables are independent [Pea88].
This is a very common situation, as many BN-learners
will produce incorrect structures, either because they are
conservative in adding new arcs (to avoid overfitting the
data), or because they are considering only a restricted class
of structures (e.g., naı̈ve-bayes [DH73], poly-tree [CL68;
Pea88], TAN [FGG97], etc.) which is not guaranteed to con-
tain the correct structure.



6 Conclusions
This paper overviews the task of discriminative learning of
belief net parameters for general BN-structures. We first de-
scribe this task, and discuss how it extends that standard lo-
gistic regression process by applying to arbitrary structures,
not just naı̈ve-bayes. Next, our formal analyses shows that
discriminative learning can require fewer training instances
than generative learning to converge, and that it will often
converge to a superior classifier. The computational com-
plexity is harder to compare: While we know our specific
task — finding the optimal CL parameters for a given gen-
eral structure, from incomplete data — is NP-hard, we do
not know the corresponding complexity of finding the pa-
rameters that optimize likelihood. We suspect that discrim-
inative learning may be faster as it can focus on only the
relevant parts of the network; this can lead to significant sav-
ings when the data is incomplete. Moreover, if we consider
the overall task, of learning both a structure and parame-
ters, then we suspect discriminative learning may be more
efficient that generative learning, as it can do well with a
simpler structure.

We next present an algorithm ELR for our task, and show
that ELR works effectively over a variety of situations: when
dealing with structures that range from trivial (naı̈ve-bayes),
through less-trivial (TAN), to complex (Alarm, and ones
learned by POWERCONSTRUCTOR). We also show that ELR
works well when given partial training data, and even if dif-
ferent instances use different query variables. (This is one of
the advantages of using a general belief net structure.) We
also include a short study to explain why ELR can work ef-
fectively, showing that it typically works better than genera-
tive methods when dealing with models that are less compli-
cated than the true distribution (which is a typical situation).

While statisticians are quite familiar with the idea of dis-
criminative learning (e.g., logistic regression), this idea, in
the context of belief nets, is only beginning to make in-roads
into the general AI community. We hope this paper will help
further introduce these ideas to this community, and demon-
strate that these algorithms should be used here, as they can
work very effectively.
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