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Abstract 
Machine-learned classifiers are important components of 
many data mining and knowledge discovery systems. In 
several application domains, an explanation of the 
classifier's reasoning is critical for the classifier’s 
acceptance by the end-user. We describe a framework, 
ExplainD, for explaining decisions made by classifiers that 
use additive evidence. ExplainD applies to many widely 
used classifiers, including linear discriminants and many 
additive models. We demonstrate our ExplainD framework 
using implementations of naïve Bayes, linear support vector 
machine, and logistic regression classifiers on example 
applications. ExplainD uses a simple graphical explanation 
of the classification process to provide visualizations of the 
classifier decisions, visualization of the evidence for those 
decisions, the capability to speculate on the effect of 
changes to the data, and the capability, wherever possible, to 
drill down and audit the source of the evidence. We 
demonstrate the effectiveness of ExplainD in the context of 
a deployed web-based system (Proteome Analyst) and using 
a downloadable Python-based implementation. 

Introduction   
A classifier assigns a label to an unlabeled query item 
based on patterns learned from labeled examples.  Such 
machine-learned classifiers are important components in 
data mining and knowledge discovery systems. They have 
been used in many applications, including protein function 
prediction (Szafron et al. 2004), fraud detection (Fawcett 
and Provost 1997; Fawcett and Provost 1999), medical 
diagnosis (Kononenko 2001), and text classification 
(Joachims 2002; Dhillon, Mallela and Kumar 2002). 

There are a variety of techniques for learning classifiers 
(Alpaydin 2004; Hastie, Tibshirani, and Friedman 2001) 
including decision trees, naïve Bayes (NB), support vector 
machines (SVM), logistic regression, linear discriminant 
analysis and artificial neural networks (ANN). Whatever 
the classification technology, it is desirable for the 
resulting system to be able to transparently explain its 
predictions to help the user to identify possible causes of 
errors and misclassifications. Swartout (1983) emphasized: 
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Trust in a system is developed not only by the quality 
of the results but also by clear description of how they 
were derived. … a user … should be able to ask for a 
description of the methods employed and the reasons 
for employing them. 

For classifiers in particular, and for data mining and 
knowledge discovery systems in general, users often want 
to validate and explore the classifier model and its output. 
Often, there are conflicting and complicated units of 
evidence that contribute to the classification decision. To 
address these issues, the classification system should have 
a sound, intuitive, and interactive explanation capability.  

Graphical explanations help users understand the 
evidence for a classification decision, thus engendering 
trust in the decision. Graphical explanation also helps users 
to efficiently visualize the evidence and to drill down to the 
source of the evidence (especially where classifications are 
unexpected or erroneous), providing an audit of the 
classifier and the raw data that was used to train it. 

Related Work 
Some classification techniques, such as decision trees, 
offer immediate explanation of germane decision factors. 
However, decision trees, are not appropriate for all 
classification tasks and not always the most accurate. We 
focus on classifiers whose results are not so easily 
explained. There has been some previous research in this 
area. For example, Madigan, Mosurski, and Almond 
(1996) described Bayesian belief networks using the useful 
idea of ‘weights of evidence’, which relates closely to our 
work. While there are some graphical explanation facilities 
for naïve Bayes classification (Becker, Kohavi, and 
Sommerfield 1997; Mozina et al. 2004; Ridgeway, 
Madigan, and Richardson 1998), there are many classifier 
techniques with no published explanation capabilities 
(graphical or otherwise). ExplainD has more visualization 
and auditing capabilities than previous systems. 

Nomograms (Mozina et al. 2004) have effective 
explanation capabilities for NB classification and logistic 
regression that are closely related. Our framework, 
however, offers some advantages over nomograms. Our 
ExplainD, for example, allows explanation of a broader 
range of classifiers, including linear SVM. 
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Contributions 
• We derive graphical explanation capabilities, including 

decision, decision evidence, decision speculation, ranks 
of evidence, and source of evidence. 

• We provide a framework to support these capabilities for 
several widely used classifiers, including naïve Bayes, 
SVMs, and many additive models. 

• We provide two implementations of the framework: 
 1) A Python implementation of our generic explanation 

system (downloadable from http://www.cs.ualberta.ca/ 
~bioinfo/explain) explains NB, linear SVM, and logistic 
regression classifiers.  

 2) An NB version of the ExplainD system has been 
deployed in the Proteome Analyst (PA) system (Szafron 
et al. 2004) (http://www.cs.ualberta.ca/~bioinfo/PA) 
since August 2002. PA is a web-based bioinformatics 
tool used by hundreds of molecular biologists. 

Framework 
In this section, we derive a set of basic explanation 
capabilities and a simple explanation framework. This 
framework facilitates graphical explanation of classifier 
decisions, evidence for those decisions, and insight into the 
classifier as a whole. More information can be found at 
www.cs.ualberta.ca/~bioinfo/explain. 

Classifiers as Additive Models 
A classifier maps an object described by a set of feature 
values to one of the possible mutually exclusive class 
labels. This assignment can be based on a set of 
discriminant real-valued functions, one function gk(x) for 
each possible class label k (Alpaydin 2004). Given a query 
instance x (with feature values x1…xj…xm),, each 
discriminant provides a score for assigning a class label. 
The instance is classified with the label of the highest 
scoring class given the instance. 

! 

classification of x = arg maxk"labels gk (x)   
When considering only two mutually exclusive classes, 

such as positive and negative, a single discriminant 
function may be used. 

! 

g(x) = g+ (x) " g" (x)  
This leads to a simple decision function. 

! 

classification of x =
+ if g(x) > 0

" otherwise

# 
$ 
% 

 (1) 

For a certain class of discriminant models, the value of 
the discriminant changes linearly with the value xj of each 
feature j of the instance x. The score from such a linear 
discriminant model is the sum of the intercept b and the 
contributions of each feature, which is the product of the 
feature value xj and the feature weight wj. 

! 

g(x) = b+ w j x j
j=1

m

"   

These wj values are the parameters of this model. We will 
see that there are many ways to learn good parameter 
values from labeled training examples. 

We can generalize this linear model to an additive model 
(Hastie, Tibshirani, and Friedman 2001) in which the 
feature contributions are functions of the feature values. 

! 

g(x) = b+ f j (x j )
j=1

m

"  (2) 

Each contribution fj(xj) is the contribution of evidence 
from feature j with value xj to the score of the discriminant 
function g(x). We show below that, when a classifier 
corresponds to an additive model, the classifier and the 
classification results can each be explained in terms of the 
components of the model. The basic structure of additive 
models forms the basis for our explanation framework.  

For brevity, we describe a framework for two-class 
classification tasks (positive or negative for a particular 
class label). The framework may be extended to multiple 
classes in a straightforward manner. 

Classification Explanation Capabilities 
Our graphical explanation framework includes five 
capabilities. Each successive capability increases the user’s 
ability to understand and audit an aspect of the 
classification process, based on the evidence. These 
explanation capabilities are centered on the user’s ability to 
explain particular classifier decisions. They also facilitate 
visualization of the entire classifier and the training data. 
1. Decision: Represent a predicted classification 

graphically (Figure 1 LHS). 
2. Decision Evidence: Represent the relative strength of 

potential classification decisions and the contributions 
of each feature to the decisions (Figure 1 RHS). 
Confidence intervals may be displayed where possible.  

3. Decision Speculation: An interactive ‘what-if?’ 
analyses by changing feature values (Figure 2 LHS).  

4. Ranks of Evidence: Represent feature evidence in the 
context of the overall classifier (Figure 2 RHS). 

5. Source of Evidence: Represent (where possible) the 
data supporting evidence contributions (Figure 3). 

Each explanation capability is discussed in detail in the 
next sections. We illustrate ExplainD using an example of 
the diagnosis of obstructive coronary artery disease (CAD) 
based on a classification model actually used by physicians 
(Gibbons 1997; Morise et al. 1992). A physician uses the 
classifier to predict the probability that an undiagnosed 35-
year-old male has CAD. We also use examples from 
Proteome Analyst (Szafron et al. 2004), a web-based 
proteome prediction tool used by molecular biologists, 
which contains a full implementation of ExplainD. 

Capability 0 – decision: The decision capability 
represents the outcome visually (Figure 1 LHS). This 
baseline explanation capability presents the ‘native’ 
outcome of each classifier. Depending on the classifier, 
this may be a binary indicator, a score, or a probability. 

In the CAD example, the decision is whether to predict 
CAD, based on patient history and test results (Figure 1 
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LHS-top) or, for a probabilistic classifier, the probability 
that the patient has CAD, based on the evidence (Figure 1 
LHS-bottom).  While this visualization allows a physician 
to conclude that the patient does not have CAD, it does not 
provide other information or evidence. 
 

           
Figure 1: Capability 0 – decision (LHS) and Capability 1 – 

decision evidence (RHS) 
Capability 1 – decision evidence: The decision evidence 

represents the strength of the classification decision and the 
relative contributions of each feature to the decision. The 
classifier is considered an additive model (2). 

We can represent the overall score of the discriminant 
function g(x) as two stacked bars (Figure 1 RHS). The 
evidence in each bar is composed of the individual 
evidence contributions fj(xj) based on the value of each 
feature. All positive evidence (fj(xj) > 0) is combined in one 
bar, and all negative evidence is combined in the other 
(Figure 1 RHS-top). An intercept b (constant) can also be 
displayed in the appropriate bar depending on its sign. A 
legend notes the feature corresponding to each bar segment 
(Figure 1 RHS-bottom). The difference between the two 
bars is the overall score of the discriminant function.  

The longer of the positive or negative bars indicates the 
classification – equivalent to (1): 

! 

classification of x =
+ if (score for positive) > (score for negative)

" otherwise

# 
$ 
% 

 

This visualization simultaneously represents the strength 
of the predicted classification (magnitude of the difference 
between bars) and the relative contribution of each feature 
to the predicted classification. For classifiers that supply 
them, confidence values may be displayed for each bar. 

In the diagnosis of CAD, the overall negative evidence 
is greater than the overall positive evidence, indicating that 
it is more likely that the patient does not have CAD. The 
physician might also observe which factors give the most 
classifier evidence for CAD in this patient (Figure 1 RHS). 

When there are many features, it is helpful to show the 
evidence contributions from only a subset of ‘focus’ 
features. The contributions of ‘non-focus’ features are 
combined into ‘aggregate’ terms that are displayed as 
‘Other Evidence’ segments – one positive and one negative 
(Figure 1 RHS). The focus features may be selected 
interactively or by some specified criteria (such as those 
that give the most evidence for the classification). Since 
the ‘Other Evidence’ segments may be large compared to 
the focus features, it may also be helpful to zoom in on the 
portion of the chart that shows the focus features. 

Capability 2 – decision speculation: One of the key 
components to facilitate understanding of the classifier and 
classification decisions is the ability to examine how the 
classification would change if feature values changed. This 
‘what-if?’ analysis allows speculation about the effect that 
a change in feature values would have on the decision. 
This capability allows the user to interactively change the 
feature values of an instance and visually audit changes in 
classification decisions. This capability can help users to 
explore and better understand the classification model and 
help experts examine the model for unexpected behaviors. 

In the CAD example, decision speculation allows the 
physician (or patient) to view the effects of risk factors on 
the diagnosis (Figure 2 LHS). They can explore the effects 
of changing lifestyle factors such as smoking. If the patient 
were 20 years older and still smoking, we would observe a 
prediction change to ‘CAD’ (Figure 2 LHS-middle). 
However, if the patient quits smoking, the prediction 
would change back to ‘not CAD’ (Figure 2 LHS-bottom). 
The ‘what-if?’ analysis can be used as an educational tool. 
 

           
Figure 2: Capability 2 – decision speculation (LHS) and 

Capability 3 – ranks of evidence (RHS) 
Decision speculation should not be confused with the 

capability to speculate on the effects that changes to the 
training data can have on classifier decisions (such as 
removal of outliers, over-represented or suspicious data). 
In general, ‘Training Speculation’ may require complete 
re-training of the classifier. This capability may be useful 
in some cases, but it is not included in our framework.  

Capability 3 – ranks of evidence: Since the classifier is 
defined by the components of the additive model (the 
feature contribution functions fj(xj) and the intercept b), we 
can display the information that defines the entire classifier 
with visual representations of the intercept and each of the 
feature contribution functions (Figure 2 RHS).  

To effectively present the classifier, we display the 
contribution functions in a meaningful sorted order. Users 
are often most interested in contributions of features that 
have the most effect on classification. By displaying the 
ranks of evidence, the explanation system displays all the 
features in the context of the whole classifier. 

The visualization and ranking measure of each 
contribution function fj(xj) is based on its form. If the 
function is a linear function, fj(xj) = wjxj, we represent the 
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function by a bar whose length is proportional to wj (Figure 
2 RHS-Age). Such functions can be compared visually and 
ranked easily (by the value of wj). If the contribution 
function is a two-case conditional, it has the form: 

! 

f j (x j ) =
va if x j  satisfies condition a

vb otherwise

" 
# 
$ 

 

We display bars corresponding to each case (Figure 2 
RHS-Symptoms). This graphical representation allows 
visual comparison and simple ranking (by the difference 
between the two evidence bars). Other function types may 
require other representations and ranking functions. This 
capability is limited to additive models with functions that 
can be represented graphically and ranked meaningfully.  

For CAD diagnosis, the ranks of evidence (Figure 2 
RHS) indicate the overall importance that the model 
assigns to each patient risk factor. Ideally, the highest 
ranked features will be the most important overall risk 
factors and advance the physician’s trust in the classifier.  

Capability 4 – source of evidence: The source of 
evidence capability assists users to explore the reasoning 
and data behind classifier parameters. Where possible, this 
capability represents how the evidence contributions of 
each feature relate to the training data. If the training data 
is available (and regardless of whether or not a calculation 
from that data can be shown), an explanation system can 
facilitate exploration of the data behind the classifier.  

To audit the relationship between the decision label and 
a feature, the training data is sliced by label value and 
sliced (or sorted) by feature, allowing users to inspect 
whether classifier parameters are compatible with their 
expectations, based on training data. A data summary 
shows the totals of each slice and allows the user to drill 
down to the training data. The source of evidence 
capability is especially useful for auditing anomalies in 
training data that lead to unexpected predictions. For CAD 
diagnosis, the source of evidence capability allows the 
physician to drill down to original study data as shown in 
Figure 3 and view how classifier parameters are calculated. 

  
Figure 3: Capability 4 - source of evidence. 

Applications 
The current ExplainD framework can be applied to any 

linear model. To date, it has been applied to three 
classification techniques: naïve Bayes (NB), linear support 

vector machine (SVM), and logistic regression (LR). The 
NB explanation facility has been deployed, since August 
2002, as an integral part of the Proteome Analyst (PA) 
system (Szafron et al. 2004), a web-based application for 
predicting protein function and protein subcellular location 
from protein sequence. In the five-month period between 
October 2005 and March 2006, molecular biologists have 
used PA to analyze 552,873 proteins. Users view the PA 
output by examining web pages. ExplainD’s importance is 
illustrated by the fact that 12% of all web pages examined 
were from the ExplainD sub-system. The percentage of 
ExplainD web pages varied from 0% to as high as 29% for 
some users, with 38.6% of PA users accessing ExplainD. 

The NB, SVM, and LR explanation facilities have been 
implemented using ExplainD. The prototype system is 
implemented (using Python [http://python.org]) with a 
simple class interface for explainable classifiers. The linear 
SVM classifier uses the LIBSVM software (Chang and Lin 
2001), with weights extracted by the LIBSVM tool 
(LIBSVM site). The logistic regression classifier uses the 
BioPython [biopython.org] logistic regression module. 
Application data is processed from text files having a 
common format. New classifiers (such as neural networks 
without hidden layers or linear discriminant analysis) can 
be incorporated into the framework by creating a Python 
class that adheres to a simple interface. 

We illustrate the application with a simple text 
classification example from PA. PA predicts a protein’s 
function and/or subcellular location from that protein’s 
amino acid sequence. A preprocessing step involves a 
database search that maps each sequence to text keywords 
that describe proteins closely related to the target protein. 
Therefore, the classification step can be regarded as a 
classification on text keywords (for details see Szafron et 
al. 2004). Each protein instance is associated with a vector 
of binary features, each corresponding to a text keyword or 
phrase (encoded as ‘+1’ if the corresponding keyword is 
associated with the protein and ‘-1’ if it is not). For the 
subcellular location classifier used in this paper, our 
training set contains 3904 protein sequences.  

In this paper, we focus on a classifier that predicts 
whether or not the protein of interest is found in the ‘inner 
membrane’ of a bacterial cell. In our example, the 
keywords associated with the query protein are ‘nitrogen 
fixation',  'transmembrane',  'plasmid',  'plasma membrane', 
and 'complete proteome'. The true label for our example 
protein is ‘inner membrane’ (vs. ‘not inner membrane). 

Naïve Bayes 
The naïve Bayes classifier (NB) is a widely used and 
effective probabilistic classifier. A NB classification is a 
simple Bayes classifier that assigns each instance x to the 
class k with the largest posterior probability:  

! 

NB classification of x = argmax
k
P(k | x) = argmax

k
P(k)P(x | k) 

Since the model assumes independence of a feature given 
the class label, we can formulate the NB classifier as: 
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! 

NB classification of x = arg max k P(k) P(x j | k)
j=1

m

"   (3) 

Each probability in the model is estimated by counting the 
relevant occurrences in the training data. Written in the 
typical form shown in (3), the NB model does not seem to 
fit a linear or additive model. For a two-class problem, 
however, it is well known (Duda, Hart, and Stork 2000) 
that we can use the log-odds ratio of the two classes to 
represent the classifier as a discriminant. 

! 

NB classification of x =
+ if P(k = + | x) > P(k = " | x)

" otherwise

# 
$ 
% 

=
+ if log

P(k = + | x)

P(k = " | x)

& 

' 
( 

) 

* 
+ > 0

" otherwise

# 

$ 
, 

% 
, 

  

This formulation of the classifier yields the discriminant: 

! 

gNB (x) = log
P(k = + | x)

P(k = " | x)

# 

$ 
% 

& 

' 
( 

= log
P(k = +) P(x j | k = +)

j=1

m
)

P(k = ") P(x j | k = ")
j=1

m
)

# 

$ 

% 
% % 

& 

' 

( 
( ( 

= log
P(k = +)

P(k = ")

# 

$ 
% 

& 

' 
( + log

P(x j | k = +)

P(x j | k = ")

# 

$ 
% % 

& 

' 
( ( j=1

m
*

  

This discriminant fits an additive model (2), where: 

! 

b = log
P(k = +)

P(k = ")

# 

$ 
% 

& 

' 
(   

! 

f j (x j ) =

log
P(x j = +1 | k = +)

P(x j = +1 | k = -)

" 

# 
$ $ 

% 

& 
' ' if x j = +1

log
P(x j = -1 | k = +)

P(x j = -1 | k = -)

" 

# 
$ $ 

% 

& 
' ' if x j = (1

) 

* 

+ 
+ 

, 

+ 
+ 

 (4) 

ExplainD uses this formulation to explain naïve Bayes 
classification. The weights of the classifier correspond to 
Good’s ‘weights of evidence’ (Madigan, Mosurski, and 
Almond 1996). In addition to evidence contributions, 
confidence intervals can also be calculated and displayed 
for a NB classifier (Van Allen, Greiner, and Hooper, 2001; 
Mozina et al. 2004; M. Mozina, personal communication). 

Capability 0, the decision, can be represented 
graphically for the NB classifier by using probabilities. 
Capability 1, decision evidence, is visualized as described 
in Section 2. For both PA (Figure 4) and the prototype 
system (Figure 5), the user can see that the classifier 
(correctly) predicts inner membrane as the protein label. 

From the display of focus features, we observe that the 
presence of keywords ‘plasma membrane’ and 
‘transmembrane’ give critical evidence for the decision to 
label the query protein as ‘inner membrane’. Due to the 
noisiness of the biological data set, we see that the query 
protein, contrary to our expectations, is not associated with 
the keyword ‘inner membrane’. The lack of ‘inner 
membrane’ gives negative evidence for the decision ‘inner 
membrane’. Fortunately, other keywords, give enough 
evidence to overcome this omitted information. 

From Capability 2, decision speculation (Figure 6), we 
observe that the decision would change if the keyword 

‘transmembrane’ were not associated with this protein. 
The lack of ‘transmembrane’ (new value xtransmembrane =  -1) 
would give sufficient negative evidence for the ‘inner 
membrane’ decision that the negative-response bar would 
be longer than the positive one. The difference between 
changing a feature value (from +1 to -1) and ignoring a 
feature is important. If the feature ‘transmembrane’ were 
ignored in the training and testing instances, it would be 
equivalent to completely removing the ‘transmembrane’ 
segment from the evidence bars. This follows from the 
additive nature of the model. In this case, the original 
positive decision for the inner membrane label would hold. 

By viewing the NB classifier’s Capability 3, ranks of 
evidence, the user can see the most important features 
overall for classification of ‘inner membrane’. For 
example, Figure 7 shows that the most important features 
is: ‘inner membrane’ which contributes f_positive(‘inner 
membrane’) = 5.44 to a positive decision if the feature is 
present in a query protein and contributes 
f_negative(‘inner membrane’) = 1.77 to a negative 
decision if it is absent from the query protein. 

To capture the rank of this feature we compute a ranking 
score – the difference between the evidence given by a 
positive (present) feature value compared with a negative 
(absent) feature value. For ‘inner membrane’ the ranking 
score is (-1)×(-1.77) + (+1)×(+5.44) = +7.21. Each feature 
is ranked by the ranking score of its evidence. The features 
with second and third ranks of evidence for this classifier 
are ‘cytoplasmic’ with score (-1)×(+1.33) + (+1)×(-5.35) = 
-6.68 and  ‘protein biosynthesis’ with score (-1)×(+0.63) + 
(+1)×(-5.59) = -6.62. In fact, ‘transmembrane’ is ranked 
thirteenth, with score (-1)×(-2.16) + (+1)×(+2.69) = +4.85, 
but it is important enough (as well as the features ranked 
above it) to reverse the decision if it did not appear as a 
feature in the query protein. 

Capability 4, the source of evidence, can be shown by 
two methods. For the NB classifier we can display the 
actual calculation of each evidence contribution at the 
user’s request.  For example, Figure 9 shows the 
computation for the contribution of the ‘transmembrane’ 
feature to a ‘cytoplasm’ classifier that, similarly to our 
‘inner membrane’ classifier, decides whether or not a 
protein is in the cytoplasm of a cell. Figure 9 shows that 
there were 5 instances in the ‘cytoplasm’ training set that 
included the feature ‘transmembrane’ and were labeled 
‘cytoplasm’ out of a total of 2465 training instances that 
were labeled ‘cytoplasm’. It also shows that there were 706 
training instances that included the feature 
‘transmembrane’ and were labeled ‘not cytoplasm’ out of a 
total of 1437 training instances that were labeled ‘not 
cytoplasm’. Given this information, the evidence 
contribution is calculated based on the NB formula in (4). 

If training data is available, we can also show how the 
instances are sliced by label and feature. For example, 
Figure 8 shows how the data is sliced for label ‘inner 
membrane’ and feature ‘transmembrane’. The user may 
then continue to drill through to view the actual training 
data by clicking on the numerical hyperlinks in the table. 
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Figure 4: Naive Bayes application of capability 1 – decision evidence in Proteome Analyst. 

   
Figure 5: Naïve Bayes application of capability 1 – 

decision evidence in the ExplainD prototype. 

   
Figure 6: Naïve Bayes application of capability 2 - 

decision speculation in the ExplainD prototype. 
 

   
Figure 7 Naïve Bayes application of capability 3 - ranks of 

evidence in the ExplainD prototype. 
 

   
Figure 8: Naïve Bayes application of capability 4 – source 
of evidence in the ExplainD prototype (showing only the 

relevant slices of the training data). 

   
Figure 9: Naïve Bayes application of capability 4 – source of evidence in the ExplainD prototype (showing detailed 

calculation of the parameters). 
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Support Vector Machines (SVM) 
Support vector machines (SVMs) are an important type of 
classifier based on linear discriminants. SVMs are often 
considered a ‘black box’ since their formulation is less 
intuitive for those not familiar with machine learning. 
However, the primal formulation of the linear SVM 
decision function is a linear discriminant (Vapnik 1995): 

! 

y = sign w j x jj=1

m
" # b
$ 
% 
& ' 

( 
)  

Thus, ExplainD applies to an SVM classifier of this form. 
The SVM model we present does not take advantage of 

the dual formulation, and thus cannot use the ‘kernel trick’ 
(Boser, Guyon, and Vapnik 1992) that allows for more 
complex representations of the input data (radial basis 
functions, polynomial expansions, etc.). It is currently 
unclear how ExplainD could be used with kernels to 
explain the predictions of more complex SVM classifiers. 

For our prototype, Capability 0 indicates only the class. 
It would be helpful to indicate prediction strength – 
corresponding to the probabilistic output of a Naïve Bayes 
classifier. Unfortunately, SVM classifiers do not normally 
produce probabilities. However, the distance of an instance 
from the decision boundary in an SVM is related to how 
confident the corresponding prediction is. Therefore, the 
output of an SVM can be mapped into a posterior 
probability, where the SVM is more confident of 
predictions that lie farther from the decision boundary. 
This is accomplished by fitting a sigmoid function to the 
training data, which maps the SVM output into the [0,1] 
range (Platt 2000). An explanation system could display 
these probabilities to improve the user's understanding of 
how confident the SVM is in its predictions and make the 
decision visualization more informative. Our prototype 
does not yet support this approach. However, the SVM 
classified the protein (correctly) as ‘inner membrane’. 
Capability 1, decision evidence, shows that although the 
linear SVM made the same decision as the NB classifier, 
the most important evidence for that decision was not the 
same (compare Figure 10 with Figure 5).  

In contrast with the NB classifier, the SVM classifier 
does not change the classification decision if the keyword 
‘transmembrane’ is removed as a feature using decision 
speculation (not shown). This is due to the fact that 
‘transmembrane’ is ranked very low in the ranks of 
evidence for the SVM classifier. The ranks of evidence for 
the SVM classifier are represented as continuous linear 
functions and are ranked by the absolute value of the 
weight wj. The ranks from the SVM classifier show a 
markedly different set of high-ranked features compared to 
the NB classifier (Figure 11 and Figure 7). For example, 
the feature ‘inner membrane’ has dropped from first to 
fourth rank. This is partly because the SVM classifier 
depends on the absence of the feature ‘outer membrane’ to 
make a positive prediction for ‘inner membrane’. 

 

  
Figure 10: Linear SVM application of capability 1 – 

decision evidence in the ExplainD prototype. 
 

  
Figure 11: Linear SVM application of capability 3 – ranks 

of evidence in the ExplainD prototype. 
 

For capability 4, source of evidence, the SVM is not as 
intuitive as the NB model. While we can still slice the 
training data using features and labels, we cannot show the 
direct calculation between the training instances and the 
evidence parameters, wj and b, since their values depend on 
the global training set in a complex manner. 

This example highlights that despite commonalities in 
the explanation system, NB and SVM classifiers can 
remain different in their classification decisions and 
supporting evidence. This example shows that a good 
explanation system can be used to reveal and highlight the 
differences between such classifiers. 

Logistic Regression 
Logistic regression classifiers model the probabilities of 
the potential class with the logistic function. Due to their 
simplicity and the fact that many real world phenomena are 
logistic in nature, they are widely used for making binary 
decisions (positive or negative). The response variable is 
specified with a log-odds transformation—the log of the 
odds-ratio of the positive outcome against the negative 
(Alpaydin 2004; Hastie, Tibshirani, and Friedman 2001). 
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This classifier form fits our explanation framework (b is 
the intercept and wj are weights). The decision is expressed 
as a probability, as with the NB classifier. However, all 
other explanation capabilities are displayed in a manner 
similar to the SVM framework. The feature contributions 
are continuous (as opposed to a choice of discrete values). 
As with the SVM classifier, we cannot represent a direct 
calculation of the weights from the training data since this 
is done through optimization (such as the Newton-Raphson 
algorithm used by ExplainD). Despite this complication, 
once training has been done and the weights have been 
obtained, we can still allow the user to drill through to the 
training data. Our CAD example is based on a model that 
was obtained using logistic regression (Morise et al. 1992) 
and is included in our prototype explanation system.  

Conclusion 
We described a framework for visually explaining the 
decisions of several widely used machine-learned 
classifiers and the evidence for those decisions. We 
described how to apply the framework to any classifier that 
is formulated as an additive model and showed (using our 
prototype) how to implement this framework in the context 
of three models: naïve Bayes, linear SVM and logistic 
regression classifiers. In addition, we have implemented 
these ideas within Proteome Analyst (Szafron et al. 2004), 
a working bioinformatics application that has been used by 
hundreds of biologists. This explanation facility has helped 
several users to find errors in their training data. 

This framework offers both experienced and 
inexperienced users a straightforward graphical 
explanation of classification. These transparent explanation 
capabilities can cultivate user confidence in the classifier 
decision, enhance the user's understanding of the 
relationships between the feature values and the decisions, 
and help users to visually audit the classifier and identify 
suspicious training data. This framework extends the 
elements provided by other explanation systems (Madigan, 
Mosurski, and Almond 1996; Becker, Kohavi, and 
Sommerfield 1997; Mozina et al. 2004) that have been 
used for Bayesian classifiers and provides the potential for 
extension to many other classifier models. 
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