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Abstract
Bayesian belief nets (BNs) are often used for classification
tasks, typically to return the most likely class label for a spec-
ified instance. Many BN-learners, however, attempt to find
the BN that maximizes a different objective function — viz.,
likelihood, rather than classification accuracy — typically by
first using some model selection criterion to identify an ap-
propriate graphical structure, then finding good parameters
for that structure. This paper considers a number of possible
criteria for selecting the best structure, both generative (i.e.,
based on likelihood; BIC, BDe) and discriminative (i.e., Con-
ditional BIC (CBIC), resubstitution Classification Error (CE)
and Bias2+Variance (BV) ). We empirically compare these
criteria against a variety of different “correct BN structures”,
both real-world and synthetic, over a range of complexities.
We also explore different ways to set the parameters, dealing
with two issues: (1) Should we seek the parameters that max-
imize likelihood versus the ones that maximize conditional
likelihood? (2) Should we use (i) the entire training sam-
ple first to learn the best parameters and then to evaluate the
models, versus (ii) only a partition for parameter estimation
and another partition for evaluation (cross-validation)? Our
results show that the discriminative BV model selection crite-
rion is one of the best measures for identifying the optimal
structure, while the discriminative CBIC performs poorly;
that we should use the parameters that maximize likelihood;
and that it is typically better to use cross-validation here.
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1 Introduction
While belief networks (BNs, a.k.a. Bayesian networks,
graphical models) are generative models, capable of mod-
eling a joint probability distribution over a set of variables,
they are typically used discriminatively for some classifica-
tion task — e.g., to predict the probability of some disease,
given some specific evidence about the patient.1 This has
motivated the growing body of work on learning an effec-
tive BN-classifier from a datasample [ILLP05].

In general, learning an effective BN-classifier requires
first finding a good BN structure (a.k.a. model, which rep-
resents the direct dependencies among the variables) then

Copyright c© 2005, American Association for Artificial Intelli-
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1Personal conversation with B Boerlage, Norsys.

determining appropriate parameters for this model. The first
step requires searching through a space of models, seeking
the element that optimizes some model selection criterion.
This paper investigates a number of criteria, towards deter-
mining which one works best in practice — i.e., which will
best identify the structure whose instantiation will minimize
classification error on unseen data.

This is not a trivial challenge. While one can typically im-
prove classification performance on the training data by in-
creasing the complexity of the model, this usually increases
the number of parameters that must be estimated. This typ-
ically increases parameter variance, which leads to inferior
generalization performance — i.e., worse performance on
unseen data. A model selection criterion attempts to opera-
tionalize this balance between complexity and goodness of
fit to training data, by providing a single number for each
network structure. A good model selection criterion is espe-
cially important when we have limited training data, which
is the standard case.

Van Allen and Greiner [VG00] evaluated several standard
generative criteria, where the goal is a structure that pro-
duces the best fit to the underlying distribution (using like-
lihood, Eqn 3). We consider two of these: BIC [Sch78] and
BDe [CH92].

As noted above, our overall goal is different, as we are
seeking a structure that leads to good discriminative perfor-
mance, i.e., which has the best classification performance
on unseen testing data. We therefore consider several dis-
criminative criteria: Conditional BIC (CBIC), resubstitution
Classification Error (CE), and Bias2+Variance (BV).

When deciding on an appropriate structure, we need to
consider how to instantiate its parameters (CPtables). This
leads to two issues. (1) Should we use the parameters that
optimize the simple likelihood of the data (i.e., the standard
generative approach), versus the discriminative parameters
that optimize conditional likelihood [NJ01]. (2) The learner
has access to a corpus of training data, both to find the best
parameters for each structure, and also to evaluate the qual-
ity of this instantiated model. Should the learner use the
same data for both tasks, or should it instead partition the
training sample into two subsamples, and use the first for
parameter instantiation, and the second for model selection,
perhaps in a cross-validation fashion?

The rest of this section discusses related work. Section 2



provides the framework for this paper, describing belief net-
works, our model selection criteria and parameter estima-
tion. Section 3 presents our experimental setup and results.
As our preliminary experimental results, on data from a real-
world distribution, suggest the performance of each criterion
may be related to complexity of the Markov blanket around
the class variable, we therefore systematically explore the
effectiveness of various model selection criteria across gen-
erative models with a wide range of Markov blanket com-
plexities. The webpage [Gre05] contains additional infor-
mation about the experiments reported here, as well as other
related results.

Three preliminary comments: (1) There are many reasons
to select some specific criteria, some of which relate more
to prior assumptions and constraints, than to performance.
In this paper, however, we are only concerned with eventual
classification performance, as measured by Eqn 1. (2) While
most of these criteria are known to be asymptotically cor-
rect, our interest is with the practical use of these criteria.
We therefore focus on small sample sizes. (3) Our goal
is to better understand model selection criteria, divorced
with the search issues associated with learning itself. We
therefore follow the standard framework for evaluating crite-
ria [VG00; KMNR97]: consider only a small set of models,
small enough that each can be evaluated.

1.1 Related Work
There is a large literature on the general model se-
lection problem, proposing a variety of schemes in-
cluding BIC [Sch78] (related to Minimum Description
Length [Ris89]) and AIC [Boz87]; our analysis (here and
in [Gre05]) includes each of these schemes in the context of
learning BN-structures.

There are also many papers on learning the structure of
belief nets, but most focus on generative learning [Hec98].
[VG00] provides a comprehensive comparison of selec-
tion criteria when learning belief network structures genera-
tively. While we borrow some of the techniques from these
projects (and from [KMNR97]), recall our goal is learning
the structure that is best for a discriminative classification
task.

As noted earlier, belief nets are often used for this clas-
sification task. This dates back (at least) to Naı̈veBayes
classifiers [DH73], and has continued with various ap-
proaches that include feature selection [LS94], and al-
ternative structures [FGG97; CG99]. Kontkanen et
al. [KMST99] compared several model selection criteria
(unsupervised/supervised marginal likelihood, supervised
prequential likelihood, cross validation) on a restricted
subset of belief nets structures. Grossman and Domin-
gos [GD04] presented an algorithm for discriminatively
learning belief networks that used the conditional likelihood
of the class variable given the evidence (Eqn 2) as the model
selection criterion. Our work differs by proposing sev-
eral new discriminative model selection criteria (including
a variant of a generative criteria (CBIC), and another (BV)
motivated by the classification task in general [Rip96]), and
by providing a comprehensive comparison between classi-
cal generative model selection criteria and various discrim-

inative criteria on the task of learning good structures for a
BN-classifier.

2 Framework
2.1 Belief Network Classifiers
We assume there is a stationary underlying distribution P ( · )
over n (discrete) random variables V = {V1, . . . , Vn},
which we encode as a “(Bayesian) belief net” (BN) — a
directed acyclic graph B = 〈V , A, Θ〉, whose nodes V rep-
resent variables, and whose arcs A represent dependencies.
Each node Di ∈ V also includes a conditional-probability-
table (CPtable) θi ∈ Θ that specifies how Di’s values de-
pend (stochastically) on the values of its immediate parents.
In particular, given a node D ∈ V with immediate parents
F ⊂ V , the parameter θd|f represents the network’s term for
P ( D=d |F= f ) [Pea88].

The user interacts with the belief net by asking
queries, each of the form “What is P ( C = c |E = e )?”
— e.g.,

“What is P

(

Cancer = true
∣

∣

∣

∣

Gender=male
Smoke=true

)

?”

— where C ∈ V is a single “class variable”, E ⊂ V is the
subset of “evidence variables”, and c (resp., e) is a legal as-
signment to C (resp., E).2

Given any unlabeled instance E=e, the belief net B will
produce a distribution PB over the values of the class vari-
able; perhaps PB( Cancer = true |E = e ) = 0.3 and
PB( Cancer = false |E = e ) = 0.7. In general, the
associated HB classifier system will then return the value

HB(e) = argmax
c

{PB( C =c |E=e )}

with the largest posterior probability — here return
HB( e ) = false as PB( Cancer = false |E = e ) >
PB( Cancer = true |E = e ).

A good belief net classifier is one that produces the ap-
propriate answers to these unlabeled queries. We will use
“classification error” (aka “0/1” loss) to evaluate the result-
ing B-based classifier HB

err( B ) =
∑

〈e,c〉:HB(e) 6=c

P ( e , c ) (1)

Our goal is a belief net B∗ that minimizes this score,
with respect to the true distribution P ( · ). While we do
not know this distribution a priori, we can use a sample
drawn from this distribution to help determine which belief
net is optimal. We will use a training set S of m = |S|
complete instances, where the ith instance is represented as
〈ci, ei

1, . . . , e
i
n〉. This paper focuses on the task of learning

2This paper focuses on the standard “machine learning” case,
where all queries involve the same variable (e.g., all queries ask
about Cancer), and we assume the distribution of conditioning
events matches the underlying distribution, which means there is
a single distribution from which we can draw instances, which
correspond to a set of labeled instances (aka “labeled queries”).
See [GGS97] for an alternative position, and the challenges this
requires solving.



the BN-structure G = 〈V , A〉 that allows optimal classifica-
tion performance (Eqn 1) on unseen examples.
Conditional Likelihood: Given a sample S, the empirical
“log conditional likelihood” of a belief net B is

LCL(S)( B ) =
1

|S|

∑

〈e,c〉∈S

log( PB( c | e ) ) (2)

where PB( c | e ) represents the conditional probabil-
ity produced by the belief network B. Previous re-
searchers [MN89; FGG97] have noted that maximizing this
score will typically produce a classifier that comes close to
minimizing the classification error (Eqn 1).

Note that this LCL(S)( B ) formula is significantly differ-
ent from the (empirical) “log likelihood” function

LL(S)( B ) =
1

|S|

∑

〈e,c〉∈S

log( PB( c, e ) ) (3)

used as part of many generative BN-learning algo-
rithms [FGG97].

We will measure the complexity of the BN B as the num-
ber of free parameters in the network

k(B) =

n
∑

i=1

(|Vi| − 1)
∏

F∈Pa( Vi )

|F | (4)

where |V | is the number of values of any variable V , and
Pa( V ) is the set of immediate parents of the node V .

For a belief network structure, given a completely instan-
tiated tuple, a variable C is only dependent on the variables
in its immediate Markov Blanket [Pea88], which is defined
as the union of C’s direct parents, C’s direct children and all
direct parents of C’s direct children. We define kC( B ) as
the number of parameters in C’s Markov blanket, within B,
using an obvious analogue to Eqn 4.

2.2 Generative Model Selection Criteria
Most of the generative criteria begin with the average
empirical log likelihood of the data, Eqn 3, as LL(S′)( B )
on unseen data S ′ is useful as an unbiased estimate of
the average generative quality of the distribution B. BIC
uses this measure on training data, but attempts to avoid
overfitting by adding a “regularizing” term that penalizes
complex structures:

BIC(S)( B ) = −LL(S)( B ) +
k(B) log |S|

2 |S|

Another generative model selection criterion is the
marginal likelihood — averaged over all possible CPtable
values (in the Bayesian framework):

BDe(S)( B ) =

n
∏

i=1

qi
∏

j=1

Γ(αij)

Γ(αij + aij)

|Vi|
∏

k=1

Γ(αijk + aijk)

Γ(αijk)
,

where qi =
∏

F∈Pa( Vi ) |F | is the number of states of the
parents of variable Vi, αijk are the Dirichlet prior parameters

(here set to 1), αij =
∑|Vi|

k=1 αijk , and aijk are the empirical
counts — i.e., the number of instances in the datasample S
where the ith variable Vi takes its kth value and Vi’s parents
take their jth value.

2.3 Discriminative Model Selection Criteria
The CBIC (conditional BIC) criterion is a discriminative
analogue of the generative BIC criterion, which differs by
using log conditional likelihood to measure “training error”
and by using kC( B ) rather than k(B) as the number of pa-
rameters.

CBIC(S)( B ) = −LCL(S)( B ) +
kC( B ) log |S|

2 |S|

As we use classification error on testing data to measure a
BN-classifier’s performance, we include its classification er-
ror (CE) on training data as a discriminative model selection
criterion.

CE(S)( B ) =
|{〈e, c〉 ∈ S | HB(e) 6= c}|

|S|
(5)

[Rip96] proves that the expected mean-square-error of a
classifier corresponds to “Bias2+Variance”,

BV(S)( B ) =

1

|S|

∑

〈c,e〉∈S

[ t( c | e ) − PB( c | e )]2 + σ̂2[PB( c | e )]

where the “true” response t( c | e ) corresponds to the empir-
ical frequency within the training data:

t( c | e ) =
#S(C =c,E=e)

#S(E=e)

where #S(E = e) is the number of instances in training
set S that match this (partial) assignment, and we use the
(Bayesian) variance estimate provided in [VGH01]:

σ̂2[PB( c | e )] =

∑

θD|f∈Θ

1

nD|f





∑

d∈D

1

θd|f

[PB( d, f , c | e ) − PB( c | e )PB( d, f | e )]2

− (PB( f , c | e ) − PB( c | e ) PB( f | e ) )2





which requires summing over the CPtable rows θD=d|F=f ,
and uses nD|F=f = 1 + |D| + #S(F= f) as the “effective
sample size” of the conditioning event for this row.3

3Note this is done from a Bayesian perspective, where we first
identify each CPtable row with a Dirichlet-distributed random vari-
able, then compute its posterior based on the training sample, and
finally use these posterior distributions of the CPtable rows to com-
pute the distribution over the response to the BΘ( c | e ), which is
after-all just a function of those random variables, Θ = {θd|f}.
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Figure 1: (a) Criteria Score, as function of Structure; (b) Relative Score of Various Criteria, over 3 queries in ALARM Network.

2.4 How to Instantiate the Parameters
As mentioned above, a belief net includes both a structure
and a set of parameters for that structure. Given complete
training data, the standard parameter learning algorithm,
OFE, sets the value of each parameter to its empirical fre-
quency in the datasample, with a Laplacian correction:

θD=d|F=f =
#S(D=d,F= f) + 1

#S(F= f ) + |D|

Cooper and Herskovits [CH92] prove these generative
values correspond to the mean posterior of a distribution
whose prior was a uniform Dirichlet; moreover, they opti-
mize the likelihood of the data, Eqn 3, for the given struc-
ture.

The ELR algorithm [GZ02; GSSZ05], by contrast, at-
tempts to find the parameters that optimize the discrimina-
tive conditional likelihood score. (This algorithm extends
logistic regression as it applies to arbitrary network struc-
tures, while standard logistic regression corresponds to naive
bayes.)

In either case, the learner has access to a training sample
S, to use as it wishes when producing the optimal structure.
A simple model selection process will use the “undivided
sample” approach: Use all of S when finding the appropriate
instantiation of the parameters, then compute a score for this
instantiated structure, based again on S. Note this “1Sam-
ple” approach was the motivation for many of the scoring
criteria. We compare this to the obvious “cross-validation”
approach (5CV): first partition the data into 5 subsets, and
for each subset Si, use the other 4 subsets to fit parameters
then compute the score of the result on Si. We repeat this
5 times, and average the scores. (Note “score” refers to the
actual criterion, which is not necessarily Eqn 5.)

3 Empirical Studies
This section reports on our empirical studies that compare
the 5 model selection criteria mentioned above, to help de-
termine when (if ever) to use each, and to investigate the
parameter-instantiation issues listed in Section 2.4. We
therefore asked each of the criteria to identify the appropri-
ate structure, across a range of situations. Section 3.1 first

explains how we will run each experiment, and how we will
evaluate the results. Section 3.2 presents our first study, on a
real-world distribution. Here, we use OFE (rather than ELR)
to instantiate the parameters, and use “1Sample” (i.e., only
a single undivided training sample, for both instantiating the
parameters and for evaluating the resulting instantiated net-
work). This data suggests that the complexity of the gener-
ative model may strongly affect which criterion works best.
The remaining subsections explore this. Section 3.3 (resp.,
3.4) considers the performance of the selection criteria on a
set of synthetic models with a range of complexities, using
1Sample (resp., 5CV sample). Section 3.5 then considers
model selection when ELR is used to find parameters; and
Section 3.6 explicitly compares the different approaches to
instantiating the parameters.

3.1 Experimental Setup
In each experiment, we have a specific “true” distribution
P (·) — i.e., correct BN-structure and parameters — that we
either download, or synthesize. We produce a set of pos-
sible candidate models by modifying the true structure; see
below. We also generate a number of complete datasamples
from the true P (·), of various sizes. For each training sample
we then run each of the selection criteria in the appropriate
context: 1Sample vs 5CV, and OFE vs ELR. Each criteria
produces a single number for each candidate structure. Fig-
ure 1(a) shows this, in the context of the ALARM [BSCC89]
network (Section 3.2).4 Each criteria then identifies the
structure it considers best — i.e., with the lowest score.
Here, for example, CBIC would select the structure labeled
“−9”, BIC would pick “−7”, BV would select “+1” and
BDe, “0”. (These numbers correspond to the number of arcs
added, or deleted, to the initial structure. Hence, the original
structure is labeled “0”.) For each criteria χ, let Bχ be this
selected structure, instantiated appropriately. We then com-
pute the error of each Bχ, based on a hold-out sample S ′ of
size |S′| = 1000, generated from P (·) — i.e., err(S′)( Bχ ).

We also let B∗ = argminB{err(S′)( B )} denote the best
structure. (See the “Test Error” line in Figure 1(a); notice

4Each measure is normalized to fit between 0 (best) and 1.
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Figure 2: Sequence of structures; (d) is the original structure

this picks “+2”. That is, the structure that is best for a partic-
ular sample need not be the original structure!) We measure
the performance of each criterion χ by its “relative model se-
lection error”, err(S′)( Bχ )/err(S′)( B∗ ). For a given sam-
ple size, we compute the average over 20 repeated trials,
each time using a different training set. This ratio will be 1
for a perfect criteria; in general, it will be higher. 5

Proper model selection is most challenging, and hence
more relevant, when given limited training data; this paper
therefore focuses on a very small training sample — e.g., of
20 instances. (The results for other sizes were similar; see
[Gre05].)

Generating Sequence of Structures: Given a true BN-
structure G∗, we generate a sequence of BN-structure can-
didates with decreasing/increasing complexities, as follows:
1. Starting from the original structure, sequentially remove
one randomly-selected arc from the Markov blanket (MB)
of the class variable, to generate a series of structures whose
class variable has decreasing MB size.
2. Starting from the original structure, sequentially add one
randomly-selected arc to the Markov blanket of the class
variable, to generate a series of structures whose class vari-
able has increasing MB size.6

See Figure 2, where a is the class variable. Here (d) is the
starting point, and we produce (c), (b) and (a) by deleting
existing arcs, and produce (e) and (f) by adding new arcs.

Each experiment will begin with its own “true structure”
G∗. When G∗ includes few arcs, the generated set of candi-
date structures will include very small structures — includ-
ing one with 0 arcs, another with 1 arc, and so forth. Notice
these correspond to the structures that a standard learning al-
gorithm would consider, as it “grows” a structure from noth-
ing.

3.2 Exp I: Real-World Distr’n, 1Sample, OFE

Our preliminary investigations examined several real-world
belief nets; here we focus on ALARM [BSCC89]. We con-

5We considered an alternative evaluation method: simply mea-
sure how often each method “correctly” selected the original struc-
ture. We prefer our evaluation measure for two reasons: First,
the original structure might not be the optimal structure, given this
datasample. Second, we wanted to quantify how bad the loss was.

6Note that adding one more arc might increase the MB size by
more than one, since adding one arc into the Markov blanket may
cause some other arcs of the original network to now become part
of the Markov blanket of the class variable. Similarly removing a
single arc may reduce the MB size by more than 1.

sidered three different variables to serve as the class vari-
able Ci, which produced three different query forms, whose
Markov blankets kCi

( ALARM ) had a wide range in size:
15, 28, 188.

As outlined above, we computed the relative model se-
lection error for each criterion, err(S′)( Bχ )/err(S′)( B∗ ).
Figure 1(b) is the result when we used a sample of size
m = 50. We found that BV performed well throughout, with
BDe being very close; but the other measures were generally
inferior. ([Gre05] shows similar performances on other sam-
ple sizes, and for various queries on different networks.)

3.3 Exp II: Synthetic Distribution, 1Sample, OFE

We observed different behavior of the various selection cri-
teria as we varied the complexity of the Markov blanket
around the class variable. To further explore this, we gener-
ated a set of synthetic networks, whose class variables could
have arbitrary Markov blanket complexity (aka “MB com-
plexity”). We will use the networks here and below.

We first randomly generated six groups of belief network
structures with varying Markov blanket complexity, where
each group includes 30 structures. We sequentially made
each of these the gold standard, used to generate datasam-
ples.

We used the experimental apparatus described in Sec-
tion 3.1 to test the behavior of each criterion, across a spec-
trum of complexities and a range of sample sizes. The graph
in Figure 3(a) show the results for belief networks with seven
variables, over a sample of size m = 20, using an undivided
training sample (1Sample), and the generative for estimating
parameters (OFE). The complexity (on the X axis, from 1 to
6) represents the six group of structures, with increasing MB
complexity.

This plot shows that the BV, CE and BDe criteria perform
comparably across the MB complexities, and each is typi-
cally (far) superior to BIC and CBIC. ([Gre05] shows this
holds for other training sizes as well.)

The BIC and CBIC criteria perform well only when the
MB complexity is very small, otherwise, they perform very
poorly. Our experiments reveal why: These criteria have
too strong a preference for simple structures, as they almost
always pick the simplest structure in the sequence, irrespec-
tive of the data. (Notice this data was sufficient to tell the
other measures to prefer other larger structures.) This is con-
sistent with the [VG00] observation that the BIC criterion
seriously underfits — indeed, for small samples, it almost
invariably produced no arcs. This suggests the complexity
penalty term for BIC/CBIC may be too big, and not appro-
priate for belief network on most cases. Given that CBIC’s
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Figure 3: For 7-Variable BN, m = 20: (a) Exp II: 1Sample, OFE; (b) Exp III: 5CV, OFE; (c) Exp IV: 5CV, ELR

penalty term kc( B ) is smaller than BIC’s k(B), we were
at first surprised that CBIC typically performed even worse
than BIC. However, we attribute this to the observation that
the −LCL(S)( B ) term of CBIC is so much smaller than
the −LL(S)( B ) term of BIC that even the relatively small
kc( B ) is very influential, which increases CBIC tendency
to underfit. ([Gre05] shows that increasing the training set
size does improve the performance of those complexity pe-
nalized criteria.)

We attribute the good performance of the generative BDe
measure to the observation that it is actually averaging over
all parameter values, rather than being forced to pick a par-
ticular set of parameters, which could be problematic given
a small training dataset.

3.4 Exp III: Synthetic Distribution, 5CV, OFE
Figure 3(b) shows the results of the 5CV variant (still using
OFE), again on the 7-variable case with m = 20 training
instances. In general, we can see that BV is often the best,
closely followed by CE, then often BDe. Once again, we
see that BIC and CBIC perform significantly worse; even
with 5CV, they continue to select the simplest structure in
almost all cases.

Here, the CE score corresponds to the standard 5-fold
CV. Note that it does not always produce the best response;
(5fold) BV is typically better!

3.5 Exp IV: Synthetic Distribution, 5CV, ELR
Here we ran the same experiments, but using ELR rather than
OFE to instantiate the parameters. (Given that 5CV typically
worked better than 1Sample, we only show the 5CV results
here — see Section 3.6.) As shown in Figure 3(c), we again
see that BV and CE appear to be the best, then BDe; CBIC
and BIC are again not even close.

3.6 Comparing Parameter Estimation Regimes
The graphs shown above provide the relative model se-
lection error for the different model selection criteria, for
a fixed “context” (here, “way of instantiating the parame-
ters”). While this is appropriate for our within-context com-
parisons, it does not allow us to compare these different con-
texts, to determine which leads to the smallest absolute error.
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We therefore computed the average 0/1-classification error
(Eqn 1) obtained when using BV criterion (which was one
of the top measures), for each of the 4 different ways to in-
stantiate parameters: 1Sample vs 5CV and OFE vs ELR. Fig-
ure 4 shows the results, across a range of MB complexities.
We note first that the optimal approach was always based on
OFE rather than ELR; note this is consistent with [GD04]. In
fact, it appears that 1Sample+ELR is tracking 1Sample+OFE,
but at a slightly inferior error; and that 5CV+ELR is similarly
tracking 5CV+OFE, For both ELR and OFE, we see that 5CV
does better than the 1Sample variant for low MB complexity,
but the situation reverses as the MB complexity increases.

We obtained similar results when we performed simi-
lar experiments with other model selection criteria, and for
each, across several sample sizes m ∈ {10, 20, 50}, and
also on a set of larger belief networks (e.g., with 15 vari-
ables); see [Gre05].

3.7 Other Experiments
We also computed the (resubstitution) log likelihood criteria
itself (Eqn 3) in each of these cases, as this measure is often
used in the literature. But as it did not perform as well as the
other criteria, we do not show those results here. We also
omit both the AIC criterion (Akaike Information Criteria)
and its discriminative analogue CAIC, as they behaved very



similarly to BIC and CBIC. See [Gre05].

4 Conclusions
Belief nets are often used as classifiers. When learning the
structure for such a BN-classifier, it is useful to have a crite-
rion for evaluating the different candidate structures that cor-
responds to this objective. We proposed a number of novel
discriminative model selective criteria, one (CBIC) being an
analogue of a standard generative criterion (commonly used
when learning generative models), and another (BV) moti-
vated by the familiar discriminative approach of decompos-
ing error into bias and variance components. We then eval-
uated these methods, along with the generative ones, across
a number of different situations: over queries of different
complexities and different ways to use the training sample
— 1Sample vs 5CV, and OFE vs ELR.

As our underlying task is discriminative, we had antici-
pated that perhaps all of the discriminative methods would
work well. This was only partly true: while one discrimi-
nate method BV is among the best criteria, another (CBIC)
performed very poorly.7 We also expected 5CV to be uni-
formly superior to the 1Sample approach. While our empir-
ical evidence shows that this was not always true, we note
that even when 5CV was inferior, it was never much worse.
Finally, based on [GD04], we were not surprised that using
the discriminative way to set the parameters (ELR) did not
dominate the generative approach (OFE).

Our main contributions are defining the BV criterion, and
providing empirical evidence that it performs effectively, es-
pecially for small samples. (While the CBIC criterion is
also discriminative, our empirical evidence argues strongly
against using this measure.) Based on our data, we also rec-
ommend (1) using the simpler OFE approach to estimating
the parameters, and (2) using the standard 5CV approach.
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