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Gene expression correlates of clinical prostate cancer behavior
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Summary

Prostate tumors are among the most heterogeneous of cancers, both histologically and clinically. Microarray expression
analysis was used to determine whether global biological differences underlie common pathological features of prostate
cancer and to identify genes that might anticipate the clinical behavior of this disease. While no expression correlates of
age, serum prostate specific antigen (PSA), and measures of local invasion were found, a set of genes was identified that
strongly correlated with the state of tumor differentiation as measured by Gleason score. Moreover, a model using gene
expression data alone accurately predicted patient outcome following prostatectomy. These results support the notion
that the clinical behavior of prostate cancer is linked to underlying gene expression differences that are detectable at the
time of diagnosis.

Introduction patients at risk for relapse and to better understand the molecu-
lar abnormalities that define tumors at risk for relapse.

Several clinical features of prostate cancer including tumorProstate cancer is the most common nondermatological cancer
in the United States with an estimated 198,100 new cases and stage (Jewett, 1975), degree of tumor cell differentiation or Glea-

son score (GS) (Gleason, 1966), and the serum PSA (Stamey31,500 deaths in 2001 (Greenlee et al., 2000). The adoption of
screening based upon the measurement of the serum prostate spe- et al., 1987) are used in routine clinical practice to separate

men into groups at low, intermediate, and high risk for tumorcific antigen (PSA) has led to the earlier detection of prostate
cancer where most tumors now appear confined to the prostate recurrence following local therapy. However, the majority of

patients who now undergo prostatectomy have low to interme-gland at presentation (Han et al., 2001). Early diagnosis provides
an opportunity for curative surgery. However, up to 30% of men diate risk clinical features, and determining the prognosis for

these patients remains difficult.undergoing radical prostatectomy will relapse, often as a result
of micrometastatic disease present at the time of surgery (Rob- The utility of existing prognostic factors might be limited

because they largely measure tumor differentiation and bulk buterts et al., 2001a, 2001b). The challenge is to identify those

S I G N I F I C A N C E

Improved patient stratification can allow the rational application of current treatments and the selected testing of novel therapeutics
in patient populations most likely to benefit. Clinical features including Gleason score, tumor stage, and serum prostate specific
antigen (PSA) are used to assess relapse-risk in men with prostate cancer. Such parameters are less useful in guiding therapy for
men having intermediate risk disease, 30% of whom recur following local therapy. Our data suggest that expression-based models
may help to identify patients at greatest risk for recurrence and thus facilitate the rational application of current therapies. Furthermore,
the association of specific genes’ expression, such as platelet-derived growth factor � (PDGFR�), with outcome raises the possibility
that expression analysis may prove useful in selecting patients for emerging mechanism-based therapeutics.
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do not otherwise sample the underlying biological properties accuracy in leave-one-out cross-validation testing (p � 0.001
as measured by permutation testing) (Suppl. Figure S2A andthat likely drive tumor behavior. Attempts to explore genetic
S2B). The 4-gene and 16-gene models were tested on an inde-correlates of tumor behavior have found alterations in a number
pendent data set of 8 normal and 27 tumor prostate samplesof candidate genes associated with prostate cancer progres-
provided by G. Hampton (Welsh et al., 2001). Despite a nearlysion, including loss of p53, amplification of myc, loss of p27,
10-fold difference in overall microarray intensity between theseand loss of PTEN (reviewed in Sellers and Sawyers, 2001).
datasets (see Supplemental Experimental procedures [below]),However, no single gene has been shown to have sufficient
the classifier performed with relatively high accuracy (4-geneprognostic utility to warrant clinical implementation.
model 77%; 16-gene model 86%; p � 0.05, Fisher’s exact test)Recently, genomic methodologies have been used to dis-
(Suppl. Figure S3). Thus, expression differences can be usedcover consistent gene expression patterns associated with a
to predict the identity of unknown prostate samples and thesegiven histological or clinical phenotype (Golub et al., 1999; Perou
gene expression differences are conserved across independentet al., 2000; van’t Veer et al., 2002). Here, gene expression
data sets.patterns from 52 tumor and 50 normal prostate specimens were

studied in order to ask whether such patterns could be used
Prediction of pathological features of prostate cancerto predict common clinical and pathological phenotypes rele-
In order to ask whether gene expression patterns exist thatvant to the treatment of men diagnosed with this disease. In
describe and or predict the differences in clinical behavior ap-addition to expression patterns that correlated with GS and
parent among prostate tumors, the expression patterns withinwith the distinction of tumor from normal, an expression-based
the 52 tumors were analyzed. Correlations between gene ex-model was built that accurately predicted patient outcome.
pression and known clinical and pathological parameters wereThese data suggest that it may be possible to predict the clinical
determined for dichotomous variables (e.g., the presence orbehavior of prostate cancer based upon gene expression analy-
absence of capsular penetration, perineural invasion, or positivesis of primary tumors. Such prediction strategies, if generaliz-
surgical margins), as well as for factors treated as continuousable, would allow for the rational application of additional post-
variables (e.g., patient age, serum PSA, and GS). Statisticalsurgical therapeutics to high-risk individuals.
significance was determined by comparing the observed corre-
lations to those correlations measured in randomly permutedResults
datasets. With the exception of GS (see below), no statistically
significant gene expression correlates of these clinical andTumor versus normal classification
pathological features were observed (see Suppl. Figure S4).To investigate whether robust gene expression differences
Specifically, no expression signature discriminated between lo-could be found that distinguished common clinical and patho-
cally invasive and noninvasive phenotypes (e.g., capsular pene-logical features of prostate cancer, 235 radical prostatectomy
tration, positive surgical margins, and perineural invasion). Thus,specimens were analyzed from patients undergoing surgery
while these features are often associated with different clinicalbetween 1995 and 1997. Of these samples, 65 had tumor on
outcomes, they are not reflected by global gene expressionopposing sides of the tissue specimen. High-quality expression
differences.profiles were successfully derived from 52 of these prostate

A gene expression signature of GS, however, was detect-tumors and 50 nontumor prostate samples (referred to as normal
able. Fifteen genes had expression positively correlated withhereafter) using oligonucleotide microarrays containing probes
GS (Type I) and 14 genes had expression negatively correlatedfor approximately 12,600 genes and ESTs (raw data available
with GS (Type II) beyond what would be expected by chanceat http://www-genome.wi.mit.edu/MPR/prostate). The clinical
alone (p � 0.001) (Figure 1 and Suppl. Figure S4). As theseand pathological features of the 52 patients and tumors included
genes were the most positively and negatively correlated with

in this study were indistinguishable from those of all patients
GS, when used in hierarchical clustering, the 29 Type I and

treated with radical prostatectomy during the collection period Type II were, as expected, separated into two groups (Figure
(Table 1). 1). The correlation of these genes with GS and their coordinate

Genes were ranked according to their differential expression expression in tumors, nonetheless, may have occurred by ran-
across the two classes (tumor versus normal) using a variation of dom chance alone in the initial dataset. However, when the
a signal-to-noise metric (S2N) (Golub et al., 1999). The statistical same 29 genes were used to drive hierarchical clustering of the
significance of these gene expression correlations was deter- independent data set, Type I and Type II genes remained highly
mined by comparing the observed correlations to the results cosegregated suggesting that this coexpression is reproducible
derived from 1000 permutations of the class labels (tumor or (p � 0.0001) (Suppl. Figure S5).
normal). This analysis indicated that 317 genes had higher ex- Strikingly, in both data sets, while most high-grade tumors
pression in the tumor samples (p � 0.001) whereas 139 genes expressed the Type I genes, a subset of intermediate grade
were more highly expressed in normal prostate samples (p � tumors also expressed many of the Type I genes (Figure 1 and
0.001) (Supplemental Figure S1 [see Supplemental data, below]). Suppl. Figure S5). This indicates that some tumors of intermedi-

Gene expression differences between tumor and normal ate histological grade share the gene expression signature of
prostate samples have been previously reported (Chetcuti et higher grade tumors. Thus, the coexpression of these genes
al., 2001; Dhanasekaran et al., 2001; Luo et al., 2001; Welsh et may identify tumors that are of intermediate histological grade,
al., 2001); however, the feasibility of using such differences to yet share the molecular phenotype of high-grade tumors.
predict the identity of prostate samples has not been tested.
To this end, we built predictors using a k-nearest neighbor Prediction of clinical outcome
(k-NN) supervised machine learning algorithm. Models that uti- In this data set, 21 patients were evaluable with respect to

recurrence following surgery with 8 patients having relapsedlized 4 or more genes classified samples with greater than 90%
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Table 1. Clinical and pathological features

Variable Study group All p Recurrent Nonrecurrent p

#Patients 52 393 8 13
Age Median 58.5 61 0.32 58.5 60.0 0.74

Range 47–72 40–79 51–72 47–72
PSA Median 6.3 6.7 0.62 6.8 6.3 0.64

Range 1.0–27.8 0.7–46.0 5.0–24.3 3.6–18.0
Gleason 2–6 19 (37%) 190 (51%) 0.10 2 (25%) 6 (46%) 0.45

Score 7 29 (56%) 146 (39%) 5 (63%) 6 (46%)
(Clinical) 8–10 4 (8%) 34 (9%) 1 (12%) 1 (8%)

Unknown 23
Gleason 2–6 24 (46%) 0.46* 1 (12%) 7 (54%) 0.01

Score 7 22 (42%) 3 (38%) 6 (46%)
(Sample) 8–10 6 (12%) 4 (50%) 0

Clinical T1–T2a 38 (88%) 285 (79%) 0.10 5 (100%) 10 (91%) 1.00
Stage T2b 5 (12%) 24 (7%) 0 9 (9%)

�T2c 0 50 (14%) 0 0
Unknown 9 34 3 2

Pathologic T2a 7 (13%) 49 (15%) 0.15 1 (13%) 2 (15%) 0.90
Stage T2b 25 (48%) 189 (58%) 4 (50%) 3 (38%)

T3a 16 (31%) 74 (23%) 2 (25%) 4 (31%)
T3b 4 (8%) 12 (4%) 1 (13%) 2 (15%)
T4a 0 2 (1%) 0 0
Unknown 53

Gland Median 51.75 53.0 0.89 67.5 50.0 0.15
Vol. Range 35–191 18–191 35.5–191 35–169
Ext. Cap. No 32 (62%) 239 (73%) 0.10 5 (63%) 7 (54%) 1.00

Yes 20 (38%) 88 (27%) 3 (37%) 6 (46%)
Unknown 66

SVInv. No 49 (94%) 315 (96%) 0.44 7 (88%) 12 (92%) 1.00
Yes 3 (6%) 12 (4%) 1 (12%) 1 (8%)
Unknown 66

Pos. Mar. No 39 (75%) 283 (76%) 0.86 5 (62%) 7 (54%) 1.00
Yes 13 (25%) 89 (24%) 3 (38%) 6 (46%)
Unknown 21

PSA, serum prostate specific antigen; Vol., Volume; SV Inv., seminal vesicle invasion; Ext Cap., Extension through capsule; Pos. Margin, positive surgical
resection margin. Gleason Score (Clinical) indicates the Gleason Score recorded from the radical prostatectomy specimen. Gleason Score (Sample)
indicates the Gleason Score of the frozen sections from the tumor specimens used in RNA preparation. *p value resulting from the comparison of the
Gleason Score (Sample) of the 52 tumors to the Gleason Score (Clinical) from the entire population.

(defined as two successive PSA values � 0.2 ng/ml) and 13 ing the success of the observed 5-gene model simply by chance
alone was estimated at p � 0.037 (Figure 2A).patients having remained relapse free for at least 4 years. While

While there were too few tumor samples to allow for multivar-these two groups did not differ with respect to the Clinical GS,
iate analysis, as mentioned above, only the Sample GS wasserum PSA, or tumor stage, the GS of the sections adjacent to
significantly different between patients who recurred and thosetissue used for RNA extraction was �8 in a greater proportion
who did not recur (Figure 2B and Table 1). Nonetheless, 4 recur-of recurrent patients (4/8 versus 0/13) (Table 1).
rent tumors were of intermediate grade (GS � 7) raising the

While no single gene was statistically associated with recur- possibility that gene expression-based models might provide
rence (at p � 0.05) (data not shown), when a k-NN classification additional prognostic information not currently described by
approach was applied, a 5-gene model with 2 nearest neighbors existing clinical and pathological parameters.
(k � 2) reached 90% accuracy in predicting recurrence during The genes that were used by the 5-gene outcome predictors
leave-one-out cross validation. When Kaplan-Meier survival during leave-one-out cross validation are shown in Figure 3.
analysis was performed based upon the predicted outcome, the The top 5 genes were each used in over half of the models,

and included chromogranin A, platelet-derived growth factorresults compared favorably with known prognostic indicators in
receptor � (PDGFR�), HOXC6, inositol triphosphate receptor 3this data set (Figure 2B). However, the standard Kaplan-Meier
(IPTR3) and sialyltransferase-1.log-rank statistic, while demonstrating a difference in the sur-

vival curves, does not account for the multiple hypothesis testing
Discussionthat occurred during model optimization. To further assess the

statistical significance of this prediction model, we performed There is an immediate need for robust prognostic markers capa-
1000 permutations of the class labels (recurrence versus nonre- ble of identifying patients at risk of relapse following local ther-
currence), and for each permutation attempted to find multigene apy; conventional and experimental therapeutics could then be
expression classifiers using the same range of gene numbers. focused on this subpopulation, rather than the general popula-
Only 37 of the 1000 permutations yielded models whose accu- tion of prostate cancer patients, 70% of whom are cured by

surgery alone.racy matched or exceeded 90%. Thus, the likelihood of match-
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Figure 1. Gene expression correlates of Gleason score

Hierarchical clustering of tumors and the 29 genes statistically associated with GS. Genes and samples are shown as ordered by Gene Cluster and Treeview.
The expression of each gene in each sample is represented by the number of standard deviations above (red) or below (blue) the mean for that gene
across all 52 samples.

Our analysis revealed global gene expression differences in the outcome prediction model, suggesting that while GS is
associated with patient outcome, GS-independent markers andthat were sufficiently robust to distinguish tumor from normal

in both training and validation sets. While the level of accuracy determinants of prostate cancer behavior exist.
Attempts to build a gene expression-based predictor of re-(86%–92%) is not sufficient to replace histological examination,

these molecular markers may be useful adjuncts to morphology- currence following prostatectomy led to a model that correctly
predicted the outcome of 19 of the 21 evaluable patients in thisbased diagnostics. In addition, while certain genes differentially

expressed between normal and tumor prostate specimens in study. While the result reached statistical significance based
on permutation testing (p � 0.037), the performance of themicroarray experiments have been correlated with outcome in

large data sets (Dhanasekaran et al., 2001), in our data such model may be due, at least in part, to overoptimization. As such,
this is a preliminary model and larger datasets will be requireddifferentially expressed genes were not highly correlated with

outcome. to reach model stability, to minimize the possibility of model
overfitting and ultimately allow the independent validation ofAmong prognostic factors for prostate cancer, serum PSA

and measures of local invasion were not associated with robust such a predictor.
Despite these limitations, the identity of the genes compris-gene expression signatures. The lack of an associated gene

expression signature does not exclude the possibility that such ing the outcome prediction model support the existence of mea-
surable outcome determinants for prostate cancer recurrence.signatures exist. It is possible that analyzing genes beyond those

present on the current microarray, or extending the experiment For example, chromogranin A, one of the 5 genes most fre-
quently used in the prediction model, has previously been asso-to larger data sets might reveal such patterns. However, there

was a readily detectable and statistically significant signature ciated with poor outcome in prostate cancer (Theodorescu et
al., 1997). The utility of PDGFR� expression in the recurrenceof GS. The expression pattern of these genes separated tumors

into distinct groups during hierarchical clustering in both our predictor is also intriguing in light of the recent observations
that PDGFR (� and �) are expressed in advanced prostate can-initial and in a validation data set and grouped some of the

intermediate-grade tumors with high-grade tumors. In so doing, cer (Chott et al., 1999). The successful prediction of patient
outcome will ultimately lead to improved decision making re-this set of genes may help identify a subset of histologically

intermediate-grade tumors that may have more aggressive clini- garding current therapeutic options and the rational selection of
patients at high risk for relapse for clinical trials testing adjuvantcal behavior.

In this data set, GS was associated with patient outcome therapeutics. Furthermore, the identification of genes whose
expression drives outcome and whose protein products are(Table 1 and Figure 2B); however, only two of the genes corre-

lated with GS (IGFBP-3 and COL1A2) contributed to the out- tractable targets for small molecules may contribute to the de-
velopment and selective application of novel mechanism-basedcome prediction model (Figure 3). Instead, genes whose expres-

sion was not correlated with GS were the most frequently used treatments. Ongoing trials of Gleevec, an inhibitor of the abl,
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Figure 2. Outcome prediction models

A: The success rates of models predicting out-
come. Leave-one-out cross validation was used
to build outcome prediction models (recurrent
versus nonrecurrent) using from 1 to 256 genes.
The x axis indicates number of genes used in
model building, and the y axis indicates the fre-
quency of success. Shown is the number of cor-
rect predictions divided by the total number of
predictions (red line) in the observed data using
leave-one-out cross validation. The mean suc-
cess rate � the standard deviation (bottom
dashed line) and maximum success rate (top
dashed line) obtained using the permuted data
is shown.
B: Disease-free survival of patients stratified
based on the 5-gene model, GS, serum PSA, or
combined risk. Kaplan-meir analysis was used to
plot the fraction of at-risk patients remaining free
of disease (y axis) at the indicated time after
prostatectomy (x axis). Shown is patient stratifi-
cation based on the 5-gene model, GS (� 6 ver-
sus � 7), serum PSA (� 10 versus PSA � 10), and
a combination of GS, serum PSA, and surgical
stage (low and intermediate versus high risk).
High risk was defined as a GS � 7, PSA � 20,
and surgical stage T3 or higher, the remaining
samples were considered low or intermediate
risk. P values were calculated using a log-rank
test (Mantel-Hwenszel test).

Figure 3. Genes used to build an outcome pre-
diction model

The genes most commonly used in the 5-gene
model are shown as described for Figure 2B. The
expression of each gene (rows) in each recurrent
or nonrecurrent sample (columns) is represented
by the number of standard deviations above
(red) or below (blue) the mean for that gene
across all 21 samples.
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then assigned based upon the frequency with which Pearson coefficientskit, and PDGFR tyrosine kinases, in prostate cancer will test
generated from randomly permuted data exceeded those generated fromthe hypothesis that PDGFR� falls into this latter category.
the observed data.The samples in this study were derived from patients diag-

nosed after the widespread adoption of PSA screening. As such Independent prostate expression data used for validation
the findings in this study are expected to be relevant to patients Oligonucleotide array-based expression data (Affymetrix Hum95Av2) and
diagnosed today. Clearly, larger, confirmatory studies will be clinical data for 8 normal and 27 prostate tumors were provided G. Hampton

as a validation set (Welsh et al., 2001). Global differences between the initialrequired prior to the implementation of any changes in the clini-
and validation data sets were quantified by determining the means of thecal care of patients with prostate cancer. Nevertheless, these
mean array intensities. Validation of the tumor normal prediction modelsstudies provide evidence that the clinical phenotypes and be-
and of the coexpression observed for the genes highly correlated to GS washavior of prostate cancer can be anticipated by the analysis of
performed as described in the Supplemental experimental procedures (see

the gene expression profiles. Supplemental data, below).

Experimental procedures Supplemental data
Supplemental experimental procedures and Figures S1–S5 can be found at

Prostate tissue samples http://www.cancercell.org/cgi/content/full/1/2/203/DC1 and at http://www-
From 1995 to 1997 samples of prostate tumors and adjacent prostate tissue genome.wi.mit.edu/MPR/prostate.
not containing tumor (referred to as “normal”) were collected from patients
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