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Abstract

An inference graph can have many “deriva-
tion strategies”, each a particular ordering
of the steps involved in reducing a given
query to a sequence of database retrievals.
An “optimal strategy” for a given distribu-
tion of queries is a complete strategy whose
“expected cost” is minimal, where the ex-
pected cost depends on the conditional prob-
abilities that each requested retrieval suc-
ceeds, given that a member of this class of
queries is posed. This paper describes the
PAO algorithm that first uses a set of train-
ing examples to approximate these probabil-
ity values, and then uses these estimates to
produce a “probably approximately optimal”
strategy — I.e., given any €,6 > 0, PAO pro-
duces a strategy whose cost is within € of the
cost of the optimal strategy, with probabil-
ity greater than 1 — 8. This paper also shows
how to obtain these strategies in time polyno-
mial in 1/¢, 1/6 and the size of the inference
graph, for many important classes of graphs,
including all and-or trees.

1 Introduction

General problem solving (a.k.a. deduction) is expen-
sive. There can be an exponential number of potential
“solution paths” for a given query/goal — as there can
be many rules/operations that each reduce the goal
to a new set of subgoals, and each of these subgoals
can, itself, have many possible reductions, etc. [GN87].
It is obviously advantageous to explore these different
paths in a good order, one that will lead to a solution
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quickly. This “best ordering” depends on the proba-
bilities that each path will succeed; unfortunately, this
information is usually unavailable. In addition, the
task of finding the optimal strategy, even given these
probabilities, can be very difficult; c.f., [Gre91b]. This
report presents an efficient technique for finding good
approximations to these probabilities;, and then using
them to produce near-optimal derivation systems.

The rest of this section provides the framework for this
research, and discusses how it relates to the work on
satisficing search strategies, effective use of control in-
formation, and explanation-based learning. Section 2
then describes our underlying task: designing efficient
algorithms that first use samples to approximate an
unknown distribution, and then use this estimate to
produce good strategies, with provably high proba-
bility. The following two sections present such algo-
rithms, for various classes of situations: Section 3 first
presents a relatively simple version, PAQyg, that is suf-
ficient for one class of knowledge bases. Section 4 then
presents various modifications to this algorithm, pro-
ducing systems that are more efficient and are able to
handle other situations.

Framework: The objective of a derivation pro-
cess (DP) is to determine whether a given query
follows from a given knowledge base (KB). This
work focuses on “backward chaining derivation pro-
cesses”, atomic literal queries and non-recursive “defi-
nite clause KBs”.! Here, an atomic formula o (e.g.,
the initial query) follows from the KB if a match-
ing fact is in the KB (i.e., if the “database retrieval”
for o succeeds) or if there is a rule whose conclusion
matches ¢ and whose antecedents all follow from the
KB. Our DP can, therefore, backward-chain from the
query through the rules, to reach a satisficing set of
retrievals — i.e., the query follows whenever each of
these retrievals succeeds. (FE.g., consider the trivial
knowledge base K B¢, whose rules appear in Figure 1.

!That is, every clause in the KB’s CNF form contains
exactly one positive literal. The atomic clauses are called
“facts”, and the others, “rules”.



Here, the singleton { D, } set of retrievals (correspond-
ing to the Cheap(C1) literal) forms a satisficing set for
the BuyCar(C1) query, based on the Ry, rule.)

In general, the DP can use the KB’s rules to reduce
the query to various satisficing sets of retrievals. A
satisficing set of retrievals is a solution if each mem-
ber of that set succeeds — i.e., if each of these liter-
als is present in the KB. Notice that different satisfic-
ing sets will be solutions for different queries. (E.g.,
as { Cheap(C1), Pretty(C2) } are all of K B¢’s facts,
{ D. } represents a solution for the BuyCar(C1) query,
but not for either BuyCar(C2) or BuyCar(C19).)

[13

It is convenient to arrange these rules into an “in-
ference graph”, where each node corresponds to an
atomic formula that appears in some rule, and each
arc, to a rule or a database retrieval; the tree in Fig-
ure 1 is an example. Derivation can then be viewed
as a search through this graph, trying to find some
solution.

We can therefore reduce our task of building an ef-
ficient derivation process to a graph theoretic task,
of finding a good “strategy”, where a strategy is a
fixed ordering on these arcs, specifying when to use
each rule and when to perform each retrieval. (For
example, given the query BuyCar(C3), the sequence
©1 = (Ree D Ryp D) represents the strategy that first
follows the Ry, rule down to the Cheap(C3) database
retrieval, D.. If that retrieval succeeds, the deriva-
tion process returns “success” and terminates. If not,
it then pursues the strategy’s other sub-path: follow-
ing the Ry, rule down to the Pretty(C3) database
retrieval, I,. The derivation process then returns ei-
ther success or failure, based on the success of this
second retrieval.) An alternative to this strategy,
Oy = (Rep Dy Ry D,) first follows Ry, to D, and then,
if needed, Ry, to D.. Which of the two strategies is
better?

A “good” strategy is one that performs well in prac-
tice. To quantify this, we assume there is some dis-
tribution of queries that our derivation system will be
asked to solve. We can then define a strategy’s ea-
pected cost as the average cost? required to find one
solution for a query (or to determine that no solution
exists) averaged over the distribution of anticipated
queries, Q. This value depends on the computational
cost of each reduction and retrieval, and on the a prior:
likelihoods that each particular retrieval will succeed
— 1.e., the conditional probability that a specific re-
quested proposition will be in the KB, given that the
query is taken from Q. (Continuing with the same
K B¢, assume that each reduction and retrieval costs
1 unit, and imagine we knew that 60% of the queries
would be BuyCar(C1), 25% would be BuyCar(C2), and

2While we usually think of this “cost” as time, it could
also be number of external file reads, or any other positive
measure.

15%, BuyCar(C3). Here, the D, retrieval will succeed
60% of the time, and D,, 25%. We can now compute
©1’s expected cost, E[O1]: it is the cost of the initial
(Rpc D.) subpath, plus the probability that this path
will fail (1 — 0.6 = 0.4) times the cost of (Rs, D,);
hence, E[0;] = (1+1)+0.4(1+1) = 2.8.) In general,
a strategy’s expected cost is the weighted sum of the
costs of each path to its set of retrievals, weighted by
the probability that we will need to pursue this path
(i.e., that none of the prior paths succeeded).?

We can now state our objective: to find a graph traver-
sal strategy that is complete (i.e., is guaranteed to find
an solution if there is one) and has the minimal ex-
pected cost of all such complete strategies [Gre9lal.
We consider such strategies to be optimal.

There are several known algorithms for computing an
optimal strategy for various classes of KBs (or for the
related, more abstract task of finding the optimal sat-
1sficing search strategy for various general search struc-
tures [0OG90]). Most, including [Gar73, Bar84, SK75,
Nat86, Gre9la)], assume that the success probabilities
are given initially. Unfortunately, these probabilities
are, in general, not known initially (e.g., we usually do
not know that 60% of the queries will be BuyCar(C1),
etc.). [Smi89] presents one way of approximating their
values, based on the (questionable) assumption that
these probabilities are correlated with the distribu-
tion of facts in the database. For example, assume
that K B{ includes the same rule base as K B¢ to-
gether with 1,000 facts of the form Cheap(x) (each
using a different constant ) and 10 facts of the form
Pretty(k). Given any goal of the form BuyCar(x)
for some constant K — e.g., BuyCar(C19) — that sys-
tem assumes that we are 100 times more likely to find
the corresponding Cheap fact (here “Cheap(C19)”)
than the Pretty fact ( “Pretty(C19)” ). This means
[Smi8Y]’s algorithm would claim that ©; is the optimal
strategy (i.e., it is better than the other legal candi-
date, O,).

This, of course, need not be true; there is no rea-
son to assume the distribution of the user’s queries
will be correlated with the distribution of facts in
the KB. The user may, for example, only ask ques-
tions whose answers just happen to come from the
Pretty facts. (For example, imagine that all of the
queries dealt with RollsRoyces — i.e., were of the
form BuyCar(x), where & referred to a not-cheap
Rolls Royce.) What we really need is the conditional
probability that a given retrieval will succeed, given
that a query from a particular class is asked — 1.e.,

Pr[ Cheap(x) retrieval succeeds | query BuyCar(x) is asked ].

That is, imagine the wuser asks a total of K
BuyCar(x) queries over the lifetime of the sys-

°It is actually more complicated, as we need only con-
sider the cost of the additional steps, to go from some
already-visited nodes down to the retrievals. See [Gre91a].



Rule Base for K B¢
Ry Cheap(z)

= BuyCar(z)

Ry,: Pretty(z) = BuyCar(z) BuyCar(x) Each R; represents a rule;
Ru. Rup Each D; represents a retrieval.
Database for K B¢ ( Cheap(x) ) ( Pretty(x) )
Cheap(C1) ‘
Pretty(C2) DCl:[ E[Dp

Figure 1: The K B¢ knowledge base and its associated inference graph, G¢

tem (e.g., BuyCar(C1), BuyCar(C19), BuyCar(C2),
..); and of these, the related Cheap(k) retrieval
(if requested) would succeed a total of #c(K)

times. Then the value we need, the real value of
Pr[ Cheap(x) succeeds | BuyCar(x) asked ], is the ra-
tio of these numbers — ﬂcKﬂ

While there is no empirical way of finding such prob-
abilities exactly (short of running all K trials), there
is a meaningful way of estimating their values, based
on the observation that the past can be a good pre-
dictor of the future. This basic observation is the key
insight underlying “explanation-based learning” sys-
tems [MKKC86, DM86, MCK*89]. Each of these sys-
tems analyzes the solutions found to certain previous
problems, and many use this information to suggest
new strategies. Most of these systems, however, use
only a single training example. Empirical studies have
confirmed that the resulting strategies are not always

good [Min88].

By contrast, this research uses a set of examples, and
can guarantee that the resulting strategy will usually
be arbitrarily close to optimal. In particular, this pa-
per presents an efficient process that determines the
number of training examples needed to approximate
these probability values with the property that, with
high probability, these estimates will be good enough
to produce an approximately optimal derivation strat-
egy. It assumes only that there is a set of queries
that our DP will encounter, and that these queries
are selected at random, according to some arbitrary
but stationary distribution. (Notice this distribution
will depend on the particular task our DP is address-
ing; n.b., we do not assume that it is a uniform distri-
bution over all possible problems [Gol79], nor that it
will necessarily correspond to any particular collection
of “benchmark challenge problems” [Kel87]. Hence,
we are using the same weak “distribution-free assump-
tion” that underlies the current work in PAC-learning
[Val84].) We can translate this query distribution into
a set of probability values that specify the chance that
each retrieval will succeed. We assume, also, that these
success probabilities (of the different retrievals) are in-
dependent of one another.

2 The PAO Task

This section defines our task in very abstract terms;
the next two sections present concrete algorithms that
achieve this task, in various situations.

As mentioned above, a derivation process, DP, is a
program that answers queries based on the informa-
tion in a knowledge base. The cost it requires to pro-
duce that answer will depend on the particular strategy
it uses. We assume there is a class of strategies asso-
ciated with any given knowledge base (e.g., ©; and
O, are the two strategies associated with K B¢) and
define DPg to be the process that uses the strategy
O.

Each strategy will perform various “probabilistic
experiments” (e.g., attempted database retrievals),
which each succeed for certain queries, and fail for oth-
ers. (E.g., the two experiments associated with K B¢
are D, and D,, corresponding to the Cheap(x) and
Pretty(x) attempted database retrievals; notice D,
succeeds when the query is BuyCar (C1), but fails when
the the query is BuyCar(C2).) We can, in general,
identify each query with the subset of the experiments
that succeed in that context: e.g., using the £ function
that maps each query to the associated set of successful
probabilistic experiments, £(BuyCar(c1)) = {D.}
and £(BuyCar(C19)) = {}.

We define ¢[©, ¢] to be the cost for DPg to answer
the query ¢. (Notice this depends only on which ex-
periments succeed; i.e., on the value of £(¢).)

We assume that the queries are drawn from a set Q
at random, according to some stationary distribution.
This means we can consider the set of €[ ©, ¢;] to be
independent, identically-distributed random variables,
and then define E[O] to be their common expected
value; i.e.,
E[O] = average,co¢€[O, q]

As we further assume that the experiments are inde-
pendent, we can view E[O] as a function of their suc-
cess probabilities; to make this explicit, we will write
Ep[O], where P is the vector of the probability values
for the various experiments. (E.g., P = (p., pp) Where
pe = Pr[ Cheap(k) succeeds | BuyCar(x) asked | and
pp = Pr[ Pretty(x) succeeds | BuyCar(x) asked ].)



We can then define the optimal strategy as the com-
plete strategy whose expected cost is minimal, with
respect to the distribution (i.e., probability vector, P):

Oupt 1s optimal <= VO.Ep[O.p] < Ep[O]

We can now define the PAO task: Each problem in-
stance takes

e S, the set of possible derivation processes, all
based on a given KB
(e.g., the derivation processes DPg, and DPg, asso-
ciated with K B¢, based on the ©; and O strategies,
respectively)
e Q, a (stationary) distribution of the queries
(e.g., {BuyCar(C1), BuyCar(C3), BuyCar(C7), ...})
e O, an oracle that generates appropriate queries
from Q according to this fixed (but unknown)
distribution,
e ¢ € Rt (i.e., abound on the allowed excess), and
e 6 €(0,1] (i.e., the required confidence).

For each instance, we seek a strategy ©pq, € S, whose
expected cost is, with high probability, close to the
cost of the optimal strategy. Stated more precisely,
given the real distribution (here, the P = (p.,pp) de-
fined above), there is an optimal strategy, Oqp € S,
whose expected cost is Ep[©,p¢]. With high probabil-
ity (i.e., > 1 —§), the cost of the result of this algo-
rithm, Ep[©,4,], will be no more than € over Ep[Op4]
—ie,

Pr[ Ep[©pao] < Ep[Oopt] +€] > 1-6.

Notes: [1] We insist that the algorithm for this task
be efficient — i.e., run in time that is polynomial in
1/¢, 1/6 and the “size” of knowledge base.

[2] Each PAO algorithm will be responsible for com-
puting the £ function — i.e., it must use the knowledge
base to determine which experiments are successful,
for each observed query.

[3] The oracle can simply be the user of the DP sys-
tem, who is going about his usual business of asking
the system relevant queries. (That is, he can ask his
questions during the “training mode”, while PAO is
computing the pao strategy, as well as afterwards.) Of
course, the overall DP+PAQO system would have to
return the solution found (as a side-effect, wrt PAO).

3 Simple PAQ, Algorithm

This section presents the (relatively simple but gen-
eral) PAQg algorithm that, with high probability,
identifies approximately optimal strategies for a cer-
tain specified class of KBs (wiz., non-recursive defi-
nite class KBs whose inference graphs are hyper-trees;
see below). After Subsection 3.1 presents the nec-
essary definitions, Subsection 3.2 describes the algo-
rithm itself. Subsection 3.3 sketches the proofs that

PAQOy works correctly and is efficient. The next sec-
tion presents several extensions to this basic algorithm,
designed to provide answers more efficiently and to
handle other situations.

3.1 Definitions

The definitions below define the particular & used, and
constrain Q:

e We can identify any non-recursive definite clause
KB with a particular inference graph G =
(N, A, S, B,c), where N is a set of nodes, each
node corresponds to an atomic literal that must be
proven towards achieving some goal; A C N x 2
is the set of directed hyper-arcs, each arc cor-
responds either to an invocation of a rule or a
database retrieval.* The set S C 2V corresponds
to the set of “success node-sets”; reaching each el-
ement of some member (i.e., reaching each n € s
for some s € S) means the overall derivation is
successful. (For the G¢ inference graph associ-
ated with the K B¢ knowledge base, these sets
are the singletons {D.} and {D, }, as we need only
find a single successful database retrieval to estab-
lish the given goal in this simple context.5) The
set B C A corresponds to the “blockable” arcs —
each b € B is an arc that can be “blocked” (i.e.,
not succeed) for some query. (E.g., D, is blockable
as it does not succeed for the BuyCar(C2) query.)
The cost function c: N x N — Rt gives the pos-
itive real valued cost of each part of a hyper-arc
in G.5
PAQOy deals only with inference graphs that are
“hyper-trees”; i.e., connected directed graphs,
each with a unique “root” node (having no par-
ents), where every other node has a single parent.
(See Subsection 4.2.)

As the K B¢ knowledge base is “disjunctive” (i.e.,
it is definite clause and each of its CNF clauses in-
cludes at most one negative literal), its associated
inference graph, G¢, relatively easy — in partic-
ular, each node descends to a single child node.
Appendix A provides an example of a less trivial
hyper-tree, based on non-disjunctive KB.

e Given any such inference hyper-tree G, we let
S(G) = {DPe} represent the set of derivation

*The graph only includes an arc corresponding to a
database retrieval if the corresponding proposition might
be in the fact set. Notice, for example, that the G¢ infer-
ence graph does not include an arc corresponding to the
BuyCar(k) retrieval, as the KB’s fact set does not include
any such propositions.

S includes only the minimal success sets; n.b., any
superset of any member of S is also sufficient. Hence, the
set {D., Dy} is sufficient.

SNotice these values are not used when answering
queries; they are, however, essential for parts of our PAO
algorithms.



processes, where each DPg uses its own strategy
O to specify how it will search this inference graph
to find an answer to a given query. In the case of
simple disjunctive KBs, each strategy corresponds
to a sequence of the elements of 4;” DPg follows
these arcs, in this order, stopping as soon as it
reaches a success node. (E.g., the DPg, process,
based on the @1 = (Ry. D, Ryp D,) strategy, will
stop if the D, retrieval is successful, ignoring the
remaining (Rsp Dp).) Notice this means that our
DPs are seeking only a single solution; this type
of search is called a “satisficing search” [SK75].8

Strategies are considerably more complicated
when dealing with non-disjunctive KBs; see Ap-
pendix A.

e Each query (i.e., each member of Q) corresponds
to an instantiation of the root node of G.

Hence, each DPg is given a query, ¢, as its input. It
traverses the inference graph GG, beginning at the root
node (corresponding to ¢), in the order described by
O, trying to reach a satisfying set of success nodes (i.e.,
all nodes in some member of S). DPg is only allowed
to use the arcs that are not blocked for this query, i.e.,
the members of £(g).

In general, the expected cost of a strategy, E[O], can
be expressed as a function of the success probabilities
of the various experiments, and the values of the ¢ cost
function; see Appendix A.

3.2 Basic PAQg Algorithm

The PAQO, algorithm presented in this subsection
deals with satisficing searches through any KB whose
inference graph is a hyper-tree. It consists of three sub-
routines; GET-NUMBERg, FIND-PROBSg and FIND-
OprTDSy, that are called in sequence. The GET-
NUMBER( procedure takes as input an inference graph,
G, and the two “error terms”, € and é, and returns an
integer

C\* 2
M = GNaog(G, e, 8) < [2 ("T) =] (1)
where C'= )" . 4 c(a) is the sum of the costs of all of
the arcs in the inference graph G, and n = |B| is the
total number of probabilistic arcs.

The FIND-PROBS( procedure then calls the O oracle
M times to obtain M queries from the class ). For
each of these ¢; € @, it must determine the value

TOf course, not every sequence qualifies; in particu-
lar, we only consider sequences where each arc descends
from a node that has been already been reached. Hence,
(Dyp, Rup, . ..)is not alegal strategy as its first step, the D,
arc, descends from a node that has not yet been reached.

8Notice it applies to ground queries as well as existen-
tially quantified queries, when the user is seeking only a
single binding list for those variables.

of L£(q;) — i.e., which of the probabilistic arcs are
blocked. (E.g., it must determine, for the BuyCar(C1)
query, that the D, retrieval succeeds but the D, re-
trieval does not.) This involves searching through the
entire inference graph. We implement it using the
DP™) derivation process, that finds all solutions to
a given query; i.e., it goes down all possible paths, and
attempts each probabilistic arc.®

After all M queries, FIND-PROBS( tallies how many
times each probabilistic arc succeeded, and translates
this number into a frequency value. (Continuing the
above example, assume that GET-NUMBERg returns
the value Mg, = 30 for the G¢ graph and some
values of ¢ and 6. FIND-PRrROBSy; would then pose
Mg, = 30 queries, each of the form BuyCar(x) for
some appropriately-distributed set of ground &s, to the
K B¢ knowledge base and observe that the associated
Cheap(k) query (resp., Pretty(x) query) succeeded
10 times (resp., 18 times). It would t}i%n produce the

frequency values of p. = % and p, = 55.)

FIND-PROBSq gives these approximate probability val-
ues and the inference graph to the FIND-OPTDSy pro-
cedure, that produces the ¢, 6-probably-approrimately-
optimal derivation strategy, ©Opao. FIND-OPTDSg
is simply the YTa07(G, Q) algorithm (defined in
[Gre9la]) that takes GG, a general hyper-tree, and @, a
vector of (approximations to) the success probabilities
of the retrievals, and returns the strategy that would
be optimal, if these () values were accurate; i.e., Og =
YTa07(G, Q) satisfies YO € S(G) Eg[O] > Eq[Oq].

PAQy then returns this value, © 5 = T 407 (G, P).

3.3 Proof Sketches

The critical claim underlying the PAQOg algorithm is
the formula in Equation 1, which is proven in [GO91,
Theorem 1]. The basic ideas follow.

Let G be an inference graph with n probabilistic arcs;
and P = (p1, ..., pn) be the real probability vector
— ie., p; is the (real) success probability of the i
probabilistic arc. The real optimal strategy for the
inference graph G, based on these probability values,
is @ = Ta07 (G, P). The expected cost of this strat-
egy (again based on the real probability vector P) is
Ep[O]. Imagine, however, that we only have an ap-
proximation to P, called }5; the “optimal” strategy,
based on this vector, is © = YTa07(G, ]5) How bad is
this © — that is, how much more might this strategy
cost, over the optimal one? This depends on how close

each p; is to the corresponding component of P (called
pi). The answer appears below:

9Notice this DPY) differs from the DPes, as each DPe
will stop as soon as it finds a solution. Hence, DPe, will
stop if the D, retrieval succeeds, and will not consider the
(Ruvp, Dyp) path. By contrast, DPWM will always try both
D, and Dy, even if the initial D. retrieval succeeds.



Lemma 3.1 (Sensitivity Analysis of T 407 (G, P))
Let G = (N,A,S,B,c) be an inference graph with
n probabilistic arcs B = (by,...,b,), and let P =
(p1, .-, pn) and P, = (p1, ..., Pn) be two n-element
probability vectors whose respective it components dif-

fer by at most A\; € R; i.e., Vi. |p; — pi| < Ai. Then
Ep[Ya07(G,P)] < Ep[Taor(G, P)+2Y_ Ai-C.[b]

where CL[b;] is the sum of the costs of the arcs in G
that are not on the path from the G’s root, through b;,
to a success node.

(To illustrate the C.[-] function: In the G¢ graph, the
value of C,[D,] is the sum of the costs of the Ry, rule
and the D, retrieval; ie., C.[D,] = ¢(Rs.) + ¢(D.).
Likewise, C-[D.] = ¢(Rsp) + ¢(Dp). Notice each
C.[b)] < C, where C' = )~ 4 c(a) is the sum of the
costs of all of the arcs in G.)

Given any e, therefore, we need to sample each exper-
iment enough times that we are confident that each p;
is within A; = 5= of the real value, p;. To show that

GN a06(G, €, §) trials of each experiment is sufficient,
we need only the assertion that these experiments are
independent, and the following simple form of Cher-
noff’s bound:

Lemma 3.2 (from [Bol85, p. 12]) If M indepen-
dent experiments are performed to obtain an estimate
p for a probability p, and A > 0, then

Pr(|pi—pi| > A] < 2e7 MY

Finally, this algorithm is efficient:

Lemma 3.3 (PAO¢’s Efficiency) The PAOq algo-
rithm runs in time polynomial in %, % and |G|, the
size of the inference graph (assuming a constant time
oracle O and constant time database retrieval process).

(The proof involves the observations that GET-
NUMBER requires only O(|G|) to compute the values
of n and C; FIND-PROBS requires only O(%2 % IG?)
(i.e., O(|G|) to traverse the inference graph to perform
the n retrievals for each of its M = O(%2 1|G|?) tri-
als); and FIND-OPTDSy is O(|G|?) [Gre91a].)

4 Extensions to the PAO Algorithm

For pedagogical reasons, the previous section pre-
sented a very simple algorithm, one that is both rela-
tively restricted (able to handle only inference hyper-
trees'®) and relatively inefficient. This subsection

19Technically, we should state “KBs whose inference
graphs are hyper-trees”. To simplify our descriptions, we

presents several alternate PAQ; algorithms that are
more efficient or can process other situations (e.g.,
other classes of inference graphs, etc.). ([GO91] dis-
cusses yet other extensions to the basic PAO, algo-
rithm.)

4.1 Fewer Total Number of Retrievals

The FIND-PROBSg part of the PAQOg system must per-
form M -n retrievals for a general and-or inference tree
— l.e., it must perform all n retrievals on each of M
trials. We show below two modifications that allow
FIND-PROBS to perform a smaller total number of re-
trievals.

Use Different Formulae for Different Classes of
Graphs: The GN 4o¢ formula is an upper bound,
that applies to any and-or inference tree.!! Lower val-
ues apply to certain subclasses; for example, we need
only

GN2( G e 6) % 12 (2) w2

€ 6
trials for any inference graph of the form shown in
Figure 1 — i.e., involving exactly two simple (non-

hyper) paths, each leading to a singleton solution set
through a single probabilistic arc, each path of equal
cost, called ¢, (e.g., for G¢, this is the cost of each rule
plus its associated retrieval; i.e., ¢, = ¢(Rpc)+e(D;) =
¢(Rop) + ¢(Dy)).1? Here, FIND-PROBs would have to
perform only GN3,(- - ) < GN 40g(- - ) trials.

The GET-NUMBER; algorithm!? can exploit such for-
mulae. This process first identifies the given graph
with the appropriate formula, GA'g (where some ap-
propriate set of formulae, {GNg}, is known in ad-
vance), then evaluates that GN g formula on the appro-
priate values, corresponding to various numbers associ-
ated with this graph (e.g., the number of probabilistic
arcs, particular costs of the arcs, etc.).

The classification part is relatively straightforward,
usually based on certain properties of the KB, such
as whether it is propositional (rather than in general
predicate calculus), or definite, or disjunctive, etc. We
consider only simple tests that can be run in time poly-

will often identify a class of KBS with their class of infer-
ence graphs.

"In fact, this formula applies to any and-or directed
acyclic hyper-graphs, not just hyper-trees. We can there-
fore use it for the class of DAGs discussed in Appendix B.

12This is proven in [GO91, Lemma 3].

'3In general, cach GET-NUMBER; (resp., FIND-PROBs;,
FIND-OPTDS;) is a variant of the GET-NUMBER, (resp.,
FinD-PRrOBSq, FIND—OPTDSO) algorithm discussed above.
Each PAO; algorithm is composed on GET-NUMBER;,
FinD-ProBs; and FIND-OpTDS;. Notice that some of
these modified versions will accept slightly different sets
of inputs, or return slightly different results, than the
originals.



nomial in the size of the inference graph; notice all
three of the tests mentioned above qualify.

Different Number of Samples for Different Ex-
periments: Both PAOg and PAO; (the version that
uses GET-NUMBER;) assume that FIND-PRoOBs will
perform the same number of trials for each probabilis-
tic arc (e.g., for each retrieval). However, we see from
the lemmata above that certain arcs require fewer tri-
als than others. In particular, for general hyper-trees,
each d; € D retrieval requires only

L[di])*) 2
m; = gN:‘lOg(dia G; € 6) déf |—2 <%[]) In 7”
o . . (2)
trials, using C,[-] function defined in Lemma 3.1. No-
tice that

ngAOQ(div G,e,é) < gNAOg(Gvga(S) =M
We now use this observation in two ways. First, we
can continue to use the GET-NUMBER; algorithm, but
identify the class of and-or hyper-trees with the

Y max{GN4og(d, G €, 6))

M = GN 406(G, ¢, §) =

formula, rather than GA 40g. (Here, we would need
only M - n total samples, which is strictly less than

Second, we can define the PAQO, algorithm (that uses
modified GET-NUMBERs; and FIND-PROBS; subrou-
tines) to perform an even smaller total number of
retrievals. Here, GET-NUMBER; returns a vector of
numbers M = (m1, ... my), where each m; is the
number of trials required of the d; database retrieval,
defined in Equation 2. The FIND-PROBSs algorithm
would then perform only m; retrievals, for each d;.
Hence, this requires only Z?Il m; < M - n retrievals.

Of course, FIND-PROBS; cannot simply use pp) (as
FIND-PRrROBSg had), as that would force FIND-PROBS;
to perform the same number of samples for each re-
trieval. Therefore, FIND-PROBSy uses the different
(though related) DP® procedure that only pursues
a path if necessary — e.g., it would only follow a path
(e.g., (Rup, Dp)) if it contain a probabilistic arc (e.g.,
D,,) for which we still need more trials. (E.g., imag-
ine we needed GN"4og(D., Gc,€,6) = 25 trials of the
D, retrieval, but only GN'ypog(D,, Gc,€,6) = 15 for

D,. Then DP® would test both D, and D, for the
first 15 queries given by the oracle; afterwards, for the
next 10 queries, it would only test D.. Hence, it would
perform a total of (15 + 15) + 10 = 40 retrievals.'4)

(Another variant involves the DP®) procedure that,
for each query, stops as soon as it knows the answer.

" For comparison, observe that Dp would, instead,
have performed max{25,15} = 25 trials of both D. and
Dy, for a total of 50 retrievals.

E.g., after seeing that the D, retrieval succeeded for
K B¢, DP® would return success and stop; by con-

trast, both DP™ and DP® might continue exploring
the graph, to determine whether D, was blocked or

not. Of course, DP®) would have to vary its strat-
egy over time, to make sure each retrieval gets enough
samples — i.e., to avoid having 1000 samplings of D,
but 0 samplings of D,. Hence, the user could use this

DP®) system to answer his queries, efficiently, during
PAQO’s “training mode”. This process is discussed in

detail in [GO91].)

4.2 Other Classes of KBs

While many standard derivation systems do corre-
spond to and-or hyper-trees, there are exceptions. We
can use the GET-NUMBER; algorithm (defined above)
to deal with such systems, provided the collection of
{GN ¢} formulae includes these other classes of graphs.

The problem with most graphs that are more general
than and-or trees is in computing the optimal strat-
egy: It is NP-hard to compute the optimal strategy
from a context whose structure is a DAG (rather than
a tree) and probability vector [Sah74, Gre91b]. Hence,
the FIND-OPTDS subroutine cannot simply find the
optimal strategy for the graph and the frequency vec-
tor (as FIND-OPTDSy does, using YT 407 for and-or
trees).

Fortunately, there are efficient “approximation algo-
rithms” for certain classes of such contexts. Each
such algorithm, Tg, defined for a class of graphs
G, takes a graph G € G and probability vector
(whose 7" component is the success probability value
of the i*" probabilistic arc in (), and returns a com-
plete strategy whose cost is guaranteed to be no more
than A = A(G, Q) over the cost of the truly optimal
strategy for this graph and probability vector. (Ap-
pendix B presents an example of such an algorithm
for one class of graphs.) Here, we would first deter-
mine whether the given e value is large enough; i.e., if
€ > A. If so, GET-NUMBER3 could produce a number,
M’ =GNg(G, e—, §) that is “e — X" accurate. (Le.,
consider the strategy obtained using the (intractable)
Tg algorithm on this graph and the success frequen-
cies obtained from M’ trials of each retrieval. Its cost
is within € — A of the cost of the optimal strategy,
with probability > 1 — 6.) The FIND-OpPTDS3 algo-
rithm would hand these observed frequencies, together
with the context, to the approximation algorithm 'Tg.
With probability > 1 — §, the cost of the resulting
Opao = Tg(G, P) will be within (¢ — ) + A = ¢ of

optimal, as desired.



4.3 Handling Other Situations

Range of Queries: So far, we have insisted that each
of the queries (i.e., each ¢ € Q) is an instantiation of
the root node of the inference tree. We can, however,
allow different queries to correspond to different nodes
— e.g., allow some queries to be instantiations of the
BuyCar(x) node and others, of Pretty(x), etc.

We must define the expected cost of each strategy ap-
propriately: For each strategy © and each node n in
the inference graph, we first define E"[O] to be the
expected cost of using © to solve the queries that are
instantiations of n; this is obviously relative to this
distribution of queries.!® We can then define ©’s over-
all expected cost to be the weighted average of these
“relative” expect costs, weighted by their respective
frequencies of occurrence.

Probabilistic Intermediate Arcs: So far, the
only probabilistic arcs we have considered corre-
spond to database retrievals (e.g., to D, correspond-
ing to Cheap(x)). In general, however, arcs based
on rules can also be “probabilistic”. As an ex-
ample, consider the arc based on the rule R, :
Man(z) = Status(z,Mortal), that descends from the
Status( k, Mortal ) node to Man( « ). Notice this arc is
blocked if the query is Status( s, Immortal), as this
rule would not apply in that situation. ([GO91] dis-
cusses solutions to some of the subtle problems that
arise from the precedence constraints among the ex-
periments.)

Different Fact Sets for Different Queries: So
far, we have assumed that the set of facts associated
with the knowledge base is invariant over time. We
can, however, allow the database of ground atomic
propositions to vary from query to query. (N.b.,
we are not changing the rules that form the infer-
ence graph; e.g., Ry, and Ry, are kept.) For exam-
ple, the first query (e.g., BuyCar(C1)) can be in the
context of a knowledge base that contains the two
facts {Cheap(C1), Pretty(C2)}; the second query
(e.g., BuyCar(C8)), in the context of the single fact
{Pretty(C8)}; the third query, (e.g., BuyCar(C8)), in
the first context; etc etc etc.

In general, we can consider the input to each DP be a
a pair (¢, DB), where ¢ is a query corresponding to a
node of G and DB is a database of ground atomic
propositions. Notice each such pair specifies which
probabilistic arcs are blocked. All of the analyses
shown above will hold, provided there is some fixed
probability that each particular arc will be blocked,
over the distribution of such pairs, and these events
are independent.

150f course, this DPe will only use the portions of ©
that is relevant to this query — i.e., that corresponds to
the subgraph that is “under” n.

Not Just Derivation Systems: While this work is
worded in terms of finding the probably approximately
optimal derivation strategy, this analysis also applies
to any situation that involves finding a single satisfic-
ing answer within a search space. In general, this anal-
ysis pertains to any directed hyper-tree where [1] the
task involves reducing the root down to some subset of
the leaf-nodes; [2] various hyper-arcs can be blocked,
with some unknown probability; and [3] each arc has
some fixed cost.

Hence, this analysis can be used to deal with a set of
Operators that can be used to reduce a Goal down to a
set of Primitive Actions, each of which might or might
not succeed, etc.

5 Conclusion

The results presented in this paper borrow from, and
extend, various other lines of research. It takes its
framework, viewing a derivation process as a graph
search, from the work on effective use of control in-
formation ([SG85], [TG87], [Smi8Y], etc.). Those
works (like the work on satisficing search strategies
from which they arose [Gar73, SK75, Bar84, Nat86,
Gre9la)) require that the user supply specific proba-
bility values for the probabilistic arcs, or use methods
for computing these values that are based on unlikely
assumptions. Our work fills this gap, by providing an
effective, efficient technique for finding good estimates
of these values. In addition, most of their techniques
insist on finding the “optimal” solution; this becomes
problematic when that task is intractable. Our work
implements the obvious way of sidestepping this limi-
tation, by allowing near-optimal solutions.

Our approach also resembles the work on EBL
(“explanation-based learning”) [DeJ88], as it uses pre-
vious solutions to suggest an improved derivation sys-
tem. Most EBL systems use only a single example
to suggest a new strategy; we extend those works by
showing how to use a set of samples and by describing,
further, the exact number of samples required. While
most EBL systems are purely heuristic in nature, we
use techniques from mathematical statistics to guar-
antee that our new strategies will (usually) be close to
optimal.

Finally, this work borrows those statistical methods
(as well as its title) from the field of “probably ap-
proximately correct learning” [Val84]. We provide a
concrete application of these theoretical techniques.

To recapitulate: this work describes a technique for
improving the efficiency of a derivation system. This
process, PAQO, uses a computed number of examples of
the derivation process’s behavior to determine which
derivation paths are likely to succeed, then uses this
information to identify a good strategy: one whose
expected cost will be arbitrarily close to optimal, with



Rule Base for KBp,

Ry .: Cheap(zx) = BuyCar(z)
Buy be p(z) y
np: BuyCar(x) Rbp: Pretty(z) = BuyCar(z)
Rpsr: Sleek(z) & Red(z) =  Pretty(z)
Rg;: InExpensive(z) =  Cheap(z)
Rep: PoorlyMade(z) =  Cheap(z)
ne: Cheap(x) np: Pretty(s)
Re; BRep (Rglasr) Rpsr (Rgzasr)
n;: InExpensive(x) | |np: PoorlyMade(«) | | nyr: Red(x) | | ng: Sleek(x) |
D; Dp Dy Ds

Figure 2: And-Or Inference Graph Gp

arbitrarily high probability. Within this framework,
it completely solves several important, general classes
of knowledge bases, including those whose rules form
and-or hyper-trees.

A  And-Or Hyper-Tree Inference
Graphs

This paper has focused on disjunctive KBs for ped-
agogical reasons, as they are much easier to de-
scribe.  This appendix uses an example of a non-
disjunctive definite clause KB to illustrate a non-
degenerate hyper-tree, and a strategy for this struc-
ture.

Consider the K Bp knowledge base, that includes
the rules shown in Figure 2. As above, we can
arrange the rules into an inference graph, Gp =
(Np, Ap, Sp, Bp, cp). Each n € Np refers to an
atomic proposition to be proven. Here, Ap C Np X
2D is a set of directed hyper-arcs; meaning an arc
can lead from one node to a set of children nodes,
where these nodes, conjunctively, imply their common
parent. As an example, the R, arc connects n, to
{n,,ns}. Each member s € S is a set of nodes; i.e.,
Sp C 2Np. (Ega Sp is { {77,1}, {77,2}, {Tlg, 7’L4} }) A
derivation process is successful if it reaches each mem-
ber of some s € S.

As above, a strategy specifies the order in which to
consider the various possible arcs. These strategies are
much more complicated to describe than the ones for
disjunctive KBs (e.g., K B¢). There, a strategy could
terminate, successfully, after performing a single suc-
cessful database retrieval. This is not necessarily true
here — i.e., we may have to perform several other suc-
cessful retrievals before returning Yes. (For example,
it is not sufficient for the D, retrieval alone to succeed;
the Dj retrieval must succeed as well.) Hence, each
strategy must specify the action to take both when a
retrieval succeeds, and when it fails.

The ©p “strategy tree” shown in Figure 3 is an ex-
ample of a strategy for traversing the Gp graph. The

<R12357‘7 Ds

<Rbp’ Rglasr’ Dy

Figure 3: Strategy Tree ©p for the And-Or Graph Gp

derivation process that uses this strategy, DPg,, will
first follow the path given in Op’s initial (i.e., left-
most) node, (Rp, Rll)sr, D,). Notice the final step,
D, is probabilistic; if it succeeds, then DPg, will fol-
low the +-labeled arc to the (Rf,sr, D;) node in the ©p
strategy tree; otherwise, it will follow the —-labeled arc
to (Ree, Rep, Dp) node. Assume that D, was success-
ful (i.e., that the Red(x) retrieval succeeded); DPg,

then follows the instructions on the (R2 ., D;) node,

meaning it follows str and attempts the D, retrieval.
If D, succeeds, DPg,, stops, returning success. (This
is indicated by the & node, at the end of +-labeled arc
ascending from Op’s (str, D) node.) If not, DPg,,
follows the —-labeled arc to (R, Re;, D;), and so pur-
sues these steps in the Gp tree. Etc etc etc. (See

[GO91] for further details of this process.)

We can compute the expected cost of a strategy, given
the ¢ cost function and the success probability of each
probabilistic arc. We define it recursively, in terms of
the cost of the strategy subtree whose root is some
node, m. If m is a leaf node (i.e., either § for “suc-
cess” or F for “failure”), then the cost of mis 0. Other-
wise, let m’s arc sequence be (a1, ..., a,), where a, is a
probabilistic arc, with success probability Prla,] = p,.



(Notice these a;s are arcs in the inference graph, not
in the strategy tree.) Let m* (resp., m™) be the node
in the strategy tree at the end of the +-labeled (resp.,
—-labeled) arc from m. The cost of a (sub)strategy
rooted in m is the sum of the costs of the arcs in the
m node (i.e., Y.{_, ¢(a;)) plus p, times the cost of the
sub-strategy headed by m*, plus 1 —p, times the cost
of the sub-strategy headed by m™.

(Notice: we need to use this same type of “strat-
egy tree” structure even when considering simple (i.e.,
non-hyper) inference trees, when intermediate arcs are
probabilistic.)

B Efficient Algorithm for finding an
Approximately Optimal Strategy

[Gre91b] proves that the task of finding a minimal cost
strategy for an arbitrary graph is NP-hard. This re-
duction proof uses the particular class of DAGs sug-
gested by Figure 4. This appendix provides an effi-
cient algorithm that produces an approximately opti-
mal strategy for this class of structures.

We consider the class of simple 4-deep non-hyper
graphs, that have only a single “layer” of nodes with
multiple parents — the {B;} nodes. Let ¢; € R* be

the cost of each Ai_ﬁj arc'®: ¢, € Rt be the cost of

each Bj_éj arc; and c(i) € Rt be the cost of each GA;
arc. The only probabilistic arcs are the ones from B; to
the associated S; success nodes; let p; be the success

probability of the Bj_éj arc.

Notice first that there is an obvious poly time algo-
rithm for computing the optimal strategy if any p; = 1,
as the optimal strategy here is simply the minimal cost
path from G(x) to the associated S; success node. (If
there are more than one such p;, we use the smallest
of these values.) We can, furthermore, ignore any S; if
its corresponding p; = 0. We can, therefore, deal only
with the case where 0 < p; < 1 holds for j.

[Gre91b] proves, in general, that the optimal strategy
for any DAG is an ordering of the arcs in some embed-
ded tree. It also proves that, for any strategy O,

p-Cr(T[O]) < E[6] < Cr(T[6))

where T[O] is the tree associated with the strategy ©
(i.e., the tree formed by the arcs used by ©); Cp(T)
(read “the tree cost of the tree T7) is the sum of the
costs of T”s arcs; and p = Hj(l — p;) is the product of
the failure probabilities of ©’s probabilistic arcs.

This allows us to bound the cost of any strategy:
EO] > p-Cr(Top:), where T,py is the minimal cost
embedded tree. We can use this as a bound for the

16We let “ab” refer to the arc from node a to node b.

C1 G Cr

[Ba(s) | [Bolw) | -+ [ Belw) | -+ [ Bulx) |

[

Figure 4: Class of Inference Graphs used in [Gre91b]

cost of the optimal strategy G)Opt;17 ie.,

E[Oopt]
CT(Topt) S ——r
p
Now consider the following algorithm:
Tpac(G, P)

Step 1: Let K* = GREEDY(G) be a subset of
A= {a;}

Step 2: Let T* be the tree built using K:
T*’s nodes are the elements of K, G
and all of the {B;} and {S;} nodes.
T*’s arcs are the Gz\:i arcs for
each A; € K*; one A;B; arc for each Bj;
and all of the B]‘_é]‘ arcs.

Step 3: Let ©" be the optimal strategy for

T*, found using [Smi89]’s polynomial
algorithm.

This uses the GREEDY algorithm shown below, (a
variant of Chvatal’s algorithm for finding an approx-
imately minimal set covering [Chv79]) to find a good
enough subset, K* C A. Notice K* must “cover” the
entire {B; } set — i.e., for each B;, K* must include at

least one A; such that A[ﬁj is in the original DAG.

GREEDY (G)
Step 0: Set K" ={}
For each A;, let
R; = R(A;) = {B;|Ai leads to B,}.
Step 1: If R; = {} for each j, then stop,

returning K*.

Otherwise, find subscript £ maximizing
the ratio |Ri|/c;.

Add k to K", replace each R; by

R; — R; and return to Step 1.

Step 2:

Let m be the largest value of |R(4;)|, over all 4; nodes.
From [ChvT79], we see that this algorithm returns a tree

"Notice we are not claiming that T[Oop:] = Topt.



whose tree cost is within a factor of
m
def 1
Hw < 30 -
i=1 J

of the cost of the optimal Sllbtree.18 We prove below
that this means the cost of Ypag(G, P)’s answer, ©*,
is within the additive constant A = (ﬂpﬂl - 1) E[6¥]
over the cost of the optimal strategy. While we can

efficiently compute the value of E[@*], we may pre-
fer to use the (easier to compute) larger bound A =

(—H(pm) — 1) C, where C' = L(cp + ¢;) + >, c(i) is the

sum of the costs of all of the arcs in the complete DAG.

O(Inm)

Proof: Let ©,,; be the optimal strategy for this DAG;
T,ps be the minimal cost embedded subtree; and ©*

be the strategy returned by TDAQ(G, P), based on
the T* = T[©*] subtree.

e < Or(1e7])
< H(m)-Co(Tp)
< H(m). HS2d
< BOp] +  (HZ2 1) B0
< B0 +  (H-1) pler]
The final step uses the fact that E[Q,,;] < E[O] for
any strategy ©, and in particular, for ©*. a.
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