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Abstract

PAC-learning results are often criticized for demanding impractically large training
samples. The common wisdom is that these large samples follow from the worst case
nature of the analysis, and therefore pAC-learning, though desirable, must not be a
practical goal. We however consider an alternative view: perhaps these large sample
sizes are due to the presumed learning strategies which make inefficient use of the
available training data.

To demonstrate this, we consider sequential learning strategies that autonomously
decide when to stop training based on observing training examples as they arrive. We
show that for distribution specific learning these algorithms require far fewer training
examples (on average) than existing fixed sample size approaches, and are able to
learn with certainty not just high probability. In fact, a simple sequential strategy is
optimally efficient in many cases.

1 Introduction

We consider the basic concept learning problem that has long been of central interest in ap-
plied and in theoretical machine learning research. Theoretical analyses of this task have been
largely motivated by Valiant’s PAC-learning framework which introduced the idea of learning
an approximation with guaranteed accuracy and reliability (Valiant, 1984). Valiant origi-
nally investigated the necessary (and sufficient) computational and data resources needed
to achieve these guarantees, in the worst case over all possible domain distributions and
target concepts drawn from some fixed class C'. Subsequent research (Blumer et al., 1989;
Ehrenfeucht et al., 1989) has determined (up to constants and log factors) the rate at which
the necessary and sufficient training sample sizes scale up in terms of accuracy e, reliability
6, and the complexity of the concept class C' (as measured by its VCdimension (Vapnik and
Chervonenkis, 1971)).

Real world issue: While machine learning practitioners rarely criticize this idea of achiev-
ing guaranteed accuracy and reliability levels in an all-encompassing worst case manner,
they typically find the sample sizes proven sufficient for PAC-learning are far too large to
be practical for natural choices of €, §, and . The predominant folk wisdom is that this



impracticality is due to the worst case nature of the analysis, and therefore PAC-learning
must not be a practical goal. However, this view may not be entirely accurate, since:

1. The established bounds incorporate approximations that go well beyond considering
just the worst case distribution and target concept (i.e., the constants in the current
bounds are not tight), and

2. PAC analyses typically consider a simplistic learning strategy — fix a sample size,
collect the data, and then inspect the data to choose a consistent hypothesis — that
may not be making the most efficient use of the available training examples.

We focus on the second alternative: Can worst case PAC-learning be efficiently achieved
by other learning strategies that go beyond the simple “collect, filter, select” approach?
Following (Wald, 1947), we consider sequential learning strategies that autonomously decide
when to stop their own training, based on observing the labeled training examples one at a
time in succession. The idea is to hopefully reduce the number of training examples required
in practice over the standard fixed sample size learning techniques.

This work is motivated by the observation that in many real-world applications of machine
learning it is training data and not computation time is the critical resource. So we consider
trading off computational for data efficiency: we are willing to incur a slight increase in
computational cost in order to reduce the number of training examples required for accurate
and reliable learning in practice.

Overview: This paper considers the distribution specific PAC-learning model (Benedek and
Itai, 1988; Kulkarni, 1991), where the learner knows the domain distribution a priori but
not the underlying target concept; as introduced in Section 2. Section 3 then uses a simple
example to introduce a basic sequential learning strategy that produces accurate hypotheses
with certainty, not just high probability 1 — ¢, while requiring far fewer training examples
(on average) than existing fixed sample size learners. Section 4 then examines the general
capabilities of sequential learners in the distribution specific setting, and presents a simple
strategy that learns with optimal data efficiency for a certain case. Finally, Section 5 con-
siders truncated sequential learners that are allowed to observe at most a bounded number
of training examples. In every instance we observe that sequential learners provide a sub-
stantial improvement on the data efficiency of existing fixed-sample-size learning techniques.
Section 6 concludes the paper with directions for future research.

2 Distribution specific PAC-learning

The basic learning problem we consider is the standard task of learning an unknown target
concept from examples. Formally, a concept ¢ is just a subset of the domain of objects
X, and a labelled ezample consists of a domain object x with its classification according
to ¢ (x,1.(x)), written cx for short.? Given a sequence of labeled training examples c¢x =
(cay,cxy, ..., cxy), the learner must produce a hypothesis b C X that closely approximates c.

Following Valiant, we assume both training and test examples are drawn independently
according to a fixed domain distribution P on X, and classified according to a fixed but

LOf course, 1.(z) =1 iff z € ¢, and 1.(z) = 0 otherwise.



Procedure BI (C,P,€,6)
o Find an ¢/2-cover H of (C,P) with size N.,.

o Collect Tg; = % In % training examples.
e Return the hypothesis h € H with minimum observed error.

Figure 1: Procedure BI
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Figure 2: Left half-space concept ¢ defined by point z..

unknown target concept ¢ which belongs to some known class C'. In the distribution specific
variant of Valiant’s learning model (Benedek and Itai, 1988; Kulkarni, 1991) both the concept
class C' and the domain distribution P are assumed to be known a priori. Here it is natural
to think of C' and P as comprising a concept space (C,P) where the distance between two
concepts is given by the natural pseudo-metric dp(c1,c2) = P(erx # cpx).

Definition 1 (PAC-learning) For a given reliability and accuracy levels, 1 — 6 and 1 — e,
we say

(1) a learner “PAC-learns ¢” if given random examples generated by P and labeled by c it
produces a hypothesis h such that P(ha # cx) < € with probability at least 1 — 6; and

(2) a learner “PAC-learns a concept space (C,P)” if it PAC-learns each ¢ in C.

The sample efficiency of a learner L, written T*, is measured by the number of training
examples it uses in the worst case over all ¢ in C'.

Benedek and Itai have developed the PAC-learning strategy BI, shown in Figure 1, that
exploits the existence of a small e-cover of the concept space: An e-cover of (C,P) is a set
of concepts H = {hy,ha, ..., Ax} such that every ¢ in C is within € of at least one h in H;
N, denotes the size of the smallest e-cover. The number of training examples used by B[ is

given by
Nes2

TBI = 2]y
€ &

(Benedek and Itai, 1988). (1)

Below we compare the sample efficiency of this fixed sample size learning technique with the
sequential learning approach.

3 A simple example

We use the following simple case study to introduce a basic sequential learning strategy,
and then to compare the relative sample efficiencies of the fixed sample size and sequential
approaches.

Here we consider the problem of learning a target subinterval of the unit interval given
uniform random examples. Formally, let X; be the unit interval [0, 1], P; the uniform
distribution, and C; the class of half intervals C; = {[0,z.] : 0 < z. < 1}. So a target



Procedure 5 (¢)

e Observe random training examples until z, — x; < 2¢ (the stopping condition).
e Return the halfspace defined by the midpoint z,, = (z, — x,)/2, viz., [0, z.,).

Figure 3: Procedure Sy

concept ¢ € Cy is defined by an endpoint z. € [0,1]; see Figure 2. It is not hard to
see that there is a rather obvious sequential strategy for learning an unknown half interval:
simply keep an “uncertainty interval” around the unknown endpoint, and stop as soon as this
interval gets small enough. That is, for any finite sequence of example points x = {z1, ..., 7;},
define z, = max{z; € x|cx; = 1} to be the largest positive example (0, if none exists), and
z, = min{z; € x| cx; = 0} to be the smallest negative example (1, if none exists); then use
these to define the simple sequential learning procedure S; shown in Figure 3. Procedure Sy is
clearly correct since any hypothesis it returns is guaranteed to be e-accurate by construction.
Furthermore S; terminates with probability 1; see Proposition 1 below. So in fact 5; learns
with certainty not just high probability, as it returns e-accurate hypotheses with probability
1 instead of just probability 1 — 6.

How efficiently does S; learn? To determine its sample efficiency, notice that the number
of training examples S; observes is a random variable rather than just a fixed number. In
addition there is no upper bound on the number of examples that might be observed before
the stopping criterion is met, so characterizing S;’s sample efficiency simply by an upper
bound on training sample size gives a vacuous result. However, the expected number of
training examples S observes is actually quite small:

Proposition 1 For any target concept ¢ with endpoint in [e,1 — €]
T ~ negative-binomial (p = 2¢, k = 2),

furthermore Sy stops even faster for concepts with endpoints nearer 0 or 1. As a direct
consequence, for any c in C; we have P(T™ < o) =1 and

ETS <1, (2)

As 57 requires at most % training examples on average to return an e-approximation to the
unknown target concept with certainty, it appears to be a quite efficient learning algorithm.
In fact, Theorem 2 below proves that S; has the optimal expected sample size, among all
certain learners for this space!

To compare the relative sample efficiencies of the sequential and fixed sample size ap-
proaches, recall that the sample size used by Bl is determined by the size of the smallest
€/2 cover of the concept space. We can derive Bl;’s sample efficiency using (1) and the fact
that N./2(C1,Pq) is clearly at least 2/e:

THh =82y 2 (3)
This sample size (3) compares quite poorly to S;’s expected sample efficiency (2); by a factor
of 321n %. For example, setting ¢ = 0.05 and & = 0.05, we get sample efficiencies ET"1 = 20

4
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Figure 4: Comparing Tt and TP for ¢ = 0.05 and § = 0.05.

and ETBh = T84 = 4279, Worse for B1,, it would require an infinite sample size to learn
with 6 = 0. So even though 5 is solving a harder learning problem that By, as it is learning
with a higher degree of reliability, S7 actually requires orders of magnitude fewer training
examples on average.

Of course, we are comparing a fixed number T84 to a distribution of sample sizes 1.
What is the best way to compare these two quantities? There is no one best answer here. As
one natural measure of a sequential learner’s data efficiency is given by its expected sample
size, one reasonable way to compare fixed and sequential strategies is to compare their fixed
versus expected sample sizes; as shown above. Alternatively, one could instead consider the
probability that the sequential sample size exceeds the fixed size: From Proposition 1 one
can use Chernoff bounds to show

P(T5 > 1) < e 3072 fort > L. (4)

Combining (4) with (3) shows that it is extremely unlikely that S; will ever use more examples

than Bl;:

Proposition 2 P(T%1 > TPBh) < (%)20, fore, &6 < /2.

€

So for example choosing € = 0.05 and 6 = 0.05 as before we get that the probability 5
ever exceeds BI,’s sample size is less than 80072°, which is very small indeed! The overall
situation for these values of € and ¢ is illustrated in Figure 4.

So clearly 57 is orders of magnitude more efficient than B1;. There are two reasons for this
overwhelming advantage: Benedek and Itai’s sample size bound (1) incorporates a number of
crude approximations and can almost certainly be improved a great deal. However, note that
any real application of this technique in practice requires us to use some provably sufficient
sample size bound; (1) just happens to be the best available. However, a second reason for
this advantage is that the sequential approach seems to be intrinsically more efficient here,
¢f. Section 5.



Procedure 5 (C,P,¢)

e Sequentially observe examples until there exists a single A € 2% (not
necessarily in C') within e of each consistent ¢ remaining in C.
e Return h.

Figure 5: Procedure S

4 Learning with certainty: General theory

We briefly investigate the difficulty of learning accurate approximations with certainty in a
general setting. We are considering a variation of the standard PAC-learning model where
we want an absolute guarantee that the learner returns an accurate hypothesis, without fail;
i.e., returning e-accurate hypotheses with probability 1, not just probability 1 — §. Notice
first that this is impossible for any fixed sample size learner: if C' contains two concepts ¢,
¢z such that € < dp(cy,cz) < 1, then for any finite sample size ¢ we have P(e;x" = ¢px*) > 0,
meaning it will be impossible to distinguish the correct concept with certainty. However we
have seen that this strong form of learning is quite possible if we allow sequential learners
with no fixed bound on their potential sample size. A number of surprisingly strong results
can be obtained for this model.

Definition 2 (cac-learning) (Certainly Approximately Correct) For a given accuracy
level €, we say

(1) “a learner L cAC-learns ¢” if given random examples generated by P and labeled by ¢ L
produces a hypothesis h such that dp(h,c) < € with probability 1, and

(2) “a learner em CAC-learns a concept space (C,P)” if it CAC-learns each ¢ in C'.

The procedure S; can easily be generalized to a simple generic learning procedure S
applicable to arbitrary concept spaces; see Figure 5. In fact S CAcC-learns virtually any
concept space, provided only that it terminates with probability 1, since any hypothesis it
returns is guaranteed to be e-accurate by construction. We measure S’s sample efficiency by
the upper bound on its expected sample size, in the worst case over all concept in C. This
is determined by how quickly the neighborhood of consistent concepts shrinks to become
coverable by a single concept; a quantity we measure by the uniform reducibility ot the
concept space.

Definition 3 The space (C,P) is uniformly reducible if there is a t and a p > 0 such that
for any target concept ¢ in the space, the space of consistent concepts is reduced to an e-ball
around ¢ after t training examples with probability at least p.

It turns out that uniform reducibility is both a sufficient and necessary condition for a
concept space to be CAC-learnable:

Theorem 1 A space (C,P) is CAC-learnable iff it is uniformly reducible for all € > 0 iff S
CAC-learns it.

2These results assume the concept space satisfies a benign regularity condition, namely that it is “sepa-
rable” in the sense defined in (Schuurmans, 1994).



Therefore if a concept space is not uniformly reducible then it is not CAc-learnable by any
learner, but if it is uniformly reducible then S CAC-learns it. So S can be viewed a “universal”
CAC-learner in this sense.

Note 1 As there are finitely coverable spaces that are not uniformly reducible (Schuurmans,
1994), cac-learnability implies PAC-learnability, but not vice versa. (Hence, not every PAC-
learnable concept space is CAC-learnable.) However, most of the concept spaces considered
by researchers are in fact uniformly reducible — only pathological examples appear not to be.

Not only is S a universal learner in the above sense, but it is also optimally efficient as well.

Theorem 2 For any concept space, S has optimal expected sample size among all CAC-
3

learners for the space.
So even though S is an incredibly simple-minded learning strategy, it is the optimal possible
procedure in terms of minimizing expected sample size.

The previous section shows that S’s expected sample size can be precisely determined
for simple concept spaces like (Cy,Py), and furthermore, that its performance far outstrips
that of the fixed sample size BI strategy in these cases. The analysis of Section 3 can be
extended to more general classes of concept spaces, for example d independent copies of C; on
[0,1],[1,2],...,[d — 1,d]. Analysis shows that S remains orders of magnitude more efficient
than BT in this case. Unfortunately we have yet to identify a simple structural property
of concept spaces (e.g., covering number, or some generalization of the VCdimension of (')
that will permit us to prove tight upper and lower bounds on ET® that are applicable in
general. This remains an interesting open challenge.

Note 2 However such a characterization is not as important here as for the fired sample
size case: procedure S will perform optimally regardless of how carefully we can predict
its performance a priori! This is unlike fized sample size techniques whose actual sample
efficiency depends critically on our ability to prove the sufficiency of specific sample size
bounds.

5 Truncation: Bounding the sample size

Even though S is a very efficient learner it has the drawback that there is no finite upper
bound on the total number of examples it might observe. Of course a small expected sample
size ensures that the probability of exceeding any large number of examples is exceedingly
small, which we have seen. If, however, one cannot tolerate even a minuscule probability
of the sample size exceeding some pre-set bound, then it is possible to consider truncated
sequential learners that never observe more than a specified number of examples. Of course,
in so doing we must give up the possibility of achieving CAC-learning and settle instead for
the weaker PAC criterion with 6 > 0.

3Making the same separability assumption required for Theorem 1.



Procedure SAL (C,P,¢,0)

e Run S and L in parallel. (Showing each labeled example to both.)
e Return the first hypothesis returned by either.

Figure 6: Procedure SAL

Procedure S° (C,P, ¢, 6)

e Let t° be an upper bound such that P(7T% > %) < § for every c in the space (C,P).
e Run procedure S and return any hypthesis it might produce.
e If S has not terminated after #* examples, stop and return an arbitrary hypothesis.

Figure 7: Procedure S°

Strict domination: The first thing to notice is that the sample efficiency of any fixed
sample size learner L can be strictly dominated by the sequential learner “SAL” defined in
Figure 6. Since S never returns a bad hypothesis when it terminates, SA L only makes a
mistake whenever I does, so SAL is a PAC-learner whenever L is. Obviously SA L never
observes more examples than L and is quite likely to observe fewer, ¢f. Section 3.

Tail truncation: An alternative approach is based on truncating the S procedure at its
“6-tail”: the sample size t° for which P(7"° > t°) < § for any c in the space. Figure 7
gives a procedure S° which is a slight modification of S guaranteed to PAC-learn while never
exceeding the finite sample size t°. Notice S® does not PAC-learn in every situation where B
does by Note 1. However S dramatically outperforms BI in case studies involving finitely
reducible spaces; requiring strictly fewer training training examples in the worst case, and
requiring orders of magnitude fewer on average.

For example, recall the concept space C; = (Cy, P1) from Section 3. Here we construct a
truncated version of S; by using the bound (4) to obtain an upper bound on the number of
examples sufficient for S; to terminate and return an e-accurate hypothesis with probability
at least 1 — &. Thus, we can construct the PAC-learning procedure S° simply by truncating
Sy at the sample size t° given below:

Proposition 3 Fort® > 1(2+ 21n 1), we have P(T* > ¢°) < 6 for any ¢ in (Cy,Py).

To compare the sample efficiency of this procedure to B, notice that 751 < T5' and so we
immediately have ETS < 1 /e, which again is orders of magnitude smaller than BI’s sample
size bound (3). Also notice that the sample size bound ¢° strictly dominates (3), and in fact
constitutes an improved upper bound on the number of examples sufficient for PAC-learning
the concept space (C, Py).

6 Conclusions
This paper introduced the idea of using sequential learning algorithms to improve the sample

complexity of concept learning in the distribution specific model. We presented a simple
example which showed that a simple sequential strategy learns with drastically fewer training



examples than previous fixed sample size approaches. This strategy actually learns with
certainty, not just high probability, and in fact achieves optimal expected sample complexity
among all such learners! In addition, we showed how analyzing the sample complexity of a
sequential learner can actually yield improved fixed sample size bounds in some cases. Our
results also extend (Linial, Mansour and Rivest, 1988), as our goal is to improve learning
efficiency wuniformly over all possible target concepts ¢ in the class C, not just gain an
advantage for certain concepts by sacrificing performance on others.

The main challenge in actually implementing the sequential strategy S is to find an
effective procedure for determining whether a set of consistent concepts is e-coverable, and
producing an e-cover when one exists. While this chapter also presents a simple class of
concept spaces, S can also be easily implemented for other concept spaces such as axis-
parallel rectangles and simple finite spaces like monomials and conjunctive concepts over
{0,1}". However, much work remains to be done in order to scale these techniques up to
handle more realistic concept spaces such as multi-layer neural networks. Another obvious
direction for future research is to extend these results to the distribution-free setting. The
ultimate goal is to develop a general PAC-learning procedure with a small (or better, optimal)
expected sample complexity, analogous to the S algorithm developed here; however this
appears to be a difficult challenge. An intermediate goal is to develop sample efficient
sequential algorithms for interesting special cases.

This work constitutes a first step towards learning algorithms that make efficient use of
the training samples, thereby using far fewer training examples than existing PAC-learning
techniques, while still achieving the same accuracy and reliability guarantees. Substantial
improvements in the efficiency of these techniques might actually result in practical PAC-
learning systems that could be used in real world applications.
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