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Abstract

Many inference management systems store and
maintain the conclusions found during a deriva-
tion process in a form that allows these conclu-
sions to be used during subsequent derivations.
As this approach, called “solution caching”, al-
lows the system to avoid repeating these deriva-
tions, it can reduce the system’s overall cost for
answering queries. Unfortunately, as there is a
cost for storing these conclusions, it is not al-
ways desirable to cache every solution found —
this depends on whether the savings achieved
by performing fewer inference steps for these
future queries exceeds the storage overhead in-
curred. This paper formally characterizes this
tradeoff and presents an efficient algorithm,
FOCL, that produces an optimal caching strat-
egy: l.e., given an inference graph of a knowl-
edge base, anticipated frequencies of queries
and updates of each node in this graph, and
various implementation-dependent cost param-
eters, FOCL determines which of these nodes
should cache their solutions to produce a sys-
tem whose overall cost is minimal. The pa-
per also presents empirical results that indicate
that a system based on FOCL can significantly
outperform one based on any of the standard
approaches to solution caching.

1 Introduction

A “solution caching”! system will store and maintain
the conclusions found during a derivation process, in a
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form that allows the system to simply retrieve and re-
use these stored solutions to answer subsequent queries.
As this avoids the cost of repeating these derivations, it
can significantly improve the response time for repeated
queries. These savings are especially important in very
large and complex knowledge bases and in applications
where the response time is critical, such as real time
process control. As caching does incur the cost of storing
the derived conclusions, it may not be useful when the
storage cost is very high or when the queries are not
repeated a large number of times.

As an example, consider the knowledge base, K By,
shown in Figure 1.2 If we ask for all living objects
(i.e., find all X satisfying the living(X) query), the in-
ference engine will backward chain, traversing the infer-
ence graph down to the ground facts. Here, the solutions
are:

{ living(slime2) living(george) living(john) }

A = living(fred)  living(fido) living(roxy) (1)
living(applel) living(orange3) living(beanT)

An inference management system IMS3 that can cache
its answers could then store these derived solutions, in
effect forming a larger knowledge base K B} «— KBy UA
that includes all of K By as well as these nine proposi-
tions, A. If the same query living(X) is posed again,
this IMS will find these solutions by a single lookup
rather than by re-deriving them by backward chaining.
Notice the IMS is spending additional time in process-
ing the initial query to store this information, in the
hope that it will save time later when addressing this
same query for the second and subsequent times. Notice,
however, that these cached entries can become “dirty”
if the fact set is changed — e.g., if we delete the literal
man(john), or add a new fact dog(shep). Hence, we
must consider how often each type of fact is updated

technique of moving information from secondary to primary
storage.

?Following PROLOG conventions, names that begin with
a capital letter (e.g., “X”) are variables. Unbound variables
that appear in assertions are assumed universally quantified;
those in queries, existentially quantified.

?This IMS can be a knowledge representation system, a
deductive database, a logic programming system, an object-
oriented system, etc.
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Rule Base Fact Set
thing (X) := living(X). thing (X) :— inanimate(X). living(slime2) mammal (george)
living(X) :— mammal (X). living(X) :— plant (X). man (john) man(fred)
mammal (X) := dog(X). manmal (X) :— man(X) . dog(fido) dog(roxy)
plant (X) :— vegetable(X). plant(X) :— vegetable(X). fruit (applel) vegetable(bean?)
inanimate(X) :- vehicle(X). inanimate(X) :- airplane(X). fruit (orange3) airplane(pl7)
sports_car(X) :- car(X), fast(X).

Figure 1: Knowledge Base K By — Ground facts + Rules

Structure of the inference graph

Distribution of queries and updates

Costs of each inference step, fact-set retrieval, ...
Incremental cost of additional storage

Number of solutions to be cached (at each node)

Table 1: Factors Affecting Caching Performance

and the cost of propagating this change to insure the
cached information remains accurate.

Our goal is to use solution caching as a way of pro-
ducing an efficient IMS — one that requires a minimal
amount of time to deal with the anticipated distribution
of queries and updates.

There are two standard ways of dealing with solu-
tion caching. Many systems, including PrRoLoG [CM81],
never cache any solutions. Others (e.g., [Mos83]) will
cache every solution found — e.g., at every node in the
graph shown in Figure 1. This paper shows that neither
of these two simple approaches leads to an optimally
efficient system, and so proposes a third approach: of
selectively caching only at certain nodes. Section 2 first
develops a quantitative model that formalizes the inter-
action amongst the different factors affecting the caching
performance, summarized in Table 1. Section 3 then uses
this model to define an algorithm, FOCL (for “Find
Optimal Cache Label”) that determines which literals
should cache their solutions. Section 4 then presents
a set of performance experiments to demonstrate that
the optimal caching scheme produced by FOCL can sig-
nificantly outperform the systems that use either obvi-
ous approach, of caching everywhere or not caching any-
where.

Due to space restrictions, this short article cannot pro-
vide a comprehensive survey of the related research; in-
stead, we refer the interested reader to our extended
paper [CG92]. That paper also discusses how our re-
sults can be used by a wide variety of systems, includ-

ing knowledge representation, deductive databases, logic
programming and object-oriented systems; and presents
both the relevant proofs and a more comprehensive dis-
cussion of the FOCL algorithm.

2 Framework and Cost Model

This work deals with definite clause knowledge bases
(i.e., a set of clauses, where each clause has exactly
one positive literal); we call each ground atomic lit-
eral a “fact”, and each non-atomic clause, a “rule”.
We can arrange the rules into an inference graph G =
(N, A), where each node n € N corresponds to an
atomic literal, and each hyper-arc @ € A corresponds
to a rule, leading from (the nodes representing) its set
of antecedents to (the node representing) its conclu-
sion; see, e.g., Figure 1.* As discussed above, given a
query (e.g., “living(¥)”), the IMS will search through
the graph seeking all solutions, both those correspond-
ing to an immediate database retrieval (which finds
living(slime2)) as well as the solutions found by back-
ward chaining — i.e., following the various rules to their
subgoals, to obtain the other eight solutions shown in
Equation 1. The IMS will then return all of these an-
swers.

The IMS may also decide to “cache” these solu-
tions — e.g., store all of the A set associated with
the living(X) node. It may also store the solutions
found at any intermediate node — e.g., store the facts
{mammal(george), mammal(john), mammal(fred),
mammal (fido), mammal(roxy) } associated with
the mammal (X) node, or the facts { plant (bean7),
plant(applel), plant(orange3) } associated with the
plant (X) node, etc.

Our IMS has the option of caching at any of the nodes
in the graph — if so, it will store all of the derived solu-
tions associated with each selected node. As an example,

*We will often identify each node n € N with its associ-
ated literal.



the first time the IMS encounters the 1iving(X) query
(perhaps as a subquery of the “higher” thing(X) query)
it will compute the bindings shown in Equation 1. If it
has decided to cache at this node, it will then store the
subset of these solutions that are not already explicitly
present — that is, all but 1iving(slime2). The second,
and subsequent times IMS encounters this living(X)
query, it will simply retrieve all nine solutions (the eight
newly stored values, and the one originally stored) and
so will not need to backward chain.

The retrieval time required to find these answers is
clearly much less when these answer have been cached.
There is, however, a cost to storing these solutions ini-
tially, and there is also an additional cost each time
there is an update to any of the relations used in any
of 1iving(X)’s “children” — i.e., if we add dog(shep),
etc. Hence, it is not obvious whether we should cache at
any of the nodes.

We can formally define our task in terms of the fol-
lowing definition:

Defn#1. A Caching Label of an inference graph is a
function which assigns a label of either “C*” or “C~”
to each node in the graph. The label “C*” (resp.,
“C~”) means that solutions should (resp., should not)
be cached at this node.

We let LL(G) refer to the set of all labels for the in-
ference graph G = (N, A) — i.e.,

LLON, A) Y (Lo N —{CH C} )
and let L¢[ng] refer to the value the labelling £, €
LL(G) assigns to the node ny € N.

The Overall Cost of a caching label £, written E[L,],
is the total cost required to perform all anticipated
queries at all nodes, assuming the IMS uses the la-
belling £,. This value is the sum of the costs asso-
ciated with each node in the graph, and includes the
costs of performing all retrieving inferencing, storing
and updating steps. (The particular formula for these
costs will depend on the type of inference graph and
cost model involved; see the next subsection, espe-
cially Equation 3.)

Optimal Cache Labelling Task:
Instance: An inference graph G = (N, .A) with its
space of cache labellings ££(G), and cost function

FE: ﬁﬁ(g) — K.
Problem: Identify a cache labelling £, € LL£(G) whose

cost is minimal over all labellings — i.e., such that

VL€ LLG) EL.] < E[L]. O

The rest of this subsection sketchs a particular con-
crete cost model (i.e., a specific E[-] function) for a par-
ticular class of inference graphs; [CG92] provides a more
exact specification.®

“This paper uses a very simple model for purely pedagogi-
cal reasons; we are aware that sophisticated PROLOG systems
require a much more elaborate model [Debray, personal com-
munication]. The analysis in this paper does apply to those
models as well; see [CG92].

We assume that the total cost of a database retrieval
varies linearly with the number of solutions obtained
— e.g., the cost of retrieving the 2 facts matching
man(Y) is twice the cost of retrieving the 1 fact match-
ing vegetable(Z) (viz., vegetable(bean7)). In gen-
eral, it will cost “nL” to retrieve the n facts matching a
proposition, where L is a constant that is independent of
the particular proposition considered; i.e., independent
of whether the query was man(Y) or vegetable(Z).

We assume a uniform cost for caching any proposi-
tion; i.e., it costs the same to cache dog(fido) as to
store between(a P b); call this value “S”. It will also
cost this same amount to perform any update to a cache
— whether by adding or deleting a literal. We like-
wise assume a uniform cost “R” for reducing any goal
along any one rule, to that rule’s (appropriately instan-
tiated) antecedents. For example, it costs R to reduce
thing(X) to 1iving(X); and costs the same R to reduce
sports_car(X) to car(X) and fast(X).

We assume, as given, the values of these parameters:

L — Cost of any one lookup, per unit fact found
R — Cost of reducing any one goal (along any one rule)
S — Cost of caching/adding/deleting any one fact

In addition, for each node n; in the inference graph, we
must know

Defn#2. s(n;) is the current number of propositions
explicitly in the fact set that match the goal associ-
ated with this node. As an example based on the
graph in Figure 2 (taken from the far left side of
Figure 1’s KBy), s(n4) is the number of proposi-
tions in the fact set that match dog(X). Assuming
the associated fact set contains (all and only) the
facts {dog(fido), dog(roxy), mammal(lulu) }, then
s(ng) = 2, s(ng) =1 and s(ny) = s(ng) = 0.

Defn#3. d(n;) is the number of direct queries posed at
the node n;. E.g., we will ask the question mammal(X)
a total of d(ng) times.

Defn#4. u(n;) is the rate of updates to the node n;,
where each update is either adding or deleting a literal
to the extension of the node n;. As an example, if we
plan to add in two new literals — e.g., dog(shep) and
dog(phydeau) — and delete one literal dog(fido)
over a period of time during which the number of
queries was 100, then u(n4) = (24 1)/100 = 0.03.

(The values of d(-) and u(-) are with respect to some
interval of time; see Subsection 3.4. That subsection
also discusses how to estimate the values of these pa-
rameters.)

Given the values of these implementation-dependent
parameters, we can compute the cost E[L,] of any given

L € LL(G). We need the following terms:

Defn#5. Given any node n € NV, let
Ch(n) = {ni|(n,n;) € A} refer to n’s immediate
children; and
U(n) refer to the set of nodes in the graph strictly
strictly “under” n, at any depth: i.e.,

n;€Ch(n)

U(n) = Ch(n) U



# Direct Queries

thing(X) :- living(X). . . .
living(X) :- mammal(X). # Matching Literals in Fact Set
mammal (X) :- dog(X). # UpdaTtes to Node
( ni: thing(X) ) d(n1) =100 s(n1) =10 u(ny) =10
¥
' no: living(X) ' d(ny) =80  s(n2) =30 w(nz)=5
Iy
nz: mammal (X) ' d(n3z) =30 s(nz) =15 wu(nz) =10
Iy
( ma: dog® ) d(na) =10 s(na)=5  u(ng) =10

Figure 2: Knowledge Base K By; and Parameters

(Notice n ¢ U(n); and if n is a leaf, then Ch(n) =
Un)=A})

Defn#6. The Number of Indirect Queries at the node
ny with respect to a labelling £;, designated “Iy(ny)”,
is the total number of queries that the user can ask
at any of n;’s ancestor nodes and that will cause the
inference process to retrieve values at ni. Notice this
value depends on the cache labelling.

If we cache at the parent node nyj, then the child ng41
receives only one indirect query — only for the first
derivation. (E.g., if we cache at 1iving(-), then its child
mammal (-) will receive only a single indirect query.) If we
do not cache, the number of indirect queries that ng4q
receives is the sum of direct and indirect queries at the
parent. Hence,

o) = { {04400 ez

As the root node n; does not have any parents, we have
I;(ny) = 0 for every L.

To illustrate this: using Figure 2, let £____y de-
note the labelling that does not cache at any node, and
L(_4__y, the labelling that caches only at the node ns
and nowhere else. Then the number of indirect queries at

nzis I____y(n3) = d(n1)+d(nz); and I_4__)(n3) = 1.

For any node n € N, define F[L,, n] to be the cost
of using the label £, to deal with the nodes including
and below n — i.e., with the nodes {n} Ul (n). Notice
E[L)] = E[Ls, (root)], where (root) is the root node
(here ny). The incremental cost of dealing with the node
n, above the cost of its children, involves the expense of
retrieving n’s complete extension a total of d(n) + I;(n)
times. If we cache, then we must add in the cost of
caching the additional I;(n) answers after answering the
query for the first time, and also the cost of returning
these cached solutions during each subsequent retrieval.
We also have the additional cost of the processing the

subsequent updates. Hence,

E[L‘,z, n] = En,eCh(n) E[ﬁz, ni] +
[(L-s(n)) 4+ (R-[Ch(n)])](Ze(n) +d(n)) if Len]=CT
(L~ s(n)) + (R |Ch(n)]) if £4fn] = O
+ [d(n) + Le(n) — 1] - (L - [s(n) + s(U(n))])
+ S-s(U(n)) + S-u(lU(n))
(3)
where s(U(n)) = En,eu(n)s(”i) and u(U(n)) =

En,eu(n)u(”i)' Notice the value of E[L;,n] depends
on both the labels of the nodes below n (as it involves
E[L,n;] for each n; € Ch(n)), and the labels of the
nodes above n (as it involves Ip(n)).

The precise characterization of the cost, shown in
Equation 3, is one of the important contributions of
our work. Notice it extends previous work (e.g., [Sel89,
SJGP9I0]) which assumes that this cost is given and is
independent of the structure of the knowledge base.

3 Optimal Labelling Algorithm

For pedagogical reasons, Subsection 3.1 first describes
the FOCL algorithm for a simple class of inference
graphs; Subsections 3.2 and 3.3 then discuss how FOCL
generalizes to cover other classes, enabling FOCL to
handle any “tree structured” inference graph; i.e., any
graph that includes at most one directed path between
any pair of nodes. (Figure 1 is an example.) FOCL de-
pends on various input values; Subsection 3.4 discusses
ways of obtaining or estimating these values.

3.1 Using FOCL for Linear KBs

This subsection deals only with the particular class of
“linear knowledge bases”, where each clause can have at
most one negative literal and the conclusion of at most
one rule can match any given proposition. (Hence, each
“rule” can have only one antecedent, meaning there are
no conjunctions; and any goal can be reduced to at most
one subgoal, so |Ch(n)| < 1 for all nodes n.) The graph
in Figure 2 suggests such a knowledge base.



P(ns,0) = {Le¢] Len1] =C7 & Lo[n2] = C~ & Lo[na] =C } (——=17)

P(nra,1) = {Le| Le[n1] =Ct & Ly[na] = C™ & Ly[na] =C™} (+-—-17)

P(ng,2) = {L:] Le[no) =Ct & Lens] =C™} (74+-7)

P(ns,3) = {L¢] Lena] =Ct} (?7747)

Figure 3: Values of P(n;, j)
One naive way to find the optimal labelling is to enu-  Algorithm FOCL(G, {d(n:), s(n:), u(n:)}:, R, L, )
merate all of the possible labellings, compute the cost of 1. For each nj := (root). <1eaf>
each and select the one that is minimum. This approach Compute {V(nx,)}') based on Equation 4, ...
is not computationally feasible even for this simple class
of knowledge bases, as there are 21V labellings. 2. For cach ny. := (leaf). (root)
Compute  {M(ng,1) f ~, based on Equation 5, ...

Another approach is to label each node one at a time,
by traversing the entire inference graph in one direction
— either top down or bottom up. Unfortunately, the
decision of whether to cache at a node depends on the
cost of answering all queries at that node, which in turn
depends on the labels of both the ancestor and the de-
scendant nodes: the total number of queries that reach
a node depend on which of its ancestors are cached, and
the cost of obtaining the complete extension of a node
will depend on which of its descendants are cached. This
rules out a single traversal in either direction, as either
requires quantities that would not be available. For-
tunately, however, we can capture this interdependence
using a dynamic programming technique to obtain a so-
lution that is provably optimal [Nem66].

The basic idea involves two traversals of the inference
graph; see Figure 4. Equation 3 shows that the value of
E[L;, ni] depends on E[Le, ng41], I, (ng) and various
input parameters. Fortunately, the values of E[L¢, ng41]
and I;(ny) can be decoupled: given any class of labellings
that share a common Iy(ny) value, the best labelling will
be the one with the smallest E[L;, ng41] value.

FOCL’s first pass [Figure 4’s Line 1] works from the
root down to the leaf node (here from n; to ny), par-
titioning the set of possible labellings into equivalence
classes that share a common value of I;(n;). That is,
define

P(ng,0) ={ L € LL(G) VO J < k. L¢g[n;]=C}
P(ng,i) ={ Le € LL(G) Vi< < k. Lyn;]=C & (4)
Len]=Ct} for e =1. ( -1
Notice P(ni,j) is a set of labels. As an example,
P(n1,0) = LL(G) is the set of all labellings.

Figure 3 describes the values of P(ng,j) for the al-
lowed values of j. Its right side encodes each P(n;, j) as
a sequence of the form (%1, +s,...4;) where, for each
Ly € P(ng,j), £m = + means Ly[ny,] = C*, £, = —
means L¢[n,] = C™, and &, =7 means L¢[n,,] is arbi-
trary. In general,

~—

Z'th jth
| ! |
irrelevant all =’s irrelevant

for i = 1..(j — 1). Notice P(n;,j) does not restrict labels
on the basis of their values for nodes n,,, where m < 1 or
m> j.

The k sets {P(ng,i)}f-; partition the set of all la-
bellings. By construction, the value of I;(ny) is the same

3. Return the optimal labelling, based on the decisions
made in determining M ((root),0) ...

Figure 4: Code for FOCL

for each label £, € P(ng,t); call this value V(ny,1).
(Here, V(n1,0) = 1, V(ng,0) = 100, V(ny, 1) = 1,

V(ns,0) = 180, V(ns, 1) = 81, V(ns,2) = 180, etc. ) Ob—
serve that FOCL can compute these values efficiently
using a single top-down pass as the values of V(ny, i)
can be computed based on the values of {V(nr_1,5)};.
N.b., FOCL will only deal with these V(n;, j) values; it
never needs to explicitly construct the P(ng,j) sets.

FOCL’s second pass [Figure 4’s Line 2] works from
the bottom up (here from n4 up to ny). At each stage,
when dealing with nj;, FOCL determines the labellings
in each equivalence class that are best from “here down”:
that is, it computes M (ny,¢), defined to be the smallest
value of E[Ly, ni] over all labelling £, € P(ny,i); i.e

M(ng, i) < min{ E[Ce, ni]| Lo € P(ng,i) } (5)
Working bottom up, FOCL will know the values of
{M(ng41,7)}; when dealing with np. It can use
the appropriate value from this set in the role of
“E[Le, npy1]”, together with the value V(ng,i) for
“Iy(ng)” in Equation 3, and then compute the two can-
didate values for M[L¢, ng]: one based on mapping ny
to C*, and the other to C~. FOCL sets M(ng,Jj)
to be the smaller of these two values. It can then
use this information to compute M(ng_1,¢), and so
on. On reaching the root node, FOCL explicitly has
the value of M((root),0), which by construction is the
minimal value of E[Ly] = E[L;, (root)] value over all
L¢ € P({root),0) = LL(G), as desired.

At each stage, FOCL also records whether the pre-
ferred label within each P(ng,:) mapped ny to Ct or
C7; it can assemble these mappings to form the optimal
labelling. Notice the runtime of the FOCL process is

O(IN]?).°

SGiven the graph and values shown in Figure 2 and the
parameters R = 2, L =1 and S = 10, the optimal labelling is
Li—4__y. Its cost is 29% (resp., 45%) better than the alter-
native approach of not caching at all (resp., indiscriminately
caching everywhere). Section 4 provides a more comprehen-
sive set of examples.



Figure 5: Multiple rules matching a goal

3.2 Multiple Rules matching a (Sub)Goal

This subsection deals with the situation where multi-
ple rules can match a goal. Consider Figure 5, taken
from the left side of Figure 1’s inference graph), and
let ng (resp., ng, nm) represent the node whose literal
is mammal(X) (resp., dog(X), man(X)). In this case the
nodes in each of the two diverging branches will receive
the same number of indirect queries:

L(nm) = Li(ng) = { le(na) +d(na) - if Lena) = O

if Lolng) = C*

As each of these two branches, separately, is a linear
knowledge base, we can use the analysis from the pre-
vious section. During the upward traversal, notice that
Equation 3 continues to hold, even though Ch(n,) =
{nd, nm} is not a singleton. (As the first term of Equa-
tion 3 is a summation over all the node’s children, it will
incorporate the cost of both the branches.) Thus the
cost equation easily generalizes to the case of trees. The
other computations remain the same as in the simple
linear knowledge base case.

3.3 Conjunctions in Rules

Each rule with a conjunctive antecedent (i.e., each clause
with more than one negative literal) corresponds to
a more complicated hyper-arc in the inference graph.
While computing the cost function for such nodes, we
must deal with the extra overhead of finding solutions
that satisfy all literals. This process is equivalent to eval-
uating a join in the relational database [UlI88]. There
are various methods of evaluating joins, including selec-
tion on an attribute, sort join, multiway merge-sort, join
using index, etc. [UlI89]. As sort join seems to work well
in general, we will base our discussion on this approach.

To explain the working of the sort join, consider the in-
ference graph shown in Figure 6 (taken from the far right
side of Figure 1). To answer the query sports_car(X),
we first find all the solutions to car(X) and fast(X)
individually, and then sort each of them independently.
Then, in a single traversal of the sorted lists, we find the
values that are common to both car and fast, giving
the set of answers to the sports_car query.

Now does this affect our formulation? For each query
at sports_car, there will be one query at each of car and
fast. Thus the expressions for the basic terms remain
similar to the previous subsection. The cost for sorting a
list of length m is O(mlogm) [AHU87], and of a simple
traversal, is O(m). Thus, in the above example if there
are mi solutions to fast and my solutions to car, the
asymptotic cost of evaluating the conjunction is bounded
by K(mjlogm; + malogmsy 4+ my + my) where K is a

sports_car

AN

(Cear ) (fast )

Figure 6: Conjunction in the Inference Graph

constant dependent on the implementation. This value
needs to be added to the cost expression Equation 3.

When there are more than two subgoals in a conjunc-
tion, we need to use multi-way joins [UlI89]. The basic
process, however, remains the same.

3.4 Computing the Parameters

In any given environment, these values of the three im-
plementation dependent parameters, L, R and S, are
standard and should be known from the supplier’s data.
The three functions, u(ng), d(ny) and s(ny), are specific
to an application and have to be obtained by the user of
the FOCL algorithm.

Fortunately, we can estimate these values based on
the statistics that are maintained by several commer-
cial database systems [SACT79]. We can periodically
collect these statistics (e.g., each time the system is
“re-compiled”), and use these values as (estimates of)
s(ng), u(ng) and d(ng) when computing the appropriate
caching label. We can also use statistical measures to
bound our confidence in these estimates; see [Gre92].

Notice that both d(n;) and u(n;) are with respect to
some interval of time — either the “lifetime” of the over-
all system, or the time during which this caching strategy
is “in effect”, which can be the interval of time between
a pair of re-compilations.

4 Empirical Results

This section compares the performance of three IMS sys-
tems: IMS,,; that uses the optimal caching scheme ob-
tained by FOCL, IMSy that uses the cache everywhere
scheme of [SM91], and IMS., that uses the no cache
scheme.

Experimental Setup: We determined the values of
E[IMS,,:], E[IMSy] and E[IMS-] in 54 different con-
texts. Each context is defined in terms of a particular
knowledge base and specific distribution of queries, spec-
ified below. All simulations use the same cost parameters
R=2,L =1and S = 10, obtained from experimental
data [Deb90]. The depth of each knowledge base is set
at 6, which is considered typical for real applications.
Furthermore, the only atomic database facts that match
a node are at the leaves; i.e., s(n;) = 0 for all internal
nodes n;. We also specify that each node n € A is up-
dated at the rate of u(n) = 0.01, i.e., once every one
hundred queries.

We considered three clusters of experiments, which
differ in terms of the number of ground instances that
match each leaf predicate. Figure 7 (resp., Figure 8, Fig-



ure 9) describes 18 contexts in which each leaf predicate
matches exactly 1 (resp., 5, 10) database literals.

Each cluster of 18 = 6 x 3 contexts is formed as the
cross-product of 6 different knowledge bases, depend-
ing on whether the branching factor from goal to sub-
goals was 1..6,7 and three different query distributions:
In distribution Dist1, the root receives 10 queries (i.e.,
d((root)) = 10), each node at the next level receives 20,
then 30 for each node at level 3, etc. In Dist2, this is
reversed — each leaf node receives 10 queries, and the
root, 60, as there are 6 levels. In Dist3, every node
at every level receives same number of queries. ([CG92]
specifies this data more precisely.)

E[IMSy]-E[IMS.,:]

Each  graph plots FLIMS..] and
E[IMJS[ﬁI]l\_/[g[OIi\;[SDN]’ versus the branching factor, for

each of its 18 contexts. Notice that better IMS systems

have smaller E[INJ[E?%MES[HV[]S"‘”] values. As the optimal

IMS,p; system has the uniform value 0, we did not plot
values for the IMS,,; system in these graphs.

Experiment Cluster 1: 1 Ground Instance per
Leaf node: These results appear in Figure 7. For
small values of ground instances (i.e., for branching
factora 1), the best scheme is to cache everywhere and
therefore the cost obtained by IMSy is the same as the
cost of IMS,,;. This does not hold for larger branch-
ing factors, however; for branching factor is 6, IMS,,;’s
cost is 55% better than IMSy. The opposite is true for
IMS- as the degradation in cost is more pronounced for
low values of the branching factor. (It is 700% when the
branching factor is 1. This actual value is too high to be
shown in Figure 7.) While the actual improvements vary
with the specific query distribution, the improvements
are significant in all cases — an average of 30%. How-
ever, it seems that Dist2, with more queries at “higher”
nodes, favours IMSy, which makes sense as there can be
more saving in the inference cost, regardless of the query
distribution.

Experiment Cluster 2: 5 Ground Instances per
Leaf node: As shown in Figure 8, IMSy’s cost is far
worse than IMS,,;’s in most of these cases. In fact,
IMS., is closer to optimum, even though it can be
worse by as much as 50%. IMSy performs well only
when the size of knowledge base is small (five rules, one
ground instance) or when the query distribution is uni-
form (Dist3). Since IMSy caches everywhere, it fails to
respond to the variations in query distribution. This ef-
fect was less pronounced when the number of instances
was lower, as in the previous experiment.

Experiment Cluster 3: 10 Ground Instances per
Leaf node: As shown in Figure 9, IMS_, seems to be

"Hence, the knowledge bases ranged from 5 rules and 1
ground instance (in Figure 7’s framework, when the branch-
ing factor is 1) to about 10,000 rules and approximately
100,000 ground instances (in Figure 9’s framework, when the
branching factor is 6). Note that these are precisely the kind
of knowledge bases envisaged to be required in the future
applications [MCPT91].

Percentage Degradation in Cost Percentage Degradation in Cost

Percentage Degradation in Cost
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Figure 7: Results for Experiment Cluster 1
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Figure 8: Results for Experiment Cluster 2
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Figure 9: Results for Experiment Cluster 3



almost optimal here; in most cases within 10%. IMSy
does worse in general, especially with larger branching
factors.

Summary of Experiments: These experiments sug-
gest that IMSy is appropriate only for small number of
ground instances; this explains the results obtained by
[SM91]. However, this approach does not hold for larger
knowledge bases. Given a large number of ground in-
stances, it may be better to use IMS_, rather than IMSy.
Of course, neither of these can be better than IMS,,;,
which is guaranteed to have the best performance in all
cases.

5 Conclusions

This work can be extended in a few directions: To deal
with inference graphs that are not tree-shaped (e.g., re-
dundant [Gre91], recursive [SGG86], etc.); to estimate
the number of solutions that can be cached at each node
without actually running the inference process; to use
sampling to approximate the distribution of queries and
updates [LN90, Gre92]; and to deal with different cost
models — e.g., to include the storage cost of maintain-
ing cached values, or to allow the values of the various
parameters (e.g., R, L, S) to vary with the size of knowl-
edge base, or the number of variables involved, etc.

To recap: this paper first presents a formal defini-
tion of caching and a quantitative model that formalizes
the interactions among the various parameters that af-
fect caching performance. We use this model to design
FOCL, an efficient algorithm that computes the optimal
cache labelling for any “tree shaped” knowledge base;
i.e., FOCL determines which literals should cache their
solutions to obtain an IMS system whose overall cost
(for answering a given distribution of queries, given a
specific distribution of updates, etc.) is minimal. The
paper also presents a set of experiments to illustrate that
the FOCL-based IMS,,; can outperform systems based
on either of the standard caching strategies (no caching
or universal caching), across a broad range of contexts.
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