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Here are a summary of results with which you should be familiar. If anything here

is unclear you should to do some further reading and exercises.

1 Probability Theory

Chapter 2, sections 2.1–2.3 of David MacKay’s book covers this material:

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

The probability a discrete variable A takes value a is: 0 ≤ P (A=a) ≤ 1

Probabilities of alternatives add: P (A=a or a′) = P (A=a) + P (A=a′) Alternatives

The probabilities of all outcomes must sum to one:
∑

all possible a

P (A=a) = 1 Normalisation

P (A=a, B=b) is the joint probability that both A=a and B=b occur. Joint Probability

Variables can be “summed out” of joint distributions: Marginalisation

P (A=a) =
∑

all possible b

P (A=a, B=b)

P (A=a|B=b) is the probability A=a occurs given the knowledge B=b. Conditional Probability

P (A=a, B=b) = P (A=a) P (B=b|A=a) = P (B=b) P (A=a|B=b) Product Rule

The following hold, for all a and b, if and only if A and B are independent: Independence

P (A=a|B=b) = P (A=a)
P (B=b|A=a) = P (B=b)
P (A=a, B=b) = P (A=a) P (B=b) .

Otherwise the product rule above must be used.

Bayes rule can be derived from the above: Bayes Rule

P (A=a|B=b,H) =
P (B=b|A=a,H) P (A=a|H)

P (B=b|H)
∝ P (A=a, B=b|H)

Note that here, as with any expression, we are free to condition the whole
thing on any set of assumptions, H, we like. Note

∑

a P (A=a, B=b|H) =
P (B=b|H) gives the normalising constant of proportionality.
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All the above theory basically still applies to continuous variables if sums are Continuous variables

converted into integrals1. The probability that X lies between x and x+dx is
p (x) dx, where p (x) is a probability density function with range [0,∞].

Continuous versions of

some results
P (x1 <X <x2) =

∫ x2

x1

p (x) dx ,

∫

∞

−∞

p (x) dx = 1 and p (x) =

∫

∞

−∞

p (x, y) dy.

The expectation or mean under a probability distribution is: Expectations

〈f(a)〉 =
∑

a

P (A=a) f(a) or 〈f(x)〉 =

∫

∞

−∞

p (x) f(x)dx

2 Linear Algebra

This is designed as a prequel to Sam Roweis’s “matrix identities” sheet:

http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf

Scalars are individual numbers, vectors are columns of numbers, matrices are
rectangular grids of numbers, eg:

x = 3.4, x =











x1

x2

...
xn











, A =











A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn











In the above example x is 1 × 1, x is n × 1 and A is m × n. Dimensions

The transpose operator, > ( ′ in Matlab), swaps the rows and columns: Transpose

x> = x, x> =
(

x1 x2 · · · xn

)

,
(

A>
)

ij
= Aji

Quantities whose inner dimensions match may be “multiplied” by summing over Multiplication

this index. The outer dimensions give the dimensions of the answer.

Ax has elements (Ax)i =
n

∑

j=1

Aijxj and (AA>)ij =
n

∑

k=1

Aik

(

A>
)

kj
=

n
∑

k=1

AikAjk

All the following are allowed (the dimensions of the answer are also shown): Check Dimensions

x>x

1 × 1

scalar

xx>

n × n

matrix

Ax

m × 1

vector

AA>

m × m

matrix

A>A
n × n

matrix

x>Ax

1 × 1

scalar

,

while xx, AA and xA do not make sense for m 6= n 6= 1. Can you see why?

An exception to the above rule is that we may write: xA. Every element of the Multiplication by scalar

matrix A is multiplied by the scalar x.

Simple and valid manipulations: Easily proved results

(AB)C = A(BC) A(B+C) = AB+AC (A+B)> = A>+B> (AB)> = B>A>

Note that AB 6= BA in general.

1Integrals are the equivalent of sums for continuous variables. Eg:
P

n

i=1
f(xi)∆x becomes

the integral
R

b

a
f(x)dx in the limit ∆x → 0, n → ∞, where ∆x = b−a

n
and xi = a + i∆x.

Find an A-level text book with some diagrams if you have not seen this before.
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2.1 Square Matrices

Now consider the square n × n matrix B.

All off-diagonal elements of diagonal matrices are zero. The “Identity matrix”, Diagonal matrices, the

Identitywhich leaves vectors and matrices unchanged on multiplication, is diagonal with
each non-zero element equal to one.

Bij = 0 if i 6=j ⇔ “B is diagonal”
Iij = 0 if i 6=j and Iii = 1 ∀i ⇔ “I is the identity matrix”

Ix = x IB = B = BI x>
I = x>

Some square matrices have inverses: Inverses

B−1B = BB−1 = I
(

B−1
)−1

= B ,

which have these properties:

(BC)−1 = C−1B−1
(

B−1
)>

=
(

B>
)−1

Linear simultaneous equations could be solved (inefficiently) this way: Solving Linear equations

if Bx = y then x = B−1y

Some other commonly used matrix definitions include:

SymmetryBij = Bji ⇔ “B is symmetric”

TraceTrace(B) = Tr(B) =

n
∑

i=1

Bii = “sum of diagonal elements”

Cyclic permutations are allowed inside trace. Trace of a scalar is a scalar: A Trace Trick

Tr(BCD) = Tr(DBC) = Tr(CDB) x>Bx = Tr(x>Bx) = Tr(xx>B)

The determinant2 is written Det(B) or |B|. It is a scalar regardless of n. Determinants

|BC| = |B||C| , |x| = x , |xB| = xn|B| ,
∣

∣B−1
∣

∣ =
1

|B|
.

It determines if B can be inverted: |B|=0 ⇒ B−1 undefined. If the vector to
every point of a shape is pre-multiplied by B then the shape’s area or volume
increases by a factor of |B|. It also appears in the normalising constant of
a Gaussian. For a diagonal matrix the volume scaling factor is simply the
product of the diagonal elements. In general the determinant is the product of
the eigenvalues.

Eigenvalues, EigenvectorsBe(i) = λ(i)e(i) ⇔ “λ(i) is an eigenvalue of B with eigenvector e(i)”

|B| =
∏

eigenvalues Trace(B) =
∑

eigenvalues

If B is real and symmetric (eg a covariance matrix) the eigenvectors are orthog-
onal (perpendicular) and so form a basis (can be used as axes).

2This section is only intended to give you a flavour so you understand other
references and Sam’s crib sheet. More detailed history and overview is here:
http://www.wikipedia.org/wiki/Determinant
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3 Differentiation

Any good A-level maths text book should cover this material and have plenty of exer-

cises. Undergraduate text books might cover it quickly in less than a chapter.

The gradient of a straight line y=mx+c is a constant y′ = y(x+∆x)−y(x)
∆x

= m. Gradient

Many functions look like straight lines over a small enough range. The gradient Differentiation

of this line, the derivative, is not constant, but a new function:

y′(x) =
dy

dx
= lim

∆x→0

y(x+∆x) − y(x)

∆x
,

which could be
differentiated again:

y′′ =
d2y

dx2
=

dy′

dx

The following results are well known (c is a constant): Standard derivatives

f(x) :
f ′(x) :

c
0

cx
c

cxn

cnxn−1
loge(x)

1/x
exp(x)
exp(x)

.

At a maximum or minimum the function is rising on one side and falling on the Optimisation

other. In between the gradient must be zero. Therefore

maxima and minima satisfy:
df(x)

dx
= 0 or

df(x)

dx
= 0 ⇔

df(x)

dxi

= 0 ∀i

If we can’t solve this we can evolve our variable x, or variables x, on a computer
using gradient information until we find a place where the gradient is zero.

A function may be approximated by a straight line3 about any point a. Approximation

f(a + x) ≈ f(a) + xf ′(a) , eg: log(1 + x) ≈ log(1 + 0) + x
1

1 + 0
= x

The derivative operator is linear: Linearity

d(f(x) + g(x))

dx
=

df(x)

dx
+

dg(x)

dx
, eg:

d (x + exp(x))

dx
= 1 + exp(x).

Dealing with products is slightly more involved: Product Rule

d (u(x)v(x))

dx
= v

du

dx
+ u

dv

dx
, eg:

d (x · exp(x))

dx
= exp(x) + x exp(x).

The “chain rule”
df(u)

dx
=

du

dx

df(u)

du
, allows results to be combined. Chain Rule

For example:
d exp (aym)

dy
=

d (aym)

dy
·
d exp (aym)

d (aym)
“with u = aym”

= amym−1 · exp (aym)

If you can’t show the following you could do with some practice: Exercise

d

dz

[

1

(b + cz)
exp(az) + e

]

= exp(az)

(

a

b + cz
−

c

(b + cz)2

)

Note that a, b, c and e are constants, that 1
u

= u−1 and this is hard if you haven’t
done differentiation (for a long time). Again, get a text book.

3More accurate approximations can be made. Look up Taylor series.
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