Background material crib-sheet

Iain Murray i.murray+ta@gatsby.ucl.ac.uk, October 2003

Here are a summary of results with which you should be familiar. If anything here is unclear you should to do some further reading and exercises.

1 Probability Theory

Chapter 2, sections 2.1-2.3 of David MacKay's book covers this material:
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
The probability a discrete variable A takes value a is: $0 \leq P(A=a) \leq 1$
Probabilities of alternatives add: $P\left(A=a\right.$ or $\left.a^{\prime}\right)=P(A=a)+P\left(A=a^{\prime}\right)$
Alternatives
The probabilities of all outcomes must sum to one: $\sum_{\text {all possible } a} P(A=a)=1 \quad$ Normalisation
$P(A=a, B=b)$ is the joint probability that both $A=a$ and $B=b$ occur. Joint Probability
Variables can be "summed out" of joint distributions:

$$
P(A=a)=\sum_{\text {all possible } b} P(A=a, B=b)
$$

$P(A=a \mid B=b)$ is the probability $A=a$ occurs given the knowledge $B=b$.
$P(A=a, B=b)=P(A=a) P(B=b \mid A=a)=P(B=b) P(A=a \mid B=b)$
The following hold, for all a and b, if and only if A and B are independent:

$$
\begin{aligned}
P(A=a \mid B=b) & =P(A=a) \\
P(B=b \mid A=a) & =P(B=b) \\
P(A=a, B=b) & =P(A=a) P(B=b)
\end{aligned}
$$

Otherwise the product rule above must be used.

Bayes rule can be derived from the above:

$$
P(A=a \mid B=b, \mathcal{H})=\frac{P(B=b \mid A=a, \mathcal{H}) P(A=a \mid \mathcal{H})}{P(B=b \mid \mathcal{H})} \propto P(A=a, B=b \mid \mathcal{H})
$$

Bayes Rule

Note that here, as with any expression, we are free to condition the whole thing on any set of assumptions, \mathcal{H}, we like. Note $\sum_{a} P(A=a, B=b \mid \mathcal{H})=$ $P(B=b \mid \mathcal{H})$ gives the normalising constant of proportionality.

All the above theory basically still applies to continuous variables if sums are converted into integrals ${ }^{1}$. The probability that X lies between x and $x+\mathrm{d} x$ is $p(x) \mathrm{d} x$, where $p(x)$ is a probability density function with range $[0, \infty]$.
$P\left(x_{1}<X<x_{2}\right)=\int_{x_{1}}^{x_{2}} p(x) \mathrm{d} x, \int_{-\infty}^{\infty} p(x) \mathrm{d} x=1$ and $p(x)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} y$.
The expectation or mean under a probability distribution is:

$$
\langle f(a)\rangle=\sum_{a} P(A=a) f(a) \quad \text { or } \quad\langle f(x)\rangle=\int_{-\infty}^{\infty} p(x) f(x) \mathrm{d} x
$$

2 Linear Algebra

This is designed as a prequel to Sam Roweis's "matrix identities" sheet: http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf

Scalars are individual numbers, vectors are columns of numbers, matrices are rectangular grids of numbers, eg:

$$
x=3.4, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right)
$$

In the above example x is $1 \times 1, \mathbf{x}$ is $n \times 1$ and A is $m \times n$.
The transpose operator, ${ }^{\top}$ (${ }^{\prime}$ in Matlab), swaps the rows and columns:

Dimensions
Transpose

$$
x^{\top}=x, \quad \mathbf{x}^{\top}=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right), \quad\left(A^{\top}\right)_{i j}=A_{j i}
$$

Quantities whose inner dimensions match may be "multiplied" by summing over
Multiplication this index. The outer dimensions give the dimensions of the answer.
$A \mathbf{x}$ has elements $(A \mathbf{x})_{i}=\sum_{j=1}^{n} A_{i j} \mathbf{x}_{j}$ and $\quad\left(A A^{\top}\right)_{i j}=\sum_{k=1}^{n} A_{i k}\left(A^{\top}\right)_{k j}=\sum_{k=1}^{n} A_{i k} A_{j k}$
All the following are allowed (the dimensions of the answer are also shown): Check Dimensions

$\mathbf{x}^{\top} \mathbf{x}$	$\mathbf{x x}^{\top}$	$A \mathbf{x}$	$A A^{\top}$	$A^{\top} A$	$\mathbf{x}^{\top} A \mathbf{x}$
1×1	$n \times n$	$m \times 1$	$m \times m$	$n \times n$	1×1
scalar	matrix	vector	matrix	matrix	scalar,

while $\mathbf{x x}, A A$ and $\mathbf{x} A$ do not make sense for $m \neq n \neq 1$. Can you see why?
An exception to the above rule is that we may write: $x A$. Every element of the Multiplication by scalar matrix A is multiplied by the scalar x.

Simple and valid manipulations:
Easily proved results
$(A B) C=A(B C) \quad A(B+C)=A B+A C \quad(A+B)^{\top}=A^{\top}+B^{\top} \quad(A B)^{\top}=B^{\top} A^{\top}$
Note that $A B \neq B A$ in general.

[^0]
2.1 Square Matrices

Now consider the square $n \times n$ matrix B.

All off-diagonal elements of diagonal matrices are zero. The "Identity matrix", which leaves vectors and matrices unchanged on multiplication, is diagonal with each non-zero element equal to one.

$$
\begin{gathered}
B_{i j}=0 \text { if } i \neq j \quad \Leftrightarrow \quad \text { " } B \text { is diagonal" } \\
\mathbb{I}_{i j}=0 \text { if } i \neq j \text { and } \mathbb{I}_{i i}=1 \forall i \quad \Leftrightarrow \quad \text { "I is the identity matrix" } \\
\mathbb{I} \mathbf{x}=\mathbf{x} \quad \mathbb{I} B=B=B \mathbb{I} \quad \mathbf{x}^{\top} \mathbb{I}=\mathbf{x}^{\top}
\end{gathered}
$$

Some square matrices have inverses:

$$
B^{-1} B=B B^{-1}=\mathbb{I} \quad\left(B^{-1}\right)^{-1}=B
$$

which have these properties:

$$
(B C)^{-1}=C^{-1} B^{-1} \quad\left(B^{-1}\right)^{\top}=\left(B^{\top}\right)^{-1}
$$

Linear simultaneous equations could be solved (inefficiently) this way:

$$
\text { if } B \mathbf{x}=\mathbf{y} \text { then } \mathbf{x}=B^{-1} \mathbf{y}
$$

Some other commonly used matrix definitions include:

$$
\begin{gathered}
\qquad B_{i j}=B_{j i} \Leftrightarrow \text { " } B \text { is symmetric" } \\
\operatorname{Trace}(B)=\operatorname{Tr}(B)=\sum_{i=1}^{n} B_{i i}=\text { "sum of diagonal elements" } \\
\text { Cyclic permutations are allowed inside trace. Trace of a scalar is a scalar: } \\
\operatorname{Tr}(B C D)=\operatorname{Tr}(D B C)=\operatorname{Tr}(C D B) \quad \mathbf{x}^{\top} B \mathbf{x}=\operatorname{Tr}\left(\mathbf{x}^{\top} B \mathbf{x}\right)=\operatorname{Tr}\left(\mathbf{x x}^{\top} B\right)
\end{gathered}
$$

The determinant ${ }^{2}$ is written $\operatorname{Det}(B)$ or $|B|$. It is a scalar regardless of n.

$$
|B C|=|B \| C|, \quad|x|=x, \quad|x B|=x^{n}|B|, \quad\left|B^{-1}\right|=\frac{1}{|B|}
$$

It determines if B can be inverted: $|B|=0 \Rightarrow B^{-1}$ undefined. If the vector to every point of a shape is pre-multiplied by B then the shape's area or volume increases by a factor of $|B|$. It also appears in the normalising constant of a Gaussian. For a diagonal matrix the volume scaling factor is simply the product of the diagonal elements. In general the determinant is the product of the eigenvalues.

$$
\begin{gathered}
B \mathbf{e}^{(i)}=\lambda^{(i)} \mathbf{e}^{(i)} \Leftrightarrow " \lambda^{(i)} \text { is an eigenvalue of } B \text { with eigenvector } \mathbf{e}^{(i) "} \\
|B|=\prod \text { eigenvalues } \quad \text { Trace }(B)=\sum \text { eigenvalues }
\end{gathered}
$$

If B is real and symmetric (eg a covariance matrix) the eigenvectors are orthogonal (perpendicular) and so form a basis (can be used as axes).

[^1]Diagonal matrices, the Identity

Inverses

Solving Linear equations

Symmetry

Trace
A Trace Trick

Determinants

Eigenvalues, Eigenvectors

3 Differentiation

Any good A-level maths text book should cover this material and have plenty of exercises. Undergraduate text books might cover it quickly in less than a chapter.
The gradient of a straight line $y=m x+c$ is a constant $y^{\prime}=\frac{y(x+\Delta x)-y(x)}{\Delta x}=m$.
Gradient
Differentiation
Many functions look like straight lines over a small enough range. The gradient of this line, the derivative, is not constant, but a new function:
$y^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x}=\lim _{\Delta x \rightarrow 0} \frac{y(x+\Delta x)-y(x)}{\Delta x}, \quad \begin{aligned} & \text { which could be } \\ & \text { differentiated again: } \quad y^{\prime \prime}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} y^{\prime}}{\mathrm{d} x}\end{aligned}$
The following results are well known (c is a constant):

$$
\begin{array}{cccccc}
f(x): & c & c x & c x^{n} & \log _{e}(x) & \exp (x) \\
f^{\prime}(x): & 0 & c & c n x^{n-1} & 1 / x & \exp (x)
\end{array}
$$

At a maximum or minimum the function is rising on one side and falling on the other. In between the gradient must be zero. Therefore
maxima and minima satisfy: $\frac{\mathrm{d} f(x)}{\mathrm{d} x}=0 \quad$ or $\quad \frac{\mathrm{d} f(\mathbf{x})}{\mathrm{d} \mathbf{x}}=\mathbf{0} \Leftrightarrow \frac{\mathrm{d} f(\mathbf{x})}{\mathrm{d} x_{i}}=0 \quad \forall i$
If we can't solve this we can evolve our variable x, or variables \mathbf{x}, on a computer using gradient information until we find a place where the gradient is zero.

A function may be approximated by a straight line ${ }^{3}$ about any point a.

$$
f(a+x) \approx f(a)+x f^{\prime}(a), \quad \text { eg: } \log (1+x) \approx \log (1+0)+x \frac{1}{1+0}=x
$$

The derivative operator is linear:

$$
\frac{\mathrm{d}(f(x)+g(x))}{\mathrm{d} x}=\frac{\mathrm{d} f(x)}{\mathrm{d} x}+\frac{\mathrm{d} g(x)}{\mathrm{d} x}, \quad \text { eg: } \frac{\mathrm{d}(x+\exp (x))}{\mathrm{d} x}=1+\exp (x)
$$

Dealing with products is slightly more involved:

$$
\frac{\mathrm{d}(u(x) v(x))}{\mathrm{d} x}=v \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \frac{\mathrm{~d} v}{\mathrm{~d} x}, \quad \text { eg: } \frac{\mathrm{d}(x \cdot \exp (x))}{\mathrm{d} x}=\exp (x)+x \exp (x)
$$

The "chain rule" $\frac{\mathrm{d} f(u)}{\mathrm{d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} \frac{\mathrm{~d} f(u)}{\mathrm{d} u}$, allows results to be combined.

$$
\text { For example: } \begin{aligned}
\frac{\mathrm{d} \exp \left(a y^{m}\right)}{\mathrm{d} y} & =\frac{\mathrm{d}\left(a y^{m}\right)}{\mathrm{d} y} \cdot \frac{\mathrm{~d} \exp \left(a y^{m}\right)}{\mathrm{d}\left(a y^{m}\right)} \quad \text { "with } u=a y^{m} " \\
& =a m y^{m-1} \cdot \exp \left(a y^{m}\right)
\end{aligned}
$$

If you can't show the following you could do with some practice:

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\left[\frac{1}{(b+c z)} \exp (a z)+e\right]=\exp (a z)\left(\frac{a}{b+c z}-\frac{c}{(b+c z)^{2}}\right)
$$

Note that a, b, c and e are constants, that $\frac{1}{u}=u^{-1}$ and this is hard if you haven't done differentiation (for a long time). Again, get a text book.

[^2]
[^0]: ${ }^{1}$ Integrals are the equivalent of sums for continuous variables. $\mathrm{Eg}: \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ becomes the integral $\int_{a}^{b} f(x) \mathrm{d} x$ in the limit $\Delta x \rightarrow 0, n \rightarrow \infty$, where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$. Find an A-level text book with some diagrams if you have not seen this before.

[^1]: ${ }^{2}$ This section is only intended to give you a flavour so you understand other references and Sam's crib sheet. More detailed history and overview is here: http://www.wikipedia.org/wiki/Determinant

[^2]: ${ }^{3}$ More accurate approximations can be made. Look up Taylor series.

