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Evaluating Predictors

Thanks to: T Dietterich
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Evaluating Hypotheses

Given limited data . . .
 Estimating h's true error

 Sample Error ≠ True Error
 Confidence intervals
 Cross-Validation

 Comparing h1 to h2

 Paired-t tests
 McNemar's Test

  Appendix
 Binomial distribution
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Problems Estimating Error

 Bias: Difference between value of estimator and 
true value

bias  ≡ E[ err  S(h) ] –  errD(h)
 If S is training set (used to produce h),

  errS(h) is optimistically biased
 To get unbiased estimate,

 choose h and S independently
 NOT  h := L(S)

 Variance: Even with unbiased estimator,
err  S(h) may still vary from errD(h)

 err  S(h) may be different from err  S’(h)
 especially if |S|, |S’| small
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Example

 Hypothesis h misclassifies

12 of 40 examples in S

     err  S(h)   =  12/40   =  0.30

 What is errD(h) ?
 true error, over entire population?
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Estimators
 Experiment: Given h

1. Draw sample S of size |S| = n 
        according to distribution D
2. Measure err  S(h)

 err  S(h) is a random variable
 (ie, result of experiment)

 err  S(h) is unbiased estimator for errD(h) 
 E[err S(h)  ] – errD(h) = 0

 Given (one) observation err  S(h),

what can we conclude about errD(h) ?
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Confidence Intervals (informal)
 If

  S contains n examples, 
drawn independently of h and each other

  n > 30

 Then, w/ ≈ 95% probability,

   err  S(h) is in   
 That is… 

 ≈

∈
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Elaboration
 If S contains n > 30 examples

drawn independently of h, each other,

 Then can assume      err  S(h)  ~ N( errD(h), σ2)

   err  S(h) drawn from Gaussian w/

     mean µ = errD(h), var σ2 = errD(h)(1– errD(h)) / n
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Example, con't
 For 12-of-40:

 err S(h) = 0.3

     ŝ      = √( 0.3 × 0.7/ 40)   ≈  0.072 
 95% confident that 

   true error errD(h) ∈ err  S(h) ±1.96 ŝ

⇒ errD(h) ∈ [0.3 – 0.14, 0.3+0.14]

 
 “Two-sided interval"

 What about “one-sided interval”
   . . . likelihood that errD(h) < K ?
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Normal Probability Distribution
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Normal Probability Distribution

 80% of area (probability) 
lies in µ ± 1.28σ
∈ [ µ –1.28 σ, µ +1.28 σ ]

 N% of area (probability) 
lies in   µ ± zNσ

 If σ is small: Most of mass near mean µ

If σ is large: Most of mass far from mean µ
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One- vs Two- Sided Bounds
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One-Sided Bounds

 Confidence of one-sided error
 is TWICE the confidence of two-sided!

Eg, For 12-of-40:
95% confident   errD(h) ∈ [0.3 – 0.14, 0.3+0.14]
97.5% confident errD(h) ≤ 0.3+0.14
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Central Limit Theorem
 Let Y1, … Yn be set of iid r.v.s

    (independent, identically distributed random variables)

all drawn from same arbitrary distribution
with mean µ and finite variance σ2.

 sample mean

 Central Limit Theorem
As n →∞, Ŷ ~  N(µ, σ2/n)

 Distribution governing Ŷ approaches Normal distribution, w/ mean µ, variance σ2/n

 Yi from ANY distribution, just same ∀ Yi

 Typically apply when n > 30

Y= 1
n∑i=1

n

Y i

Y−μ
σ /n

~ N 0,1
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Calculating Condence Intervals
General Procedure
 1. Identify parameter p to estimate

 errD(h)

 2. Choose an estimator
 err S(h)

 3. Determine prob distr of estimator
  err  S(h) ~ Binomial distribution,
 … approximated by Normal when n > 30

 4. Find interval (L, U) such that N% of probability 
mass falls in the interval
 Use table of zN values
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Truth. . .
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Students t Distribution
 t distribution like unit normal N(0, 1) 

but larger spread (longer tail)
⇒ interval (for given α) is larger

... additional uncertainty due to unknown variance

limk→∞ tα,k = zα 
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IIa. Difference Between Hypotheses
Test h1 on sample S1, test h2 on S2

1. Pick parameter to estimate
 d = errD(h1)  – errD(h2)

2. Choose an estimator
 d = err  S(h 1)  – err  S(h 2)

(Btw, E[d] = d )

3. Determine prob distr of estimator

(Diff of 2 Normals is Normal)

4. Find interval (L, U) s.t. N% of probability mass in interval

(Tighter bound [better] if use S1 = S2)
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Example (con't)
 Spse err A(h A) = 0.3; err  B(h B) = 0.4;  given |SA| = 100 = |SB|

 As d = err A(h A) –  err  B(h B) = 0.1 > 0

hB appears better that hA

 Q: Is hB truly better than hA . . .

ie, Is errD(hB) < errD(hA) ?

… ie what is prob that d < 0 
     given observed d = 0.1?

 A: Assume null-hypothesis: d =µd < 0.
 What is chance that P(d = 0.1 | d < 0 ) ?

. . . bounded by chance that estimate d is OFF by > 0.1
 . . . d in 1-sided interval  d ∈ [ µd +0.1, ∞)
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Examples . . . Hypothesis Testing
 What is chance that d ∈ [ µd +0.1, ∞)

 Here: σ d ≈ 0.061.
 With prob > 0.95,   d < d + 1.64 σ d 

 ⇒ Given d = 0.1,

95% confident that prob that d > 0
… ie, errD(hA) > errD(hB)

 Hypothesis Test:
 Accept hyp errD(hA) ≤ errD(hB) with confidence 0.95

 Reject null hyp (that errD(hA) > errD(hB) )

   at 1 – 0.95 = 0.05 level of significance
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Paired-t Test to compare hA, hB

Given: data T; alg's hA; hB; confidence α:
 1. Partition data into k disjoint test sets  { T1, T2,  …, Tk }

    of ≈equal size (size ≥ 30)

 2. For i = 1 .. k, do      δi := errTi(hA) – errTi(hB)
 3. Let   δ := (∑i δi ) / k

           (empirical estimate of standard deviation)
 4. Return  α% confidence estimate for d:  δ ± tα,k-1 sδ

 Hypothesis test:

   Is   δ + tα,k-1 sδ > 0 ?

 Note: When each δi is ≈ Normally distributed…  δ ~ “Students T”
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IIb. Comparing Two Classifiers

 Goal: decide which of two classifiers 
h1 vs h2 has lower error rate

 Method: Run both on same test data set, 
recording following numbers:
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McNemar's Test

 M is distributed approximately as

 χ2 w/ 1 degree of freedom

 For 95% confidence: χ2
1, 0:95 = 3.84

 So if M > 3.84
reject null hyp that 
   “hA, hB have same error rate"
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Confidence Interval...
Difference Between Two Classifiers
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Estimate Diff Between Two Alg's:
the 5x2CV F test

 If F > 4.47, then
 with 95% confidence, 
 reject null hypothesis that

alg's A and B have the same error rate

 when trained on data sets of size m/2
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Other Topics

 Hypothesis testing, in general
 “False discovery rate”

 …permutation tests, . . .
  Prior knowledge of Distributions
  ROC curves
  ANOVA
  Running “experiments” to obtain data . . .
  . . .
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err  S(h) is a Random Variable

 Rerun experiment w/ different

randomly drawn S (of size |S| = n)
 Prob of observing r misclassified 

examples:
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Binomial Probability Distribution
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Binomial Distribution, con't
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Proofs
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Binomial Approximates
Normal Distribution


