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i Outline

= Motivation
= What is a Belief Net?

= Learning a Belief Net
= Goal?
= Learning Parameters — Complete Data
\ = Learning Parameters — Incomplete Data
= Learning Structure




Learning Belief Nets

Structure

Known Unknown

Data ~ Complete | Fasy—"
Missing Mﬂ Very hard!!
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Learning the structure of a BN

Data = Constraint-based approach
= BN encodes conditional independencies
= Test conditional independencies in data
=« Find an I-map (?P-map?)

= Score-based approach

« Finding structure + parameters is
density estimation

= Evaluate model as we evaluated parameters
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i Remember: Obtaining a P-map?

= Given I(P) = independence assertions
that are true for P
i. Obtain skeleton
>, Obtain immoralities

3. Using skeleton and immoralities,
obtain every (and any) BN structure from
the equivalence class

m Constraint-based approach:
Use Learn_PDAG algorithm

Key question: Independence test




i Independence tests

Statistically difficult task!
Intuitive approach: Mutual information

P(z,y)

I(X,Y) = %P(w,y) log P(2)P(y)

Mutual information and independence:
=« X and Y independent if and only if I(X,Y)=0
= XLY = P(x,y)=P(x)P(y) = log[ P(x,y)/P(x)P(y) ]=0

Conditional mutual information:

I(X,Y|Z2) = Ez[I[X,Y|Z = 2] =} _» P(x,ylz)log

X1Y|Z

iff

Z I,y

P(X,Y|Z) = P(X|Z) P(Y|Z)

iff

P(z,y|z)

P(z|z)P(ylz)

(X,Y]2)
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Independence Tests and the
Constraint-Based Approach

= Using the data D ~ Count(z;, z)
. L P(x;,z;) = )
« Empirical distribution: J m
- ~ p(mz,cc)
I(X;, X:) = P(x;,x;) 109 —= -
= Mutual information: ( 2 3;2323 (i zj) log P(x;) P (x;)

= Similarly for conditional MI

= Use learning PDAG algorithm:
When algorithm asks: (X_LY|U) ?

- Use IX,Y|U)=0v>

= No... doesn't happen

« Use I(X,Y | U) <t forsomet>0?
= ... based on some statistical text "t s.t. p<0.05”

= Many other types of independence tests ...



i Independence Tests — II

= For discrete data: 2 statistic
= measures how far the counts are from what we
would expect given independence;

' — 2 (AT (e ar) — NP P a2
d 2 D) = Z Oy Ty _ Z WV, 2l NP(x)Ply))
1 Ty Ezy NP(z)P(y)

= p-value requires summing over all datasets of
size N:

p(t) = P({D : d(D) > t} | Hy,N)
= Expensive... = approximation

= consider the expected distribution of d(D)

(under the null hypothesis)
as N — oo

= ... to define thresholds for a given significance

Tl



i Ex of Classical Hypothesis Testing

= Spin Belgian one-euro coin
= N =250... heads Y = 140; tails 110.
= Distinguish two models,
=« H, = coin is unbiased (so p = 0.5)
« H, = coinis biased p=#0.5
= p-value is “less than 7%"
= p = P(Y > 140) + P(Y < 110) = 0.066:
n=250; p = 0.5; y = 140;
p = (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)
= IfY =141: p = 0.0497

= reject the null hypothesis at significance level
0.05.

= But is the coin really biased?



i build-PDAG Algorithm

build-PDAG can recover the true structure
= up to I-equivalence

= in O(NP2) time
if
= maximum number of parents over nodes is d

= independence test oracle can handle < 2d + 2
variables
m 3G =al-mapof P
= underlying distribution P is 7aithfu/to G
= —d spurious independencies not sanctioned by G

= Called IC or PC algorithm
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i Eval of IC / PC alg

= Bad
= Faithfulness assumption rules out certain CPDs
= XOR.

= Independence test typically unreliable
= (especially given small data sets)
= make many errors

= One misleading independence test result can
result in multiple errors in the resulting PDAG, so
overall the approach is not robust to noise.

= Good

= PC algorithm is less dumb than local search
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Score-based Approach

Possible DAG structures W Score of each Structure

(gazillions)
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i Just use MLE parameters

m Max QL(< ,9>:.(D_)=
max4_maxe, L((G, 6,) : D )|=
max, L( (G, ﬂ) D )

= S0...
seek the structure @ that achieves

highest likelihood,
given its MLE parameters 6

= Score(@, S) =log L((G, 67 : D)
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| ©
i Comparing Models ~ fegy) [
. D= {(x[11Y[1]), .., CCMLYIMD)}

= Score(Gy, D) =2, log 8y + 109 8y
N SCOre(gp -(l)) = Zm |Og 0 xim] T |Og 0 y[m] | x[m]

s Score(@,, D) — Score(G,, D)
— ijy M[x,y] log G*y[m] — Zy M[y] log e*y[m]
=M 2., P'(xY) logl p'(y1x) / p(y) ]
=M L.(X,Y)

= [«(X,Y) = mutual information between X and Y in P’
= ... higher mutual info = stronger X—Y dependency
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Information-theoretic interpretation

i of maximum likelihood CQ

= Given structure ¢, parameters 6, log likelihood of data

)k
log P(D | 6g,G) = IogP(X =2\ | Pay, =x\) [Pay, )

_ ; i"j P (x; =2 | Pay, =x[Pay))

= iZ#(X :‘.—u)logP gaxzu

0
— 7Pa —
Y o R

=1 Z;,u

P(X — a:Z,PaX — u)

n
— m

’L:l R R

Z p(XZ = x;, PaXZ. :11) |OgP(X7; = x; | PaXi =u
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‘.L Entropy

= Entropy of V = [p(V = 1), p(V = 0)] :
H(V) = 'Zvi P(V=v;)log, P(V=yv,)
= # of bits needed to obtain full info

...average surprise of result of one “trial" of V
= Entropy = measure of uncertainty

A
1.0 +

H(X)




H{X)

0.5
Pr(X =1)

i Examples of Entropy

= Fair coin:
= H(Y2, V2) = — Y2 log,(Y2) — V2 log,(/2) = 1 bit
= ie, need 1 bit to convey the outcome of coin flip)

s Biased coin:

H( 1/100, 99/100) =
—1/100 log,(1/100) — 99/100 log,(99/100) = 0.08 bit

= As P( heads ) — 1, info of actual outcome — 0

H(O, 1) = H(1, 0) = 0 bits
ie, no uncertainty left in source

(0 x'log,(0) = 0)
17



i Entropy & Conditional Entropy

i

= Entropy of Distribution
« H(X) = - X, P(x)) log P(x)
= "How surprising’ variable is”
=« Entropy = 0 when know everything... eg P(+x)=1.0

= Conditional Entropy H(X | U) ...
= H(X|U) = -2, P(u) 2; P(x;/u) log P(x;|u)
= How much uncertainty is left in X, after observing U

H(X;|Pay,) - Y P(X; =1, Pay =u) IogP(Xi=x§j) | Pay. =u)

I,
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Information-theoretic interpretation of
i maximum likelihood ... 2

= Given structure G, parameters O,
log likelihood of data 9 is..

‘Iog P(D|6,G) = m> Y P(asl,,Pam ¢ =wlog P(z; | Pa,, g = u)

z -Ez l.].

= mZ—FI(XﬂPaxi’g)
1
= mY (XﬂPamij@ l
)

So log P(D| 0O, ¢) is LARGEST

when each H( X | PaX c) is SMALL..
..ie, when parents of X are very INFORMATIVE about X |

19




‘-L Score for Belief Network

x J(X, U) = H(X) = H(X | U)
= H(X | Pay ) = H(X) — I(X, Pay)

Doesn’t involve the structure, &!

= Log data likelihood

l0g p(D | 9,9) = mZIA(XZ-,PaXZ.,g)J

= So use score: > I(X;, Pay; g)

20



i Decomposable Score

= Log data likelihood

log P(D | 0,G) —mZI(X Pay, g)— mZH(X)

. or perhaps just score: 2. j(X,, Pay; o)

= Decomposable score:

= Decomposes over families in BN (node and its
parents)

= Will lead to significant computational efficiency!
= Score(¢ » D) = >, FamScore( X; | Pay; : D)



‘.L Using DeComposability

log P(D | 0,G) = mZIA(a:i, Paxi’g)—mZI:I(Xi)
— S, (X, Pag o) +C

= Compare

S, 6,

00200020

= 6, 3 I(X, Pay 6,) = IXCHL+ I(Y, X) + I(Z, Y)
= J(Y, X) + J(Z,Y) 0

" 6, Y I(X, Pay o) JM J(Z,Y) + J(X, Z)
- J(Z,Y) + I(X, 2)
m.. SO d|ff IS j(Y, X)—j(X, Z) 22




i How many trees are there?

m [ree:
= 3 one path between any two nodes (in skeleton)
= Most nodes have 1 parent (+ root with 0 parents)

= How many:
= One: pick root
.g%ck children ... for each child ... another tree
A

/’b O @(ﬂl%"\}
Lo Ak~ 1

Nonetheless... 3 efficient optimal alg to find OPTIMAL tree

23



i Best Tree Structure

log P(D | 60,G) =m ) I(z;,Pa, g)—m ) H(X;)

= Identify tree with set % = { Pa(X) }
= each Pa(X) is {}, or another variable

= Optimal tree, given data, is
argmax, m 2,; I( X, Pa(X;) ) —m 2; H(X))
= argmax; 2, I( X;, Pa(X)) )
= ...as 2 H(X) does not depend on structure

= 50 ... want parents ¥ s.t.

s tree structure
= maximizes > I( X, Pa(X) )

24



iChow-Liu Tree Learning Alg

For each pair of variables X;, X,
=« Compute empirical distribution:

Pz xj) =

COUﬂt(CBi,QBj)

m
=« Compute mutual information:

Define a graph

=« Nodes X, ..., X, R

= Edge (i,j) gets weight 1 (X, X;)
Find Maximal Spanning Tree
Pick a node for root, dangle...




‘_L Chow-Liu Tree Learning Alg ... 2

log P(D | 60,G) =m ) I(z;,Pay g)—m ) H(X;)

= Optimal tree BN

=« Compute maximum weight
spanning tree

= Directions in BN:

J-Equivalent!

= pick any node as root, ©
...doesn’t matter which!
= breadth-first-search defines
directions & — @ —
= Score Equivalence: I \ l \
If @ and @’ are J-equiv, © O © )

then scores are same

26




i Chow-Liu (CL) Results

= If distribution P is tree-structured,
CL finds CORRECT one

= If distribution P is NOT tree-structured,
CL finds tree structured Q that
has min’l KL-divergence — argming KL(P; Q)

= Even though 2%(nlogn) trees,
CL finds BEST one in poly time O(r¥ /m + log n])

27



i Using Chow-Liu to Improve NB

= Naive Bayes model @
= Ignores correlation between features / l \

= What if X; = X, ? Double count... QD\_'@ /@

= Avoid by conditioning features on one another

= [ree Augmented Naive bayes (TAN)
[Friedman et al. '97]

2 > P(SL’Z,.CU | C)
I(X;,X;|C) = P(c,x;, ;) 109 —= J
v c,a;mj v P(z; | C)P(mj | c)

All but ONE feature have 2 parents: C, X, 28




i Can we extend Chow-Liu ?

= (Approximately learning)
models with tree-width up to &

= [Narasimhan & Bilmes '04]

O BUt, O(nk+1)...
= and more subtleties

29



:Ll_earning BN structures... so far

= Decomposable scores
= Maximum likelihood
= Information theoretic interpretation

= Best tree (Chow-Liu)
= Best TAN
= Nearly best k-treewidth (in O(Nk+1))

30



i Maximum likelihood score overfits!

[/

= Adding a parent never decreases score!!!
= Facts: H( X | Payg) = H(X) = I(X, Pay c)
H(X|AY=H(X|AUY)
(X Pay,gUY) > H(X) — H( X, | Pay g UY)
> H(X) — H( X | Paye)
= I( X, Pay; ¢)
= S0 score increases as we add edges!
= Best is COMPLETE Graph
= ... overfit !

31



i How to Evaluate a Model?

Training Data
SNP1 | SNP2 | SNP3 | ... | SNP53 | Bleed?
G/A C/IC T/T T/C No
A/A C/C AT T Yes
A/A C/T A/A TT Yes
G/A C/T A/A /T No

Training Set Error
.. too optimistic

SNP1

C/G

T/IC

G/A

SNP1 SNP2 SNP3
oA
AA
oA

TRAIN

AG

T

T/IC

A/A

T

C/IC

T/C

G/G

T/IC

TEST
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i How to Evaluate a Model?

Training Data
SNP1 | SNP2 | SNP3 | ... | SNP53 | Bleed?
G/A C/IC T/T T/C No
A/A C/C AT T Yes
A/A C/T A/A TT Yes
G/A C/T A/A . T/T No

TRAIN

C/G

AG

T

T/IC

C/IC

A/A

T

T/C

G/A

T/C

G/G

T/IC

L1

) TEST

SNP1 SNP2 SNP3
G/A
AA
G/A

Simple Hold-out Set Error

... slightly pessimistic
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i How to Evaluate a Model ?

m K-fold Cross Validation
Eg, K=3

m Not as pessimistic @ $ CQ

every point is test example, once

aaaaaaaaaa Evaluaticn

\é/
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i Overfitting

s So far:

Find parameters/structure
that “fit” the training data

= If too many parameters,
will match TRAINING data well,

but NOT new instances

= Overfitting!

= Regularizinc
Bayesian approach;,..
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Bayesian Score

= Prior distributions:
= Over structures
= Over parameters of a structure
Goal: Prefer simpler structures... regularization ...

= Posterior over structures given data:

= P(G19) o P(DIG) x P(§)

Posterior

Likelihood

Prior over Graphs

/ Prior over Parameters

P(@[Q) = |, P(D | ¢, ©) P(O|Q) dE

log P(G | D) ~ log P(G)

l0g

[ P(D | 6.609)P(0]9)dog
g



Towards a decomposable
Bayesian score

0g P(G | D) ~ log P(G)+log | P(D | G,05)P(8g|9)ddg
g

= Local and global parameter independence 6., | 6y

= Prior satisfies parameter modularity:

« If X. has same parents in G and G’, then parameters have same prior
C

A B A B
X X C ®(X; A,B) same in both structures

= Structure prior P(¢) satisfies structure modularity

= Product of terms over families
= Eg, P(Q) xx clél |GQ|=#edges; c<1

= ... then ... Bayesian score decomposes along families!

=« log P(¢Q|D) = X, ScoreFam( X | Pay : D) -



Marginal Posterior

= Given 6 ~ Beta(1,1) , what is probability of
(H, T, T,H,H)?

- P( f1=Hl f2=Tl f'%=T/ 1’:4=H, f5=H | 0 ~ Beta(l,l) )

=P(f,=H | 6 ~ Beta(1,1)) >

(E(P?\fz:T, f.=T, f,=H, f-=H {-f,=H, 6 ~ Beta(1,1
= @ P( f,=T, f3=T, f,=H, fsw
=1 x P(f,=T | 6 ~ Beta(2,1) ) x

P(f;=T, f,=H, f.=H | f,=T, 6 ~ Beta(2,1) )

= 14 x 1/3 x P(f;=T, f,=H, f-=H | 6 ~ Beta(2,2) )
12 x 1/3 x 2/4 x 2/5 x P(fs=H | 6 ~ Beta(2,3) )
12 x 1/3 x 2/4 x 2/5 x 3/6
(1x2x3)x(1x2)/(2x3x4x5)

38
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Marginal Posterior... con't

= Given 6 ~ Beta(a,b), whatisP[ (H, T, T,H,H) ]?
s P(f=H, f,=T, f5=T, f,=H, f==H | 6 ~ Beta(a,b) )
= P( f;=H | 6 ~ Beta(a,b) ) x
P( f,=T, f;=T, f,=H, f.=H | f;=H, 6 ~ Beta(a,b) )
= af(a+b) x P( f,=T, f;=T, f,=H, f-=H | 6~Beta(a+1,b) )

a b b+1 a+1 a+?2
a+b a+b+1 a+b+2 a+b+3 a+b+4
axX(a+1D)x(a+2) X bx(b+1)
(a+b)a+b+1D)(a+b+2)a+b+3)a+b+4)

I'ta+m,) TI'(b+m,) I'(a+Db)
. T(a) (b)) T(a+b+m)

39
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i Marginal, vs Maximal, Likelihood

= Data D=(HT,T,HH)
m 0 =argmax, P(D | 6 ) = 3/5
= ...Here: P(D | 6°) = (3/5)3 (2/5)? ~ 0.035
= Or Bayesian, |
from Beta(1,1), 675, 1) = 4/7
= Marginal
o [T POX [ Xq, o Xy )
= kinda like cross validation:

Evaluate each instance,
wrt previous instance

(]

= i
=
i

PDIBIPB) 3




i Marginal Probability of Graph

0g P(D | G) = log | P(D|G,05)P(0g|9)ddg
g

= Given complete data, independent parameters, ...

e,,) [, +MLxu])
DIG)= U :
ano=|] 11 e, +1\4[u,-]))46£(£) Nt )

i ul-eVa(P@(i )
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i Priors for General Graphs

= For finite datasets, prior is important!

= Prior over structure satisfying prior modularity
= Eg, P(Q) xx clél |GQ|=#edges; c<1

= What is good prior over a// parameters?

= K2 prior. fix oe R*, set By pay; ~ Dirichlet(c, ..., o)

« Effective sample size, wrt X ?
= If O parents: kxot
= If 1 binary parent: 2 kxa
= If d k-ary parents: kd kxa

=« S0 X, "effective sample size”depends on #parental assignments
= More parents = strong prior... doesn’t make sense!

= K2 is “inconsistent”

42



i Priors for Parameters

G,

O

0y ~ Beta(1_, 1)/

6y, ~ Betd(1, 1))
Oyix ~ Beta(1, 1)

m make sensex

= EffectiveSampleSize(6y,,) = 2
= But only 1 example ~ “+x" ??

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(1, 1)

= J-Equivalent structure

= What happens after [+X, -y] ?

= Should be the same!!

0, ~ Beta(1, 1)

43



i Priors for Parameters

G,

(0
O

0, ~ Beta(1, 1)

P, (+x) =

2/3

Oy.x ~ Beta(1, 1)
Oy« ~ Beta(1, 1)

[+X= _y]

G,

9X|+y ~ Beta(1, 1)

M L [ 4 4\

X
Y
_

o

A

Po(+X) = Py(+X,+Y) + Py(+X,-y)
=1/3x % +2/3x2/3 = 11/18 !l

O

0, ~ Beta(1, 1)

G,

O

0, ~ Beta(2, 1)

Oy« ~ Beta(1, 2)
Oy« ~ Beta(1, 1)

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(2, 1)

0, ~ Beta(1, 2)
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1

O

0, ~ Beta(2, 2)

Oypex ™ Beta(1, 1)
Oy« ~ Beta(1, 1)

i BDe Priors

= This makes more sense:
= EffectiveSampleSize(6y,, ) = 2
= Now =3 2 examples ~ “+x" ??

G,

O,
X

©
O,

Oy, ~ Beta(1, 1)
Oy, ~ Beta(1, 1)

0, ~ Beta(2, 2)

= J-Equivalent structure
= Now what happens after

[+Xl _Y] ?

45



i BDe Priors

G,

@ 0, ~ Beta(2, 2)

| P.(+X) = 3/5
@ 0y, ~ Beta(1, 1)
Oyix ~ Beta(1, 1)
[+X, -]

G,
()| =Bt 1

—

P,(+X) = Po(+X,+Y) + P,(+X,-y)
=2/5x1 +3/5%x2/3 = 3/5

O

0, ~ Beta(2, 2)

0, ~ Beta(3, 2)

Oy« ~ Beta(1, 2)
Oy« ~ Beta(1, 1)

Oy, ~ Beta(1, 1)
Oy, ~ Beta(2, 1)

0, ~ Beta(2, 3)
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i BDe Prior

= View Dirichlet parameters as “fictitious samples”
— equivalent sample size

= Pick a fictitious sample size m’

= For each possible family,
define a prior distribution P(X;,Pay;)
= Represent with a BN
= Usually independent (product of marginals)
= P(X, Pay; ) = P’ (X)) Ilyepapa; P'(X))

= P(O[x | Pay; = u ) = Dir( m" P'(x=1, Pay, = u), ..., m" P(x;=k, Pay; = u) )
= Typically, P'(X)) = uniform
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:LSummary wrt Learning BN Structure

= Decomposable scores
= Data likelihood
=« Information theoretic interpretation
= Bayesian

= Priors
= Structure and parameter assumptions
= BDe if and only if score equivalence

= Best tree (Chow-Liu)
= Best TAN
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