

B: 8.4

KF, Chapter 15 – 15.5

Learning Belief Net Structures

R Greiner

Cmput 466 / 551

Outline

- Motivation
- What is a Belief Net?
- Learning a Belief Net
 - Goal?
 - Learning Parameters Complete Data
 - Learning Parameters Incomplete Data
 - Learning Structure

Learning Belief Nets

Structure

Learning the structure of a BN

Data

Constraint-based approach

- BN encodes conditional independencies
- Test conditional independencies in data
- Find an I-map (?P-map?)

Score-based approach

- Finding structure + parameters is density estimation
- Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

Remember: Obtaining a P-map?

- Given I(P) = independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities
 - Using skeleton and immoralities, obtain every (and any) BN structure from the equivalence class
- Constraint-based approach:
 - Use Learn_PDAG algorithm
 - □ Key question: Independence test

Independence tests

- Statistically difficult task!
- Intuitive approach: Mutual information

$$I(X,Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

- Mutual information and independence:
 - X and Y independent if and only if I(X,Y)=0
 - $X \perp Y \Rightarrow P(x, y) = P(x) P(y) \Rightarrow log[P(x,y)/P(x)P(y)] = 0$
- Conditional mutual information:

$$I(X,Y|Z) = E_Z[I[X,Y|Z=z] = \sum_{z} \sum_{x,y} P(x,y|z) \log \frac{P(x,y|z)}{P(x|z)P(y|z)}$$

$$X \perp Y \mid Z$$
 iff $P(X,Y|Z) = P(X|Z)$ $P(Y|Z)$ iff $I(X,Y|Z) = 0$

Independence Tests and the Constraint-Based Approach

- Using the data *D*
 - Empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Mutual information:

$$\widehat{P}(x_i, x_j) = \frac{\operatorname{Count}(x_i, x_j)}{m}$$

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Similarly for conditional MI
- Use learning PDAG algorithm:

When algorithm asks: $(X \perp Y | U)$?

- Use $I(X,Y \mid U) = 0$?
 - No... doesn't happen
- Use $I(X,Y \mid U) < t$ for some t>0?
 - ... based on some statistical text "t s.t. p<0.05"</p>
- Many other types of independence tests ...

Independence Tests – II

- For discrete data: χ^2 statistic
 - measures how far the counts are from what we would expect given independence:

$$d_{\chi^2}(D) = \sum_{x,y} \frac{(O_{x,y} - E_{x,y})^2}{E_{x,y}} = \sum_{x,y} \frac{(N(x,y) - NP(x)P(y))^2}{NP(x)P(y)}$$

p-value requires summing over all datasets of size N:

$$p(t) = P({D : d(D) > t} | H_0,N)$$

- Expensive... ⇒ approximation
 - consider the expected distribution of d(D) (under the null hypothesis) as N $\to \infty$
 - ... to define thresholds for a given significance

Ex of Classical Hypothesis Testing

- Spin Belgian one-euro coin
 - \sim N = 250... heads Y = 140; tails 110.
- Distinguish two models,
 - H_0 = coin is unbiased (so p = 0.5)
 - $H_1 = coin is biased p \neq 0.5$
- p-value is "less than 7%"
 - $p = P(Y \ge 140) + P(Y \le 110) = 0.066$: n=250; p = 0.5; y = 140; p = (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)
- If Y = 141: p = 0.0497 ⇒ reject the null hypothesis at significance level 0.05.
- But is the coin really biased?

build-PDAG Algorithm

build-PDAG can recover the true structure

- up to I-equivalence
- in *O(N³2^d)* time

if

- maximum number of parents over nodes is d
- independence test oracle can handle < 2d + 2 variables
- \exists G = a I-map of P
 - underlying distribution P is faithful to G
 - ¬∃ spurious independencies not sanctioned by G
- Called IC or PC algorithm

Eval of IC / PC alg

Bad

- Faithfulness assumption rules out certain CPDs
 - XOR.
- Independence test typically unreliable
 - (especially given small data sets)
 - make many errors
- One misleading independence test result can result in multiple errors in the resulting PDAG, so overall the approach is not robust to noise.

Good

PC algorithm is less dumb than local search

Score-based Approach

Possible DAG structures (gazillions)

Data

Score of each Structure

Just use MLE parameters

- $\max_{g, \theta_g} L(\langle \mathcal{G}, \theta_g \rangle : \mathcal{D}) =$ $\max_{g} \max_{g} L(\langle \mathcal{G}, \theta_g \rangle : \mathcal{D}) =$ $\max_{g} L(\langle \mathcal{G}, \theta_g \rangle : \mathcal{D}) =$
- So... seek the structure G that achieves highest likelihood, given its MLE parameters Θ^*_{G}
- Score(\mathcal{G} , \mathcal{S}) = log L($\langle \mathcal{G}, \theta^*_{\mathcal{G}} \rangle : \mathcal{D}$)

Comparing Models

- Score(\mathcal{G}_0 , \mathcal{D}) = $\sum_{m} \log \theta^*_{x[m]} + \log \theta^*_{y[m]}$
- Score($\mathcal{G}_1, \mathcal{D}$) = $\sum_{m} \log \theta^*_{x[m]} + \log \theta^*_{y[m] \mid x[m]}$
- $\begin{aligned} & \quad \textbf{Score}(\boldsymbol{\mathcal{G}}_{1},\boldsymbol{\mathcal{D}}) \textbf{Score}(\boldsymbol{\mathcal{G}}_{0},\boldsymbol{\mathcal{D}}) \\ & = \sum_{x,y} \textbf{M}[x,y] \log \theta^{*}_{y[m]} \sum_{y} \textbf{M}[y] \log \theta^{*}_{y[m]} \\ & = \textbf{M} \sum_{x,y} \textbf{p}^{*}(x,y) \log[\textbf{p}^{*}(y|x) / \textbf{p}(y)] \\ & = \textbf{M} \textbf{I}_{\textbf{p}^{*}}(\textbf{X},\textbf{Y}) \end{aligned}$
- $I_{p^*}(X,Y)$ = mutual information between X and Y in P^*
- ... higher mutual info \Rightarrow stronger $X \rightarrow Y$ dependency

Information-theoretic interpretation of maximum likelihood

Sinus

Given structure \mathcal{G} , parameters $\theta_{\mathcal{C}}$, log likelihood of data \mathfrak{D} : $\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_i} \right] \right)$ $= \sum_{i=1}^{n} \sum_{j=1}^{m} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}}\right]\right)$ $= \sum_{i=1}^{n} \sum_{i=1}^{n} \#(X_i = x_i, \mathbf{Pa}_{X_i} = u) \log P\left(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{u}\right)$ $= m \sum_{i=1}^{n} \sum_{x_i, \mathbf{u}} \frac{\#(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{u})}{m} \log P\left(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{u}\right)$ $\widehat{P}(X_i = x_i, \mathbf{Pa}_{X_i} = u)$ $= m \sum \hat{P}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{u}) \log P(X_i = x_i | \mathbf{Pa}_{X_i} = \mathbf{u})$

Entropy

- Entropy of V = [p(V = 1), p(V = 0)]: $H(V) = -\sum_{V_i} P(V = V_i) \log_2 P(V = V_i)$ $\equiv \#$ of bits needed to obtain full info ...average surprise of result of one "trial" of V
- Entropy ≈ measure of uncertainty

ı

Examples of Entropy

- Fair coin:
 - $H(\frac{1}{2}, \frac{1}{2}) = -\frac{1}{2} \log_2(\frac{1}{2}) \frac{1}{2} \log_2(\frac{1}{2}) = 1 \text{ bit}$
 - ie, need 1 bit to convey the outcome of coin flip)
- Biased coin:

$$H(1/100, 99/100) = -1/100 \log_2(1/100) - 99/100 \log_2(99/100) = 0.08 \text{ bit}$$

As P(heads) → 1, info of actual outcome → 0 H(0, 1) = H(1, 0) = 0 bits ie, no uncertainty left in source

$$(0 \times \log_2(0) = 0)$$

Entropy & Conditional Entropy

- Entropy of Distribution
 - $H(X) = -\sum_i P(x_i) \log P(x_i)$
 - "How `surprising' variable is"
 - Entropy = 0 when know everything... eg P(+x)=1.0
- Conditional Entropy H(X | U) ...
 - $H(X|U) = -\sum_{\mathbf{u}} P(\mathbf{u}) \sum_{\mathbf{i}} P(x_{\mathbf{i}}|\mathbf{u}) \log P(x_{\mathbf{i}}|\mathbf{u})$
 - How much uncertainty is left in X, after observing U

$$H(X_i | \mathbf{Pa}_{X_i}) = -\sum_{x_i, \mathbf{u}} \hat{P}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{u}) \log P\left(X_i = x_i^{(j)} | \mathbf{Pa}_{X_i} = \mathbf{u}\right)$$

Information-theoretic interpretation of maximum likelihood ... 2

• Given structure \mathcal{G} , parameters $\theta_{\mathcal{G}}$, log likelihood of data \mathfrak{D} is...

So $\log P(\mathcal{D} | \theta, \mathcal{G})$ is LARGEST when each $H(X_i | Pa_{X_i,\mathcal{G}})$ is SMALL... ...ie, when parents of X_i are very INFORMATIVE about X_i !

Score for Belief Network

■
$$\mathcal{J}(X, U) = H(X) - H(X \mid U)$$

⇒ $H(X \mid Pa_{X,\mathcal{G}}) = H(X) - \mathcal{J}(X, Pa_{X,\mathcal{G}})$

Doesn't involve the structure, $\mathfrak{G}!$

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$$

• So use score: $\sum_{i} I(X_{i}, Pa_{X_{i}, g})$

4

Decomposable Score

Log data likelihood

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_{i})$$

• ... or perhaps just score: $\sum_{i} \mathcal{J}(X_{i}, Pa_{X_{i}, G})$

- Decomposable score:
 - Decomposes over families in BN (node and its parents)
 - Will lead to significant computational efficiency!
 - Score($\mathcal{G}:\mathcal{D}$) = Σ_i FamScore($X_i \mid \mathbf{Pa}_{X_i}:\mathcal{D}$)

Using DeComposability

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_i)$$

$$\longmapsto \sum_{i} \mathcal{J}(X_i, \mathbf{Pa}_{X_i, \mathcal{G}}) + \mathbf{c}^i$$

Compare

$$\begin{array}{|c|c|}\hline \mathfrak{G}_2 \\\hline \hline \mathbf{Y} & \overline{\mathbf{Z}} & \overline{\mathbf{X}} \\\hline \end{array}$$

- \mathfrak{G}_1 : $\sum_i \mathcal{J}(X_i, Pa_{X_i, \mathfrak{G}_1}) = \mathcal{J}(X, \{\}) + \mathcal{J}(Y, X) + \mathcal{J}(Z, Y)$ = $\mathcal{J}(Y, X) + \mathcal{J}(Z, Y)$
- $\bullet \mathfrak{G}_{2}: \sum_{i} \mathcal{J}(X_{i}, Pa_{X_{i}, \mathfrak{G}_{2}}) = \mathcal{J}(Y, \{\}) + \mathcal{J}(Z, Y) + \mathcal{J}(X, Z)$ $= \mathcal{J}(Z, Y) + \mathcal{J}(X, Z)$
- ... so diff is $\mathcal{I}(Y, X) \mathcal{I}(X, Z)$

- Tree:
 - ∃ one path between any two nodes (in skeleton)
 - Most nodes have 1 parent (+ root with 0 parents)
- How many:
 - One: pick root
 - pick children ... for each child ... another tree

 $n = \Theta(n \lg n)$

Nonetheless... ∃ efficient optimal alg to find OPTIMAL tree

Best Tree Structure

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_{i})$$

- Identify tree with set \$\mathcal{F} = \{ Pa(X) \}\$
 - each Pa(X) is {}, or another variable
- Optimal tree, given data, is

```
\underset{\text{argmax}_{\mathfrak{F}}}{\operatorname{argmax}_{\mathfrak{F}}} \operatorname{m} \sum_{i} \operatorname{I}(X_{i}, \operatorname{Pa}(X_{i})) - \operatorname{m} \sum_{i} \operatorname{H}(X_{i})= \operatorname{argmax}_{\mathfrak{F}} \sum_{i} \operatorname{I}(X_{i}, \operatorname{Pa}(X_{i}))
```

- ... as $\sum_i H(X_i)$ does not depend on structure
- So ... want parents 5 s.t.
 - tree structure
 - maximizes $\sum_{i} I(X_{i}, Pa(X_{i}))$

Chow-Liu Tree Learning Alg

- For each pair of variables X_i, X_i
 - Compute empirical distribution:

$$\hat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i,X_j) = \sum_{x_i,x_j} \widehat{P}(x_i,x_j) \log \frac{\widehat{P}(x_i,x_j)}{\widehat{P}(x_i)\widehat{P}(x_j)}$$
 I(A,B)

- Define a graph
 - Nodes X₁, ..., X_n
 - Edge (i,j) gets weight $\widehat{I}(X_i,X_i)$
- Find Maximal Spanning Tree
- Pick a node for root, dangle...

Chow-Liu Tree Learning Alg ... 2

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$$

- Optimal tree BN
 - · ...
 - Compute maximum weight spanning tree
 - Directions in BN:
 - pick any node as root, ...doesn't matter which!
 - breadth-first-search defines directions
- Score Equivalence:
 If *G* and *G* are *J*-equiv,
 then scores are same

Chow-Liu (CL) Results

- If distribution P is tree-structured,
 CL finds CORRECT one
- If distribution P is NOT tree-structured,
 CL finds tree structured Q that
 has min'l KL-divergence argmin_Q KL(P; Q)
- Even though $2^{\theta(n \log n)}$ trees, CL finds BEST one in poly time $O(n^2 [m + \log n])$

Using Chow-Liu to Improve NB

- Naïve Bayes model
 - $X_i \perp X_j \mid C$
 - Ignores correlation between features
 - What if $X_1 = X_2$? **Double count...**

- Avoid by conditioning features on one another
- Tree Augmented Naïve bayes (TAN) [Friedman et al. '97]

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{P(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$

Can we extend Chow-Liu?

- (Approximately learning)
 models with tree-width up to k
 - [Narasimhan & Bilmes '04]
 - But, O(n^{k+1})...
 - and more subtleties

Learning BN structures... so far

- Decomposable scores
 - Maximum likelihood
 - Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))

Maximum likelihood score overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \widehat{H}(X_{i})$$

Adding a parent never decreases score!!!

```
■ Facts: H(X \mid Pa_{X,\mathcal{G}}) = H(X) - I(X, Pa_{X,\mathcal{G}})
H(X \mid A) \ge H(X \mid A \cup Y)
I(X_i, Pa_{X_i,\mathcal{G}} \cup Y) \Rightarrow H(X_i) - H(X_i \mid Pa_{X_i,\mathcal{G}} \cup Y)
\ge H(X_i) - H(X_i \mid Pa_{X_i,\mathcal{G}})
= I(X_i, Pa_{X_i,\mathcal{G}})
```

- So score increases as we add edges!
 - Best is COMPLETE Graph
 - ... overfit!

How to Evaluate a Model?

SNP1	SNP2	SNP3	 SNP53	Bleed?
G/A	C/C	T/T	 T/C	No
A/A	C/C	A/T	 T/T	Yes
A/A	C/T	A/A	 T/T	Yes
:	:	:	:	:
G/A	C/T	A/A	 T/T	No

Training Set Error ... too optimistic

TRAIN

How to Evaluate a Model?

How to Evaluate a Model?

- K-fold Cross Validation
 - □ Eg, K=3
- Not as pessimistic
 - every point is test example, once

Overfitting

- So far: Find parameters/structure that "fit" the training data
- If too many parameters, will match TRAINING data well, but NOT new instances
- Overfitting!

Regularizing,Bayesian approach, ...

Bayesian Score

- Prior distributions:
 - Over structures
 - Over parameters of a structure
 Goal: Prefer simpler structures... regularization ...
- Posterior over structures given data:

$$\begin{array}{c} \blacksquare \ \mathsf{P}(\mathcal{G}|\mathcal{D}) \propto \ \mathsf{P}(\mathcal{D}|\mathcal{G}) \times \mathsf{P}(\mathcal{G}) \\ \\ \mathsf{Posterior} \end{array}$$

$$\begin{array}{c} \mathsf{Prior} \ \mathsf{over} \ \mathsf{Graphs} \\ \\ \hline \\ \mathsf{Prior} \ \mathsf{over} \ \mathsf{Parameters} \\ \end{array}$$

$$P(\mathcal{D}|\mathcal{G}) = \int_{\Theta} P(\mathcal{D} \mid \mathcal{G}, \Theta) P(\Theta|\mathcal{G}) d\Theta$$

$$\log P(\mathcal{G} \mid D) \approx \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}}|\mathcal{G}) d\theta_{\mathcal{G}}$$

Towards a decomposable Bayesian score

$$\log P(\mathcal{G} \mid D) \approx \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$
• Local and global parameter independence $\theta_{\mathsf{Y}|+\mathsf{x}} \perp \theta_{\mathsf{X}}$

- Prior satisfies **parameter modularity**:
 - If X_i has same parents in G and G', then parameters have same prior

- Structure prior P(G) satisfies structure modularity
 - Product of terms over families
 - Eg, $P(G) \propto c^{|G|}$ | G | =#edges; c<1
- ... then ... Bayesian score decomposes along families!
 - $\log P(G|D) = \sum_{x} ScoreFam(X | Pa_{x} : D)$

Marginal Posterior

- Given $\theta \sim \text{Beta}(1,1)$, what is probability of $\langle H, T, T, H, H \rangle$?
- P($f_1=H$, $f_2=T$, $f_3=T$, $f_4=H$, $f_5=H \mid \theta \sim Beta(1,1)$) =P(f₁=H | $\theta \sim \text{Beta}(1,1)$) P($f_2 = T$, $f_3 = T$, $f_4 = H$, $f_5 = H + f_1 = H$, $\theta \sim Beta(1,1)$ = $\frac{1}{2}$ P(f₂=T, f₃=T, f₄=H, f₅=H $\frac{1}{2}$ $\frac{1}{2}$ Beta(2,1)) = $\frac{1}{2}$ × P(f_2 =T | θ ~ Beta(2,1)) x $P(f_3=T, f_4=H, f_5=H | f_2=T, \theta \sim Beta(2,1))$ = $\frac{1}{2} \times \frac{1}{3} \times P(f_3 = T, f_4 = H, f_5 = H \mid \theta \sim Beta(2,2))$ $= \frac{1}{2} \times \frac{1}{3} \times \frac{2}{4} \times \frac{2}{5} \times P(f_5 = H \mid \theta \sim Beta(2,3))$ $= \frac{1}{2} \times \frac{1}{3} \times \frac{2}{4} \times \frac{2}{5} \times \frac{3}{6}$ $= (1 \times 2 \times 3) \times (1 \times 2) / (2 \times 3 \times 4 \times 5)$

Marginal Posterior... con't

- Given θ ~ Beta(a,b), what is P[⟨ H, T, T, H, H ⟩]?
- P(f_1 =H, f_2 =T, f_3 =T, f_4 =H, f_5 =H | $\theta \sim \text{Beta}(a,b)$) = P(f_1 =H | $\theta \sim \text{Beta}(a,b)$) × P(f_2 =T, f_3 =T, f_4 =H, f_5 =H | f_1 =H, $\theta \sim \text{Beta}(a,b)$) = a/(a+b) × P(f_2 =T, f_3 =T, f_4 =H, f_5 =H | $\theta \sim \text{Beta}(a+1,b)$)

$$= \frac{a}{a+b} \frac{b}{a+b+1} \frac{b+1}{a+b+2} \frac{a+1}{a+b+3} \frac{a+2}{a+b+4}$$

$$= \frac{a \times (a+1) \times (a+2) \times b \times (b+1)}{(a+b)(a+b+1)(a+b+2)(a+b+3)(a+b+4)}$$

$$= \frac{\Gamma(a+m_H)}{\Gamma(a)} \frac{\Gamma(b+m_T)}{\Gamma(b)} \frac{\Gamma(a+b)}{\Gamma(a+b+m)}$$

Marginal, vs Maximal, Likelihood

- Data $\mathfrak{D} = \langle H, T, T, H, H \rangle$
- \bullet θ * = argmax_{θ} P(D | θ) = 3/5
 - ... Here: P(D | θ^*) = $(3/5)^3 (2/5)^2 \approx 0.035$
 - Or Bayesian, from Beta(1,1), $\theta^*_{B(1,1)} = 4/7$
- Marginal
 - $\prod_{i} P(x_i | x_1, ... x_{i-1})$
 - kinda like cross validation:
 Evaluate each instance,
 wrt previous instance

Marginal Probability of Graph

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

Given complete data, independent parameters, ...

$$P(D|G) = \prod_{i} \prod_{u_{i} \in Val(Pa_{X_{i}})} \frac{\Gamma(\alpha_{X_{i}|u_{i}}^{G})}{\Gamma(\alpha_{X_{i}|u_{i}}^{G} + M[u_{i}])} \prod_{x_{i}^{j} \in Val(X_{i})} \frac{\Gamma(\alpha_{x_{i}^{j}|u_{i}}^{G} + M[x_{i}^{j}, u_{i}])}{\Gamma(\alpha_{x_{i}^{j}|u_{i}}^{G})}$$

Priors for General Graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
 - Eg, $P(G) \propto c^{|G|}$ | G | =#edges; c<1
- What is good prior over all parameters?
 - *K2 prior*: fix $\alpha \in \Re^+$, set $\theta_{Xi|PaXi} \sim Dirichlet(\alpha, ..., \alpha)$
 - Effective sample size, wrt X_i?
 - If 0 parents: $k\times\alpha$
 - If 1 binary parent: 2 $k\times\alpha$
 - If d k-ary parents: k^d k×α
 - So X_i "effective sample size" depends on #parental assignments
 - More parents ⇒ strong prior... doesn't make sense!
 - K2 is "inconsistent"

Priors for Parameters

- Does this make sense?
 - EffectiveSampleSize($\theta_{Y|+x}$) = 2
 - But only 1 example ~ "+x" ??

- J-Equivalent structure
- What happens after [+x, -y]?
 - Should be the same!!

Priors for Parameters

BDe Priors

- This makes more sense:
 - EffectiveSampleSize($\theta_{Y|+x}$) = 2
 - Now ≈∃ 2 examples ~ "+x" ??

- J-Equivalent structure
- Now what happens after [+x, -y]?

BDe Priors

BDe Prior

- View Dirichlet parameters as "fictitious samples"
 - equivalent sample size
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i, Pa_{Xi})
 - Represent with a BN
 - Usually independent (product of marginals)
 - $P(X_i, Pa_{Xi}) = P'(x_i) \prod_{x_j \in Pa[Xi]} P'(x_j)$
 - $P(\theta[x_i \mid Pa_{x_i} = u) = Dir(m'P'(x_i=1, Pa_{x_i} = u), ..., m'P'(x_i=k, Pa_{x_i} = u))$
 - Typically, $P'(X_i) = uniform$

Summary wrt Learning BN Structure

- Decomposable scores
 - Data likelihood
 - Information theoretic interpretation
 - Bayesian
 - → BIC approximation
- Priors
 - Structure and parameter assumptions
 - BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- \perp Nearly best k-treewidth (in $O(N^{k+1})$)
- Search techniques
 - Search through orders
 - Search through structures
- Bayesian model averaging