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i Outline

= Motivation

= What is a Belief Net?
= ... USe connections... just some connections
« Factored Distribution
= Reasoning
= Applications
= Relation to other Models

= Learning a Belief Net
« Goal?
= Learning Parameters — Complete Data
=« Learning Parameters — Incomplete Data
= Learning Structure



Terms from Probability Theory

'b
Random Variable: <&
Weather € { Sunny, Rain, Cloudy, Snow }
Domain: Possible values a random variable can take.
(... finite set, K, ...)

Probability dlstrlbutlon
mapping from domain to values in [0, 1]

P( Weather ) = { 0.7, 0.2, 0.08, 0.02 )

P( Weather = Sunny ) = 0.7
P( Weather =Rain) =0.2 |
P( Weather = Cloudy ) = 0.08

. P( Weather = Snow ) =0.02

means <

Event:
Each assignment (eg, Weather = Rain) is “event”



I’* & J aundlced - a
‘L-'
t@( Ky —-

BloodTest

Whatis P(+h | -j, +b )?




i Inference by Enumeration

= Using only joint probability distribution:

H Hepatitis

) Jaundice J H B|P(ibh)
B (positive) Blood test
— o 0 0 0] 0.03395
= Can compute conditional probabilities: 0 0 1| 0.0095
0 1 0 | 0.0003
P(-h | 4j) 0__1 1 [0.1805
= P(-h A +j) J\ﬂ/ 0\ 0 | 001455
P(F]) \1 ,0(/ 1 | f0.038
_ T™~1 0 | 0.00045
- 0.01455 + 0.038
1/ 1 10722

0.01455 + 0.038 + 0.00045 + 0.722

~ 0.0678




i Just use Joint ??

= Problems with full joint? -

= T00 big (= 2M) ol
= How to acquire? =1

= TOO slow ol
(inference requires adding 2X... ) 0!

= Better:
= Encode dependencies
=« Encode only relevant dependencies

30

1,073,741,824




i Table is Sufficient

= Just need single table!! But...

= Unnatural:

= Easier to think about CORRELATIONS
= P( Jaudice | Hepatitis)
« P( DimLight | BadBattery), ...

— better to use CONDITIONAL EVENTS

= Too MANY NUMBERS!!

= Exponential size to store
O(2V) numbers...

= Exponential cost for inference

— only use some connections

— Bayesian Belief Net

P(,b,h)

0.03395

0.0095

0.0003

0.1805

0.01455

0.038

0.00045

== (== OO |O]w—

R Rr|[OlOlRr|—,R|lO|lOC

= | Ol=|ORR|lO|l=|OI1XI

0.722




i Simple Belief Net

@ P(H=1) P(H=0)

0.05 0.95
h | PB=11H=h) P(®B=0I|H=h) /
1 0.95 0.05

0 0.03 0.97 \
M h b | Po=ihb)  PU=0b)
1 1

®

__________________ 08 .02

* Node ~ Variable 1008 02
: y . 0 1| 03 0.7

Link ~ “Causal dependency” | o 03 o7

= “CPTable” ~ P(child | parents)



Encoding Causal Links

h | P(B=1| H=h) /®

1 |0.95

0 |0.03 \
@

P(H=1)
0.05

h |b |PU=1lh,b)
e 0.8 <
1 |0 0.8
0 |1 03 <
0 |0 0.3 <

= P(JIH B=0) = P(J1H, B=1) VJ, H!
= P(JIH,B) = P(J | H

= J1s INDEPENDENT of B, once we know H

= Don'tneed B—J arc!



Encoding Causal Links

h | P(B=1 | H=h) /®

1 |0.95

0 |0.03 \
O,

P(H=1)

0.05
h PO=1lh )
1 0.8

1

0 0.3

0

= P(JIH B=0) = P(JI1H B=1) VJ H!
= P(JIH,B) = P(J | H
= J1s INDEPENDENT of B, once we know H

= Don'tneed B—J arc!
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Encoding Causal Links

P(H=1)

@ [oos
h | P(B=1 | H=h) /
1 |0.95
h |PO=1lh )
0 |0.03 \ v
d) 0 0.3

= P(JI1H,B=0) = P(JI1H B=1) VJ, H/
= P(J IH,B) = P(J | H)

= J1s INDEPENDENT of B, once we know H

= Don’tneed B—J arc!




i Sufficient Belief Net

P(H=1)
@ [oos
h | P(B=1 | H=h) /
0-95 h |PO=1lh )
0 |0.03 0.8
d) 0 0.3
- Requires: P(H=1) known
P(J=1| H=1) Kknown
P(B=1| H=1) known
(Only 5 parameters, not 7)
P(J=01H=1)

Hence:

P(H=11 B=1,J=0) =— P(H=1) P(B=1 | H=1)
a

1

12



hat is probability that Fred |s
Jaundiced, given {}?

/ P(+j) = 0.325
q-
ﬁ/Jaundlced given —BloodTest ?
E’(H | -b) = 0. 301:/‘/

.. Jaundiced, given +Hepatitis? |

[P+ | +h) = 0.8/

... Jaundiced, given +HepatitisD
-BloodTest ?

o

13

\ Same: P(+j | +h, -b) = 0.8




_~P(+j) = 0.325

So Jaundice
DOES depend on
BloodTest,
initially

P(+j | -b) = 0.301

But Jaundice
does NOT
depend on
BloodTest,

given Hepatitis




i Dependencies... /

= B does depend on J: ©

If J=1, then likely that H=1 = B =1

m DUt.. ONLY THROUGH H:
« If know H=1, then likely that B=1
= ... doesn’t matter whether J=1 or J=0!

=  |PJ=01 B=1, H=1) = P(J=01| H=1)

N.b., BandJ ARE correlated apriori P(J| B ) # P(J)
GIVEN H, they become uncorrelated P(J| B, H) = P(J| H)

15



Factored Distribution

s Symptoms /ndependent, given Disease

H Hepatitis pP(BI1J) # P(B) but
P(BIJH) = P(BIH)

J  Jaundice
B (positive) Blood test

* ReadingAbility and ShoeSize are dependent,
P( ReadAbility | ShoeSize ) # P( ReadAbility )

but become independent, given Age
P( ReadAbility | ShoeSize, Age ) = P( ReadAbility | Age )

Age

Y

16



i (a) Independence

= Coin tosses:

= T,:thefirst toss is a head; T,: the second toss is a tail
= P(T,|Ty) = P(T),)

= oand B /ndependent iff P(|o)=P(B)

s P FE (OC 1 B)
= ... distr'n P entails o independent of 3

= Proposition: o and B independent
if and onl

(B}~ Flod) P(B)

17



i Independence

= Events o and B are independent /ff
= P & B ) = P(ar) P(B)

= Pla|B) =P(o)

= Plavp) = 1- (1-Pla)) (1-P(B))

= Variables independent

< independent for all values
va,b P(A=a3,B=Db) = P(A=a) P(B =Db)

18



Hide

Independence

= Aand Bare independent iff
P(A|B) = P(A) or P(B|A) =P(B) or P(A, B) = P(A) P(B)

. Cawty _
CHVIty decomposes into 'l._"I'oothache Catch
Toothache  Catch - ~
Weather Wth |
eatner

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

= 16 entries reduced to 9;
for nindependent biased coins, O(2") —O(n)

= Absolute independence powerful... but rare
= Dentistry is a large field with hundreds of variables, none of

which are independent.
... What to do?



i (b) Conditional independence

= Independence is rarely true unconditionally...
but is conditionally...

= Shoe size is NOT independent of Reading Ability
« But is independent, given AGE...

= g and conditionall( independent given vy

it P(Blo,y) =P(B[Y)

Proposition: P= (o L ] v) if and only if
P(o, Bly) = Pla|v) P(B I v)

20



i Conditional Independence

s P( Hep, Jaun, BT )has 23 -1 =7
independent entries

= Given +Hep, Jaun doesn't depend on
blood test :

(1) P(Jaun | +h, BT) = P(Juan| +h)

= Given —Hep, Jaun doesn't depend on
blood test :

(2) P( Jaun | =h, BT) = P( Juan| —h)

21



i Conditional Independence

= Events E; and E, are
conditionally independent given E
iff
P(E; | E,E;) = PC(E; | E)

= Given E, knowing E, does not change the
probability of E,
= Equivalent formulations:
PCE, E; |E) = PCE; [E) PCE,| E)
PCE, |E, E;) = P(E, | E)

22



Bigger Networks

T P(V=1)
0.32 [ Alcohol } [ Virus } 22
a % P(H=1la ,v)
\ / 1 |1 |08
[ Hepatitis} L
0o |1 |o4s
/ 0 [0 [o0.04
h | PO=1|h ) -
1|08 [Jaundice} BloodTest h | P@B=1]h )
003 1 |0.98

s Intuition: Show CAUSAL connections:

Alcohol CAUSES Hepatitis;

" If Alcohol, then expect Jaundice:

0 |0.01

Hepatitis CAUSES Jaundice

Alcohol = Hepatitis = Jaundice

But only via Hepatitis: Alcohol and not Hepatitis =5 Jaundice

P(JIA) # P(J) but
P(JIAH) = P(JIH)



. Less Trivial Situations

N.b., obs, is not always independent of obs, given H

Eg, FamilyHistoryDepression ‘causes’ MotherSuicide and Depression
MotherSuicide causes Depression (w/ or w/o F.H.Depression)

P(FHD=1)

0.001

f | POMS=1 | FHD=f)

1 0.10 @ P(D=1 | FHD=f, MS=m)

f | m
0 0.03 1 1 0.97
\C) 1| o 0.90
D 0 | 1 0.08
0

0 0.04
- Here, P(DIMS,FHD ) # P(DI|FHD ) !

= Can be done using Belief Network,
but need to specify:

P( FHD ) 1
P(MS | FHD ) 2
P(DI|MS, FHD) 4 .




i Advantages of Belief Net

= All of advantages of Probability Theory
= Not CertaintyFactor, Fuzzy, Dempster-Schaeffer, ...
=« Formal understanding of how things relate
= Well-defined inference

= Explanatory power
= What is related to what? ... and how strongly?

= Efficient encoding

= 10 values, not 32...

= 8,254 values, not 13,931,430... not 2422
(CPCS Network: Modeling disease/symptom for internal medicine)

= Effective learning...
25



i What to do with a Belief Net?

s Examine its connections
= What depends on what?

= Get answers to specific questions
= What is P( Cancer | G;=+, Age>52 ) ?
= What is most likely cause of symptoms?

26



i Outline

= Motivation
= What is a Belief Net?

\ =« Example
= Inference
= Semantics
= Applications
= Relation to other Models

= Learning a Belief Net

27



iCIassification

= Which is more likely: +h vs —h ?

= Given independencies:

+ values:

raf“-a
I: v ? He epa atitis
1 Jaundiced not Jau d ed
b t +BloodTest ‘~."""
g@(‘« ——3o ?
BloodTest
P(+h) P(-h)
@ 0.05 0.95
h | P(+b | h) P(-b | h) /
1 | 0.95 0.05 h|P(+jlh) | P(-jlh)
0 ] 0.03 0.93 1 0.8 0.2
0 0.3 0.7

= argmax, P(h | +b, - )
= argmax, P(h ) xP(+b | h)xP(— | h)
= argmax; { 0.05x 0.95x0.2, 0.95x0.03x0.7 }

-h as

0.0095 <

0.01995

28




i “Naive Bayes”

s Classification Task:
Given 10,=v,..,0,=Vv,}
Find h. that maximizes P(H=h |O;=v,, .., O,=V,)

" P(H=h,)

. P(O,=v,|H=h)
= Given < Jk J /@\

| Independent: P(O;| H, O,,...) = P(O;| H)

P(H=h10,=v,..,0, =v ) = 1 P(H =hl.)HP(0j =v,|H=h)
o j

* Find argmax {h,}

29



Naive Bayes (con't /@\
g N s oy

P(H =110, =v,..,0,=v,) = — P(H =h) [1.P©,=v,1H=h)

s Normalizing term
a = PO, =v,,.,0,=v,) = Y P(H=m)[|PO,=v,|H=Hh)
L J

(No need to compute, as same for all h)
= Easy to use for Classification

= Canuse even if some v.s not specified

" If Kk Dx’sandn Oss,

requires only k priors, n x k pairwise-conditionals

(Not 2k .. relatively easy to learn) o 1o ome

10 |21 2,047
30 |61 2,147,438,647

)




i Engineer a Belief Net

Alternator

Main fuse — Okay 99.7
okay 90— Charging system Faulty 0.30
Distributer blown 1.0 Okay  49.5 - —
Okay 990 m— Faulty 50.2 Air filter
Faulty 1.0 ' clean 900 p
dirty 10.0
Battery age j
MEty 40,0 -
. - old 0.0 Battery voltage
Spark quality verycld 20.0 jm; strang 411 jmm Fuel system
qo0d 75 A | weak lcm Okay 900
bad 233 . : Faulty 10.0
very_bad 51.2 . Yoltage at plug
strong 36.3 e Spark plugs
weak 178 okay 0.0
MEnER S o too_wide 10.0
fouled 20.0
— = - Air system
Spark timing Headlights OFa G [ —
qood 505 — bright 38.7 Faulutu 16.0
bad Q.21 dinn 173 mi o
wery_bad 1.49 off 44,0
Starter system | = .
Starter Motor {0kay  59.6 arcranxs | —
Okay 29.5 | Faulty <0, < True 9.7 p— Car starts
FﬂLIHu |:|5|:| Falze S0.3 True Z&.0 EE

Falze V2.0

31



‘L Example: Car Diagnosis

Distributer

Yoltage at plug

HMain fuse Battery age Alternator
akay  99.0 jm— M 0.0 p Okay 99.7 ——
blown 1.0 old 0.0 Faulty 0.30

wvery_old 20.0 i

¥

Charging system

Okay 9.5 p——
Faulty S50.2 s

Battery voltage

strong <1.1 el
weak 175 mi
dead 410 jum

N

Headlights

dim

off

bright 33.7

175 m
A, )

Okay 990 —I-S“’E'L':W'J ?g-g o
: WEd . P
Faulty 1.0 none 45,9 .
Spark plugs
akay TO.0 p———
too_wide 10.0
fauled Z20.0
L Spark quality
5 k ti mi qood 25,
par lmln.g.: bad 235
392;13 very_bad 51.2
wery_bad 1 44
Starter Motor Starter system
Okay 995 oo ™ 0kay 596 —
Faulty 0.50 Faulty 40,3 e

Air filter

clean 90.0
dirty 10.0

Q0.0
10.0

Okay
Faulty

Fuel system

'

Car cranks

True <49.7 j—
Falze S0.3 -

Air system

Okay
Faulty

g§4.0
16.0

Car starts

True Z28.0
Falze TZ.0




(Explaining Away) o

Diagnostic Caunsal Intercausal Mixed

i Types of Reasoning < E :

= [ypical case: P( QueryVar | EvidenceVars = vals )
» Eg: P( +starts | +fuel, -voltage )
= Diagnostic: from effect to (possible) causes
=« P(-fuse | -starts ) = 0.016

= Causal: from cause to effects
s P( -starts | -fuse ) = 0.86

= InterCausal: between c
= P( -fuel | -starts )
s P( -fuel | -starts, -filter )

Bad_Filter EXPLAINS no_start, and so
Bad_Filter EXPLAINS AWAY low-fuel

= Mixed: combinations of . . .
= P( +headlights | +voltage, -starts ) = 0.03

ses of common effect

-




i Outline

= Motivation

= What is a Belief Net?
=« Example

\ = Inference
= Semantics
= Applications
= Relation to other Models

= Learning a Belief Net

34



Components of a Bayesian Net

P(B)

0.001

Directed Acyclic Graph:
N MNodes = Variables
BN = A Arcs = Dependencies
C CPTables = “weights"

F(E)

0.002
( Burglary ) (Earthquake)

| P(A|B=bE=¢)

0.95
0.94

0.29
0.001

£y
B
o
=
3
N
e lea o ol =

'\._.J T |

( JohnCalls ) ( MaryCalls
JlA=a)

"t:1
:L

e LR -]

M
0.
0.

T | e
o=

0
1

Nodes: one for each random variable
Arcs: one for each direct influence between two random variables

CPT: each node stores a conditional probability table
P( Node | Parents(Node) )
to quantify effects of “parents” on child

35



‘L Causes, and Bayesian Net

P(B) P(E)
0.001 0.002
( Burglary ) (Earthquake)
\ / b e|P(A|B=hE=¢)
T T 0.95
( Alarm ) T F 0.94
FT 0.29
/ \ F F 0.001
( JohnCalls ) ( MaryCalls )
a|P(J|A=a) o |P(M[A=a)
T‘ 0.90 T‘ 0.70
F 0.05 F 0.01

A: Alarm

= What “causes” Alarm?
A: Burglary, Earthquake

= What “causes” JohnCall?

N.b., NOT Burglary, ...

(CPTabIe =

Alarm | P(MC|A)
T

1.0
F 0.0

= Why not Alarm = MaryCalls?

)

A: Mary not always home
... phone may be broken

36



Independence in a Belief Net

= Burglary, Earthquake <
independent

= BLE
= Given Alarm,

JohnCalls and MaryCalls independent
= JLIMJ|A

= JohnCalls is correlated with MaryCalls —(J L M)
as suggest Alarm

= But given Alarm,

JohnCalls gives no NEW evidence wrt MaryCalls -



i The Independence Assumption

Burglary arthquake .
Burer’ Local Markov Assumption:

A variable X is independent

of its non-descendants given
its parents

(X; L NonDescendants,; | Pay;)

«sBLE|{} (BLE)
= M1 {BEJ]|A

= Given graph G,
I u(G) = { (X; L NonDescendants,; | Pay;) }
3

8



P(V=1)

o

i Belief Nets z(;:l) o I v | PH=t]a v)

0.10

0.45

0.82
Hepatitis
0.04

o o = = )]
o = o =

u DAG StI’UCtUI‘G (1) 2: h | ee=11h)

1 0.98

= Each node = Variable v " oo

= Vvdepends (only) on its parents
+ conditional prob:  A(v;| parent;,= (0,1,...) )

n Vs INDEPENDENT of non-descendants,
given assignments to its parents

= Given H =1,
= A has no influence on ]
= J has no influence on B

s efc.
39



What about probabilities?
2 _Eonditional probability tables (CPTs)

0.001 0.002
( Burglary ) (Earthquake)

N/

b e | P(AB=hE=¢)
T T 095
( Alarm ) T F 0.94
F T 0.29
/ \ F F 0.001
( Johncalls ) MaryCalls )
a | P(J|A= a | P(M|A=a)
T| 09 T 00
F| 005 F| o0l

= Each CPTable is called a “Factor” 20



‘L Factoid...
« P(A,B,C) = P(A B,C
= P(A | B,CXP(B|C) P(C)

= In general:
POX{, X5, oo ) X, ) =
P(Xl | X2/ " IX ) P(XZI . le ) —
P(X1 | X5, oo X ) POK | X5, o X ) POXs, o X )

41



i Joint Distribution

= Ingen'l, P(X,X,, ... X ) =
P(X; |1Xs, « oo X, ) POy, on X ) =
P(X; |1Xy, - oo X ) POG XS, o0 X ) POXS, -0 XK ) =
I_Ii P(Xi |Xi+1l = le )

= Independence means.
P(X: | Xy, ..., X ) =P(X | Parents(X) )

Node independent of predecessors,
given parents

= SO... P(XIIXZI s /Xm ) = Hi P(XI | ParentS(Xi) ) 42



Joint Distribution

Node is INDEPENDENT of non-descendants,
given assignments to its parents

P( +j, +m, +a, -b, -e ) JLMBE}|A |
= P(=j+=+m,=+a, b, =e) -P(+] | +a)
M L {B,E}| A
P+M1=+a—b,—e) -P(+m | +a)
Pat—b,—e) P(+a|-b,-e)
BLE
P(-b1—e) P(-b)
Ple) Ple)



Joint Distribution

Node is INDEPENDENT of non-descendants,
given assignments to its parents

P( +jl +m, +aq, -bl -€ )

= P(+j | +a)
P(+m | +a)
P(+al -b, -e)

P(-b)

P(-€ )

Burglary

2
=
8
=
2
o

44



Recovering Joint

v

P(—b, e, a, -7, m) =
P({—-b) P(e|—-b) Pl(a|e,—b) P(—jl|la,e,—b) P{(m|—j,a,e, —b)

P(—b) P(e) P(ale,=b) P(—jla) P(m|a)
0.09 x 0.02 x 0.29 x 0.1 x 0.70

MNode independent of predecessors, given parents

b e P(A|B=hE=e)
( A ) T T 095
arm IF 0l | (P(a|—b,e)
//’ \\ F F mh

a | P(J|A=a)

( JohnCaiis ) ( MHWCH"S)
a | P(M|A=a)

T 0.90
F 0.05

| Cor) -

F 0.01

45



i Meaning of Belief Net

= A BN represents
= joint distribution

= condition independence statements

" P( +jl +m, +aq, -bl -€ )
= P(-b ) P(-e ) P(+al|-b, -e) P( +j | +a) P(+m [+a)
= 0.999 x 0.998 x 0.001 x 0.90 x 0.70 = 0.00062

« Ingen'l, POX, Xy, - . X ) = 1L POG [Xiss, -+ o X )
= Independence means
PXi [Xis1s - -+ X5 ) = P(X | Parents(X)) )
Node independent of predecessors, given parents

a S0... POX;,X,, ... X ) =]1P0X | Parents(X) )

46



i Comments

= BN used 10 entries

. . . can recover full joint
(2° entries)

(Given structure,
other 2> — 10 entries are REDUNDANT)

— Can compute
P( +burglary | +johnCalls, -maryCalls ) :
Get joint, then marginalize, conditionalize, ...
7 better ways. . .

= Note: Given structure, ANY CPT is consistent.
A redundancies in BN. . .

47



i “W"-Connections

= What color are my wife's eyes?

= Would it help to know MY eye color?
NO! H _Eye and W_Eye are independent!

= We have a DAUGHTER, who has BROWN eyes
Now do you want to know my eye_color?

h w |P(D=Dbl | h,w)
bl |br 0.5
br | bl 0.5

br | br 0.25

= H Eye and W_Eye became dependent!

48



What color is W? |

/Prmr is P(W =br) =0.87
q
But I know H!
Should I tell you?
Don't bother; it doesn’t matter

P(W = br | H= bl) = 0.8
P(W = br | H= br) = 0.8

I also know D = br. Now do you care? %
J—

Yes, yes!!l Tell me H!
P(W = br | H= bl, D=br) = 0.50

P(W = br | H= br, D=br) = 0.22 49
S~ -




i d-separation Conditions

X1y ®—@=®
e — ()=

X0 = (D=

X0 = (D=




i d-separation Conditions

X —=@—

XLY|Z
o — @— ‘

O—@—® x1Y|Z
(e +— @) — e

=@ _(x1Y]|2
e — @—=

51



.
i d-Separation ’

= Burglary and JohnCalls are

conditionally independent given Alarm
= JohnCalls and MaryCalls are

conditionally independent given Alarm
= Burglary and Earthquake are

independent given no other information

s But. ..

= Burglary and Earthquake are dependent given Alarm

« Ie, Earthquake may “explain away” Alarm

... decreasing prob of Burglary
52



i Conditional Independence

Node X is independent of its non-descendants
given assignment to immediate parents parents(X)

= General question: "X LY | E”

= Are nodes X independent of nodes Y,
given assignments to (evidence) nodes E?

= Answer: If every undirected path from Xto Y
is d-separated by E, then X LY | E

= d-separated if every path from X to Y is blocked by E

... if 3 node Z on path s.t. ' |

1. Ze E,and Z has 1 out-link (on path) v | O OO 070

. Z e E, and Z has 2 out-link, or 2 | OO~ 0—+0
_O

3. Zhas 2in-links, Z¢ E, nochildof ZInE O_T



“V"-Connections, con't

P(A) = 0.3 @ P(B) = 0.5

\ /A B P(C|A,B)
@ R 0.0
hoot 1.0
t h 1.0
£t 0.0

ALB|{}

PCA)=03=P(A| B)

But: —[ALB|C]
PCA|B)=0.3; P(A|B,C)=0

Proof:

= P(+a, +b, +c) = P(+a) P(+b) P(+c| +a,+b ) =0.3x0.5x0=0

« P(—a, +b, +c) = P(=a) P(+b) P(+c | —a, +b ) = 0.7 x 0.5 x 1 = 0.35
= P(+b, +c) =P( +a,+b,+c) + P(—a, +b, +c ) = 0+0.35 = 0.35

« P(+a | +b, +c) =P( +a, +b, +c )/ P(+b,+c) =0/035=0

P( Cold | Sneeze ) vs P( Cold | Sneeze, Purr )
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Example of d~separation, II

//“
d-separated if S rf{‘
every path from X to Y is blocked by E

Is Radio d~separated from Gas given . . .

1. E = {} ? Etarts )
YES: P(R|G) = P(R) e
Starts ¢ E, and Starts has 2 in-links ‘f’,'ﬂ;;‘/}
2. E = Starts ? p—
Il P(R|G,S) = P(R|S) e nee et e
NO p ¢ If car does not MOVE,

Starts € E, and Starts has 2 in-links :
3. E = Moves ? expect radio to NOT work.

NO!' P(R | G, M) # P(R| M) —1 Unless you see it is out of gas!

Moves € E, Moves child-of Starts, and Starts has 2 in-links (on path)
4. E = SparkPlug ?
YES: PR |G, S5p) = P(R| Sp)
SparkPlug € E, and SparkPlug has 1 out-link
5. E = Battery ?
YES: PR | G, B) = P(R| B)
Battery € E, and Battery has 2 out-links 55




i Markov Blanket

Each node is
conditionally independent of all others

given its Markov blanket:
= parents
= children
= children's parents

56



i Outline

= Motivation

= What is a Belief Net?

=« Example
= Inference

\ = Semantics
= Applications
= Relation to other Models
= Learning a Belief Net
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i Deployed Applications

m Gates says /ra7imes, 28/0ct/96]:

Microsoft’'s competitive advantages is its
expertise in "Bayesian networks”

a Current Products

« Microsoft Pregnancy and Child Care (MSN)
« Answer Wizard (Office, ...)

s Print Troubleshooter
Excel Workbook Troubleshooter

Office 95 Setup Media Troubleshooter
Windows NT 4.0 Video Troubleshooter
Word Mail Merge Troubleshooter

58



i Deployed Applications (II)

s US Army: SAIP (Battalion Detection from SAR, IR... GulfWar)
= NASA: Vista (DSS for Space Shuttle)

s GE: Gems (real-time monitor for utility generators)

N Intel: (infer possible processing problems from end-of-line tests on
semiconductor chips)
n KIC:

= medical: sleep disorders, patholo%
hand and wrist evaluations, derma
based health evaluations

= DSS for capital equipment: locomotives, gas-
turbine engines, orrice equipment

y, trauma care,
ology, home-

59



i Deployed Applications (III)

= Speech recognition

= Human genome analysis

= Robot mapping

= Identify meteorites to study

= Modeling fMRI data

= Anomaly detection

= Fault diagnosis

= Modeling sensor network data

60



i Deployed Applications (IV)

= Lymph-node pathology diagnosis
= Manufacturing control
= Software diagnosis

= Information retrieval

m /ypes of tasks
« Classification/Regression
= Sensor Fusion
» Prediction/Forecasting
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MammoNet
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i ALARM

Hypovolemia InsuffAnesth PulmEmbol us Intubation
True 20.0 True Z20.0 True 1.00 92.0
Falze §0.0 False 0.0 Falze 99.0 " 3.00
5.00 KinkedTube Disconnect MinYol5et
¢ \ Trie 400 Trie 500 Tow 1.0
False 96.0) False 95.0) Normal 95.0
PAP High 1.00
Low 4.96 Hormal
= EYED¥oINme Normal 893 High
- High  5.75h ¥ ¥ ¥ ¥
High YentAly YentLung YentTube ¥entMach
Y 121 m Zern 11.6m " Zero 671 R . Zero 1.00
Catechol 102m Low 549 - Low 279 - Low 1.96
Low T3, p——— Norral 79.4 Normal 87.7 Normal 951
HofmaTgge 13 Kormal 418 High  3.49 High 2,79 High 1.9
CYP High _ 59 High
Liow 25.1 -
Normal 65.7 . o
High 6.24p ]
v iy
k. ExpCO2 MinYol Press
HR FiDz2 oo Zero 121 m Zero 122m Zern 797
Lo 468 o Lo Mormal 682 - ™ Low 743 m Lot 628 Lot 553
Hormal .7 . Wormmal 990 Hor mal High : Hormal 66.2 e Hormal 77.2 Hormal 77.3
High  S3.6 1 High High 142 m High 432 High 9.15m
Anaphylaxis ErrCauter
True 1.00[ § & ¢ True 10.0m: § ¢
False 99.0 False S0.0
Y i
HREKG HRS5at
Lo S532m 532

Hormal 0.6
High  51.1 e

Hormal <06 .

511 —

A Logical Alarm Reduction Mechanism
e 8 diagnoses, 16 findings, ...
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Troup Detection

" Terrain Vehicle
haspitabilicy classifization
[F1] L
|
¥ Formation
Digiial T
Lerrain

Mumber
sub-unis
&

Average
likelihsod
[
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‘L Car Insurance

Predict claim costs (medical, liability) based on application data
65



‘.L QMR-DT

= Medical diagnosis in internal medicine
= Bipartite network of disease/findings relations

534 diseases... -

Aaco Q000

4040 findings

40,740 arcs
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i CPCS

= Computer-based Patient Case Simulation system
s 422 nodes; 867 arcs

e ——— i = ] lq'--m:-‘
£ ._.I.r.-.—..l-..l..-.--__ e e J_ ...-...__.“_-I e m.|-....|..i _,.'l.- 1_'.- -
= gy .-::'__-.i. [ — . .._.n.-l.n_- = h-q_—.n.- e = = .F:..

e e e o 5 --l-? -ul-
_1_ = --:_—-J
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i ARCO1: Forecasting Oil Prices

68



‘L ARCO1: Forecasting Oil Prices
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Forecasting Potato Production
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Warning System

Warning

Warming
Cost

Tuctical
Warninp

Warnimg;

Willingness
to Respord

Relense

Daimaps
Lo Lifle

Todal
Value

Exanami
Cast

Capnhility
to Respond
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i Utility-Based Agents

MEU Principle:
Agent should act to maximize expected utility

Choose action A~ = drgmaxp { EU(A‘O)}

that maximizes

expected utility of state after A,
given prior observations O:

EUCA|O) =

= 25 P(S'|A,0) U(S)

=252sP(S | O0)P(S | SA)US)

= 2525[aP(O|S)P(S)] P(S"|SA)UG)

Given simple assumptions, this is best possible action!

(Average of utility, not o@, not )

Good decision, bad outcome. 72



i Decision Network

= Chance Nodes: S, O, S’
= Bayesian net = decision diagram w/ only chance nodes
= Specify: P(S),P(O|S),P(S"|S, A)
=« Here: S = Current State O = Observation
S’ = Resulting State

s Decision Nodes: A

= represents decision/action to make.
= Specify: set of possible actions a € Dom(A)
= Utility Node(s): U
= represents utility of each value-set of its parent
chance variables
= Specify: set of U(s") for each s" € Dom(S’)
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Perform a Medical Treatment?

d| P(d) I
T = 1) = H
2 PR=r|T=1)UR=r)
— — r| ur)
EU(T:O): @ @ ‘ T %
> PR=r|[T=0)UR=r) ¢t | ity
1 .001
PR=1|T=1)= T
24 PR=1,D=d|T=1) 1 1] o
=24PR=1|D=d,T=1)PD=d)
(D=0) +PR=1|D=1,T=1)PD = 1)

x 0.2) = 0.0028

PR=0|T=1)=1-PR=1|T=1) = 0.9972
Similarly:

« PR=1|T=0)=0.1908

« PR=0]T=0)=0.8092 ra



i Medical Treatment (con't)

d t |P(+r|d,t)
0 O .001
0 1 .001
T 1 O .950
d | P(d) 1 1 .010
0]0.8 \
1(0.2 r | u(r)
® @ @ [
1 |-1000
P(RIT) U(R)
T 0 1 0 1 EU(T)
0] .8092 .1908 |O —-1000 —-190.85
1|.9972 .0028 |0 —1000 ¢ C;;?EE
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o Evaluating a Decision Network

9

1. Set evidence variables E;, E,
Update distribution over current state S

2. For each possible action a of decision node A
(a) Set decision node A to a
(b) For each parent { S" } of utility node U:
Calculate posterior probability of S
Here, just P(S" | E;, E;, A=a)
(c) Calculate expected utility for action a:
EUA | Ey, B, ) =25 P(S"| Ey, By @) U(S)
3. Choose action a“ = arg max, { EU(a | ... ) }
with highest expected utility
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i Decision Net: Test/Buy a Car

J/f”

T1: Do Test 17 P T2 Do Test 27 B: Buy 17

(R1: Test 1 Result ) - R Test 2 Result )

NN

(CC: Condition )
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i Extensions

= Find best values (posterior distr.) for
SEVERAL (> 1) “output” variables

m Partial specification of “input” values
= only subset of variables
= only “distribution” of each input variable

s General Variables
= Discrete, but domain > 2
= Continuous (Gaussian: x = X, by, for parents {Y})

l

m Decision Theory = Decision Nets (Influence Diagrams)
Making Decisions, not just assigning prob’s

m Storing P(vIp, p,...p.)
General “CP Tables” 0(2%)
Noisy-Or, Noisy-And, Noisy-Max
“Decision Trees”

/8



i Outline

= Motivation

= What is a Belief Net?

=« Example
= Inference
= Semantics

\ = Applications
= Relation to other Models

= Learning a Belief Net
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. Belief Nets vs Rules

= Both have "Locality”

Specific clusters érules / connected nodes)
= Often same nodes (rep’'ning Propositions) but

BN: Cause = Effect
“Hep = Jaundice” PJIH)

Rule: Effect — Cause
“Jaundice = Hep”

WHY?: Easier for people to reason CAUSALLY
even if use is DIAGNOSTIC

= BN provide OPTIMAL way to deal with

+ Uncertainty
+ Vagueness (var not given, or only dist)

+ Error ...Signals meeting Symbols ...

= BN permits different “direction”s of inference 80



‘_h Belief Nets vs Neural Nets

Both have “graph structure” but

BN: Nodes have SEMANTICs
Combination Rules: Sound Probability

NN: Nodes: arbitrary
Combination Rules: Arbitrary
= SO harder to
« Initialize NNV
« Explain NV
(But perhaps easier to learn NN from examples only?)

= BNs can deal with
s Partial Information
s Different "direction’s of inference
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_ Belief Nets vs Markov Nets

= Each uses “graph structure’

to FACTOR a distribution
... explicitly specify dependencies, implicitly independencies...

but subtle differences...

"BNs capture “causality”, “hierarchies”
*MNs capture “temporality”

Technical: BNs use DIRECTRED arcs (A)
— allow “induced dependencies” \ /
I(A {}, B “A independent of B, given {}” @
- I (A, C, B) “A dependent on B, given C”
MNs use UNDIRECTED arcs @
—  allow other independencies / \

I(A, BC, D) A independent of D, given B, C

I(B, AD, C) B independent of C, given A, D S @ /



i Belief Nets vs Clusters

= Both “structure” the variables
= Cluster: Put similar variables in same cluster
= BN: Put related variables adjacent

= Cluster uses “first order” relationships
= Put A and B together if A directly correlated with B

= BN can have higher order relationships,
esp. independencies @

e CHO Cwo
\_/

| >
@ .




i 2"d Order Statistics?

= Spse
= > of kidney are Male (V2 female)
= > of kidney are Male (2 female)
« Transplant is SUCCCESSFUL iff

Donor and Recipient are SAME gender (M/M or F/F)
s Here:

= P( Success | Donor=m) = 2 = P( Success | Donor=f)
= IS indepen ent of
= P( Success | Recip=m) = 2 = P( Success | Recip=f)
= is Independent of
= However:

5 Pg Success | Donor=m, Recip=f) = 0
P( Success | Donor=m, Recip=m) =1

= SO is dependent on
and 84



i Space of Topics

Semantics (@

Inference _,

Learning...
e Parameter, Structure _ :
e Data: Complete, Missing Learning +
e Framework: Frequentist, Bayesian '
— | >
xe Pirected UnDirected
S
¥
3
O
O

& 85



i Summary

= Necessary to use Probabilistic Representation
= ... Use connections... just some connections
= Factored Distribution
— Belief Nets

= Proven Technology
= Lots of deployed applications

= Challenge: Learning them!

86



