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A Little History

Support Vector Machines (SVM)

e introduced in COLT-92

e greatly developed since then
Now, a large and diverse community:
e machine learning

e optimization

e statistics

e neural networks

o functional analysis, etc etc etc.

Successful applications in many fields
(bioinformatics, text, handwriting recognition, etc)

Kernel Machines: large class of learning algs
« SVM = a particular instance
http://www.kernel-machines.org



BOOKS

Books on SVMs and Other Kernel Machines last modified
2007-01-31 12:45

+ Vladimir Vapnik. Estimation of Dependences Based on Empirical Data. Springer Verlag, 2006, 2nd edition.

The second edition of Vapnik's classic on fearning theory, including several new chapters on the history of
events and on non-inductive inference.

+ Grace Wahba. Spline Models for Observational Data. 51aM CBMS-NSF Regional Conference Series in Applied
Mathematics vol. 59, Philadelphia, 1990.

Discusses (reproducing) kernel methods in nonparametric regression. Net easy reading for machine fearning
researchers, but containing fundamental material about precedents of today's kernel machines (162 pages,

£33.5).
+ Vadimir Vapnik. The Nature of Statistical Learning Theory. Springer, NY, 1995.

An overview of statistical learning theory, containing no proofs, but most of the crucial theorems and
milestones of learning theory. With a detaifed chapter on SVMs for pattern recognition and regression (1st
edition: 188 pages, $65; 2nd edition: 204 nages, 570).

+« Vladimir Vapnik. Statistical Learning Theory. Wiley, NY, 1998,

The comprehensive treatment of statistical fearning theory, including a large amount of material on SVMs
{768 pages, $120).

e Bernhard Schilkopf, Chris Burges, and Alex Smola (eds). Advances in Kernel Methods - Support Vector Learning
MIT Press, Cambridge, MA, 1999,

A coflection of articles written by experts in the field. Includes an introductory tutorial, overviews of the
theory of SVMs, contributions on novel algorithms, and three chapters on SVM implementations (392 pages,
£53).

+« Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Pres:
Cambridge, UK, 2000.

An introduction to SVMs which is concise yet comprehensive in its description of the theoretical foundations
of large margin algorithms (189 pages, £45).

+« Alex Smola, Peter Bartlett, Bernhard Schilkopf, and Dale Schuurmans (eds). Advances in Large Margin Classifier:
MIT Press, Cambridge, M4, 2000.

A coffection of articles dealing with one of the main ideas of SVMs, farge margin requiarization. Contains an
intreduction. articles on new kernels. SVMs. and boosting alaorithms (422 psges. £45).
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Software

Kernel-Machines.Org software links last modified

2007-01-31 12:47

Gaussian Processes

5P Demo. Demonstration Software for Gaussian Processes by David Mackay (in OCTAVE).

gpml. Matlab implementations of algorithms from Rasmussen & Williams "Gaussian Processes for Machine Learning
the MIT Press 2006.

LS5-SvMlab. Matlab/C toolbox for least sguares support vector machines.

MAP-1. Package for MAP estimation by Carl Rasmussen.

MC-1. Package for MAP estimation by Carl Rasmussen.

Flexible Bavesian Modelling. Package by Radford Neal. It includes programs for Neural Networks, Gaussian
Processes, and Mixture Models.

Metlab. Matlab toolbox including Gaussian Process Regression, Mixture models and Meural Networks.
Sparse Gaussian Processes, Matlab Toolbox for Sparse Inference using Gaussian Processes.

Toros and Cpros. Package by Mark Gibbs.

Mathematical Programming

CPLEX. Barrier/QP Solver.
000, Linear and Quadratic Optimization Package by Robert Vanderbei.
MINDS. Linear and Quadratic Solver.

Support Vectors

Mearest Point Algorithm. by Sathiva Keerthi (in FORTRAN).

SWM Java Applet. by Chris Burges et al.

ESVIM. A decomposition method for bound-constrained SvM formulations.

QP SVM Classification and Regression. Fortran Implementation.

CLISP/LibSYM. A module for using LibSVM from GMNU CLISP (an ANSI Common Lisp implementation).

Chunking Code. by C. Saunders, M. 0. Stitson, 1. Weston, L. Bottou, B. Schdélkopf, and 4. Smola at Royal Holloway,
AT&T, and GMD FIRST (Documentation).

CSWVM. SWM for classification tasks with model selection.

20 SVM Interactive Demo. runs under Matlab 6 and produces nice pictures - useful for courses.

CTREG. by Phillip H. Sherrod.

Interior Point Optimizer for SVYM Pattern Recognition. by Alex Smola.

Equbits Foresiaht. Commerical SVM based Classification and Regression Application Designed for Drug Discovery.
Gini-SVM. A multi-class Probabilistic regression software for large data sets.

GiniSYM. Multi-class SVM Probability regression package.

Gist. Gist contains software tools for support vector machine classification and for kernel principal components
analysis. The SVM portion of Gist is available via an interactive web server.

Parallel GPDT. Parallel and serial training of SVM.




Preliminaries
« Goal:
» detect and exploit complex patterns in data

* eg: by clustering, classifying, ranking,
cleaning, etc.

« Challenges:
1. Representing complex patterns

2. Excluding spurious (unstable) patterns
(= overfitting)

#1 i1s computational problem
#2 is statistical problem



Basic Idea

o Kernel Methods work by
embedding the data into
a vector space,

and by detecting linear
relations in that space x

° I . N
Main tools: '?*

Convex Optimization, ?‘? >
Statistical Learning I
Theory, Functional

Analysis




Outline

Foundations

e Primal/Dual; Lagrange

e Perceptron Factoids

e Dual Representation

“Best” Linear Separator: Max Margin!
Coping with Non-Linearly Separated Data
Kernel Trick

Regression



Background: LP

e Linear Programming
e Givenc, A, b
find w* = argmax, ¢ x w
e subject to
ea’w < b fori=1..m Aw<b
ew; >0 forj=1..n

e J fast algorithms for solving linear programs
...including

e simplex algorithm
e Karmarkar’s algorithm



Duality

e Givenc, A, b, ...

e Primal
e find w* = argmax
e subject to
eAw<b
ew; >0 forj=1..n

w

e Equivalent Dual
e find y* =argmin,b xy
e subject to
e ATy >cC
ey.>0 fori=1..m



Constrained optimization

min, x°

min, x%
S.tL.x=>-1

min @ x=0

min, x%
S.tLx=>1

min @ x=+1

Constraint irrelevant
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Lagrange Multiplier 101

(5, 75)
Chall f(x) - 2 @E\ :
allenge: argmax, f(x) = —x;% — X, &
s.t. g(x) = x4 +xx2— 1=0 gl ) =

Consider optimum x* = (x*;, x*,)
e On g(x) =0 line, by def'n!
e Note Vf(x™) L g(x™)

e Otherwise, could walk along g(x)=0 to get larger

f(x) value
Hence, Vf(x™) is || to Vg(x™)
= dA s.t. VIOX*) + A vg(x*) =0
Write L(x, 1) = f(x) + Ag(x)

Note V,L( x, 1) = Vf(x) + A Vg(x) --=0@X"
V,L(%, &) =g(x) ...=0= g(x) =0 satisfied




Lagrange Multiplier 101

e Challenge: argmax, f(x) = —x,% — X,?
st. gX)=X%X; +X%x,—-1=0

L(x, L) = f(xX) + Ag(Xx)

V(X A)==-2x;,+1 =0

Vol(X, A)==-2%X+A =0

V,L(X,A) =X +%x—-1 =0

e Soln: Xy =X, =12

e Alsor =1 (who cares...)

-
&

12



Lagrange Multiplier 102 >

InEqualities... N

e argmax, f(x) s.t. g(x) =0 NS . )

e Two cases: y
e At optimal x*, g(x*) > 0 X"

e “inactive constraint”
e Just need Vf(x) =0
e ... corresponds to Vf(x) + A Vg(x) = 0 when A=0

13



Lagrange Multiplier 102
InEqualities...

R

e argmax, f(x) s.t. g(x)=0
e TWO cases:
o At optimal x*, g(x™) > 0
e “inactive constraint”
e Just need Vf(x) =0

e ... corresponds t@k Vg@when A=0
o At optimal x*, g(x*) = 0
e “active constraint”

e = earlier case... need @ A V@Nith A#0

e Actually... need A>0 as need Vf(x) oriented AWAY
from g(x)>0 region...
Vi(x*) = — A Vg(x*) for some A>0 14




Lagrange Multiplier 102

e argmax, f(x) s.t. g(x)>0
e At optimal x*, g(x™) > 0
o V(™) + A Vg(x™) = 0 with A=0
e At optimal x*, g(x™) =0
o VI(X™) + A Vg(x™) = 0 with A> 0
e Either way... A g(x*) =0
e Summary:
o L(x, A) = f(xX) + Ag(x)
e Solve Vi ,L(x, A) =0 V,L(x,A)=0
est. gx)=0 A>20 Agx)=0

15



KKT Conditions: Inequality Case

e Karush-Kuhn-Tucker Theorem:

If
e function f(x) has a minimum at x* in the feasible set. and

e Vf(x*)and Vg,(x*), i=1,2,...,m exist,
then 3 m-dimensional vector A such that
A>0
VE(x*) — Zi.mAVg(x*) =0
Ai[g(x*)-b] =0, fori=1,2,...m.

e Each such (x*, A) is a KKT point;
A is the Dual Vector aka the Lagrange Multipliers.

e These conditions are sufficient if dealing with a convex
programming problem

16



w,b

Linear Classifiers |
X " f > yest
Input space |xe X fix,w,b) = sign(w - x + b)
Output y eVY
space ={+1 -1}
Real-valued |[f: X —-%R
fn:

Training Set |S = { [xy,Yy],

[%,,Y] )

Dot product |(x, z)

17



Perceptron Training Rule

Initialize w =0
Do until bored
Predict “+" iffw-x>0

else “-"
Mistake on y = +1:
Mistake ony = —1:
~

W <W+ Y X

= (W =2, 04 Y; X

o ... only uses Informative Points (mistake driven)
o Coefficient of point reflects its ‘difficulty’

18



Mistake Bound Theorem

/T
Theorem: [Rosenblatt 1960] Frop, cor
/
If data is consistent w/some linear threshold w, s

then number of mistakes is < (1/A)?,

where A =
- = margin

e A measures “wiggle room” available:

If [x] = 1, then A is max, over all consistent planes,
of minimum distance of example to that plane

class 2

e Wwis 1 toseparator, asw " x = 0 at boundary

e So |w " x| is projection of x onto plane,
PERPENDICULAR to boundary line
... ie, is distance from x to that line (once normalized)

class 1-

19



Dual Representation

W =2, 0 Y; X

— can re-write decision function

f(x) =(w, X) +b =

—> can re-write update rule:

If y; 25 0 Yi@”’ <0

Then o, < a.+ 1

e In dual representation,
data appears only inside dot products

20



w,b

Linear Classifiers i
X .

f > yest

x w,b) = sign(w - x + D)

° denotes +1

° denotes —1

° How to classify
this data?

/, / 6 ° . - Each of these seems fine..

... which is best?

21



Classifier Margin

w,b

|

° denotes +1

° denotes —1

f

> yest

f(xw,b) = sign(w - x + D)

The margin of a
linear classifier
the width that the
boundary could be
increased by,
before hitting a
datapoint

22



w,b
l
f > yest

f(xw,b) = sign(w - x + D)

Maximum Margin
X

A 4

° denotes +1

The maximum
margin linear

o - classifier is the

o linear classifier
with the, um,
maximum margin.

° denotes —1

A_'__.-»f-:

Support Vectors
are datapoints
that “touch” the

margin o e the simplest kind

o o of SVM — an LSVM

/ Linear SVM

23



w,b
l

g f > yyest

Maximum Margin
X

1. ... this feels safest ...

2. If a small error in the location of the

. boundary
° denotes —1 (it's been jolted in its perpendicular direction)
ST . this gives least chance of causing a
° . . misclassification.
BN

° denotes +1

. ° 3. LOO-CV is easy, since the model is
® fO’ .
Support Vectors” o ~—* immune to removal of any non-
are datapoints ° support-vector datapoints.
that “touch” the %)

: 4. There's some theory (using VC
margin

dimension) that is related to
(but not the same as)

the claim that this is a good thing.
/ 5. Empirically it works very very well.

24



Goal of Max Margin Separator

Want a linear separator
w,b fory=w-x+5,

Why 1?
S.L. Any >0 constant
e For all +points . Yi=+1 works, as scales.
W - X; +ph > O 1 is convenient...

e For all —points (x;, y,= —1)
W' X;+b< —1

e Maximizes the margin M




Specifying a Line and a Margin

x> Plus-Plane
— Classifier Boundary
Minus-Plane
e Plus-plane = {x:.w-x+b=+1}
e Minus-plane= {x.:.w-x+b=-1}
Classify as.. +1 if w-x+b>1
-1 if w-x+b<-1

.. Universe if -I<w-x+b<1
explodes
happen: y



Computing the Margin Width

\M = Margin Width

~ A" How to compute Min
terms of wand 57

e Plus-plane = {x:.w-x+b=+1}
e Minus-plane= {x.:.w-x+b=-1}
Claim: The vector w is perpendicular to the Plus Plane. \Why?

TR I\ /4 A\ H n ‘4—/_’;
o Definitions: “vector” = “point
e x, perpendicular to X, iff X, X, = 0 Let u and v be two vectors on the
% Plus Plane. Whatis w - (u—-v)?

w is also 1 Minus Plane

27



Computing the margin width

z o /\M = Margin Width

¥ x | How to compute Min
= M\e terms of wand 5 7?
7 ~Q¢

Plus-plane = {x:w-x+b=+1}
Minus-plane = {x. . w-x+b=-1}

The vector w is perpendicular to the Plus Planer,-=5 —c=man
X~ = any point on the minus plane et (el

_ _ a datapoint
x* =the point in plus-plane closest to x - ]

Claim: x* = x + A w for some value of Ae 9*. Why?

28



Computing the margin width

z o /'\M = Margin Width

Line from x to x” is L to
the planes.

So to get from x to x7,
travel some distance in
the direction of w

e Plus-plane = {x.w-x+Db:
e Minus-plane= {x.w-x+b==17 /7
¢SO. X -x=AwW ular to the Plus Planefy 4o

e X~ = any poin e minus plane il (cessarily
_ / g ,Atapoint
e x7 =the point| plus-plane closest to x - ]

e Claim: x* = x + A w for some value of Ae J*. Why?

29



Computing the margin width

z o /\M = Margin Width

ML

X
A C
u**X\o B\ ed\c" 1,0(\6
q«*"\)/ A
\0//
Ak

Given...

e W-Xx*+b=+1

e W-x +b=-1

o X'—X =AW

o | Xt—x| =M

... easy to get Min
terms of wand b

30



Computing the margin width

z o /\M = Margin Width

ML

-
‘04X C‘(‘/\’&S‘Ee
kX \\ \ _
C e T we(x+Aw) +b =1
0?
o
Given...
e W-X++bh=+] (w-x"+bH)+iw-w=1

e W-X_ +b=-1
o X'—X"=1w
o |X*t—x"| =M
... easy to get Min —

terms of wand b W:-W

31



Computing the margin width

2

— e - I i =
()6556 X" \M Margin Width To
X eé\c’& 100 ‘
d X
" Me
X \\
AT x| = Aw =
0%
Q$F
Given ... =Alwl=Aw-w
e W-x+b=+1
2AW- W 2
e wW-x_ +b=-1 = :\/—
o XT=X + AW wow 5 wow
o | Xt—x"| =M Yay! Just maximize .,
o 9 .
A=—" ...= minimize w'w
W-W

Wait...OMG, I forgot the data!



Goal of Max Margin Separator

Want a linear separator
w,b fory=w-x+5,
s.t.
e For all +points (x;, y,=+1)
W' X;+b>+1
e For all —points (x;, y,= —1)
W Xx;+b< —1 Minimizes w - w

o Maximizes-thetmargn M




Learning the Maximum Margin Classifier

2

= + L = I I =
Oas‘«*; X >\/4‘// Margin Width T

“CC
AC ,LQ(\

\\Q(e g

d X
A C\o>
““*X\O o ed\c’(, 10(\6
\ﬂ*x‘o /:\ \\Q(
\0/
W

Given wand H we can
e Compute whether all data points are in correct half-planes
e Compute the width of the margin

But... need a program to search the space of w's and /s to

find the widest margin that matches all the datapoints.
How?

Gradient descent? Simulated Annealing? Matrix Inversion?
EM? Newton’s Method?

34



Rewrite Problem

Minimize v~ W - W

S.t.

Equivalent optimization...
L(Wl bl 7") =12 |W|2 _ Zkkk[ Yk (W - Xy + b) -1

miny, , L( w, b, &)
s.t.A>0



Solving Constrained Optimization

rT‘inw,b L(w, b, ) =72 |wl|2- 2 MLy (W +b)—1]
st.A>0

Setting derivatives to O...
RUEDIVRTS'S
¢ 0=2,MVY,

Substitute back into L(..):
Find A > 0 that minimizes

£(7‘~) = Zk 7"k - 2 Zk Zm 7‘“k 7"m YK Ym(xk ) xm)

36



Learning via Quadratic Programming

e QP is a well-studied class of optimization alg’s that

e maximize a quadratic function of some
real-valued variables

e subject to linear constraints
e Popular ML approach:

e Describe your learning problem as optimization...
e ...and give it to somebody else to solve!

37



Quadratic Programming — in general

Find |argmin ¢ +d' w+

A4/

w' Kw

2

Subject to aw,+a,w,+..+a,w <b

——_  _~ Quadratic criterion
Note w-x = wix

a,w,+a,w,+..+a, w_ <b, n additional linear

aw +a w,+..+ta w <b J

and to

Ay T QppWo e T4, W = b(n+1) A

AW T QioppWo Tt 40 W = b(n+2)

AreyW) T 4a

(n+e)

W, + ..

- inequality
constraints

®

alo o

SS 8

—

o 2o

-

>0 3

: —

— —

n -

+ =b 5
. a W - (n_l_e)J -

(n+e)ym ™ " m

w
[0}



Quadratic Programming — in general

Find

A4/

argemin c+d ' w+

w' Kw

Subject to W,

and to

ApreqWi1 T AgyepWy Tt d

N/ V

w

(n+e)ym’™ " m

ote wx = wix

——_  _~ Quadratic criterion

Aditie=re] [inear

‘.
-l -

raints
¢+1) § %

N
b(n+2) =y ;_—J
>&’.~<

-

~—

N

— b(n+e)/

leaul| jeuonippe a

w
\o}



Learning the MaX|mum Margin Classifier

Given guess of w, b, can

e Compute whether all data
points are in the correct
half-planes

e Compute the margin width

R datapoints, {/x,, y./}
where y, e { +1, -1}

What is quadratic How many constraints? R
optimization criterion?

What should they be?
w-x,+b>1 ify =
w-x,+b<-1 ify, =-1

Minimize w-w

40



Uh-oh! This is going to be a problem!
What should we do?

* denotes +1 Idea 1:

° denotes-1 Find minimum w-w,
while minimizing number
of training set errors.

Problemette:
Minimizing 7WO
things is ill-defined
optimization

41



Uh-oh!

° denotes +1

° denotes —1

This is going to be a problem!
What should we do?
Idea 1.1:

Minimize

w-w + C (#train errors)

Tradeoff parameter

But... @ serious practical
problem dooms this approach

42



Uh-oh! This is going to be a problem!
What should we do?

Idea 1.1:
* denotes +1 S
o denotes —1 Minimize
) e w-w + C (#tlrain errors)

. . . ) m parameter

1. Can't be expressed as a Quadratic
. Programming problem.

= Solving it is too slow.

2. Does not distinguish between
disastrous errors and near misses

O (&)




Uh-oh! This is going to be a problem!
What should we do?

Idea 2.0:
* denotes +1 o
o denotes —1 Minimize .
w-w + C (distance from

incorrectly labeled
points to their
correct place)

44



Learning Maximum Margin with Noise
° o . \M=2 Given guess of w, b, can

Jw.w Compute whether all data
points are in the correct
° half-planes

e Compute the margin width

R datapoints, {/x,, y./}
where y, e { +1, -1}

What is quadratic How many constraints? R
optimization criterion?

What should they be?
w-x,+b>(1-¢) Ify= 1

1 R
Minimize —W- W+ CD &
k=1

45



Ill nl |

Learning Maximum Margi = # input PISE
M= Given g dimensions can

. \\\\52 /\ Jw-w Compute whe\%ll data

. g Our original (noiseless data) QP had m+1
A variables: w,, w,, ... w,, and b.
g Ith
w"bé,x Our new (noisy data) QP has m+1+R )
WP variables: Wy, Wy, ... Wy, b, &, &,...

What is quadratic How many constra|r|-‘R/ \

optimization criterion? # records
1 X What should they be?
Minimize EW- W+ CZe‘k ib>(1-e) iy 1

S wex, +b<(-14g) Ify=-1

——————————————————————————————

lThere s a bug in this QP. Can you spot it? | 46



Learning Maximum Margin with Noise
° o . \M 3 Given guess of w, b, can

Jw.w Compute whether all data
points are in the correct
° half-planes

e Compute the margin width

R datapoints, {/x,, y./}
where y, e { +1, -1}

What is quadratic How many constraints? 2R
optimization criterion?

oo Ci What should they be?
Minimize Ew-w+ &, w-x, +b>(1-g) ify= 1

k=1
/ w-x, +b<(-1+g) Ify=-1
Called “'slack variables” — > 0 for all k
47



Learning Maximum Margin with Noise
) Big C = “Fit the training data |, £, can

as much as possible!’_’ N er all data
(at the expense of maximizing
T e correct

Small € ="Maximize the margin

as much as possible!” argin width

(at the expense of fitting the
training data) , Vil?

+1, -1 }
What is quadratic How many constraints? 2R
optimization criterio
| Ci What should they be?
Minimize 5 W WTC L&y . x +b>(1-8) ify=1

= w-x, +b<(-1+¢) If y,=-1

Called “slack variables” ——, g =0 forall k
48



Solving Constrained Optimization

miny , L(w, b, A, &) = V2 |w|2 + C 2
— 2 ML y(wo - +b) = (1-¢y) ]

s.t. A, =0
Setting derivatives to 0... To incorporate slack variables &£,
W Z A Vi X Just add constraint:
* W = LM Vi X
< <
* 0= 24 M Vi 0=h=C
Actually:
Substitute back into L(..): EA) = .. + 5 (C-Mg
Find A > 0 that minimizes M 520 Kty

£(7‘~) — Zk 7"k - 2 Zk Zm 7‘“k 7"m Yk Ym(xk' xm)

49



An Equivalent QP

& | KR
Max%mze Z;Lk _EZzﬂkﬂ?le where Oy =y, (X, - X;)
ko k=l

k=1 [=1

R
Subject to these 0< A <C Yk y) - 0
constraints: k kzzl ek
Then define:
W = ZR /lk V. X, Then classify with:
k=1 f(xw,Db) = sign(w - x + D)

b=y . (I-—€E,)—X, W,

where K = arg max «,
k

50




An Equivalent QP

Math'ze Zﬂ ——ZZﬂ 4,0, where Oy = Yk)’l(x/\x )

k 23
A

Subj h . o

ubject to_t €se 0< A, <C V|xonly appears in dot product!

constraints: ~ =1
\\
Then define: Datapoints with 1, > 0
R == support vectors
_ Then classify with:
= Z AcYiX,

\%%
k:l L7, L) - /. +
\ ...note this sum only X +0)
h = yK(l—gK)—XK : needs to be over the

support vectors.
where K = arg max «
k

(probably << R)

51




An Equivalent QP

klll

MaX|m|ze Z/I ——ZZ& &Q,d where Q,, = ykyl(x/\x )

)

o~ \/ N \/ \
Subject t uct!
£0ons Why use this equivalent QP?
e QP packages can optimize it Lé
ﬁ§ more quickly

e Stay tuned...

beK(l—gK)—XK- to be over the

support vectors.

where K = arg max «
k

(probably << R)

52



Types of Support Vectors

Support Vectors:

'—'.

margin s.v. £ =0 Correct

]

non-margin s.v. & < 1 Correct (in margin)

3  mnon-margin s.v. & > 1 Error

53



What do we have?

e Method for learning a
maximum-margin linear classifier

when the data are ...

e "Linearly separable” —
3 line that gets 0 training error

e Not linearly separable —i.e. no such line.

o If not linearly separable, must trade-off between
maximizing margin and minimizing
“stuff-is-on-the-wrong-side-ness”

e ... OR DO WE?? Kernels!

54



Hard 1-dimensional Dataset

What would
SVMs do with
this data?

Not a big surprise

Doesn’t look like slack variables will save us this time...

Negative “plane”
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Hard 1-dimensional Dataset

" Make up a new feature!

Sort of...
... computed from
original feature(s)

2
z, =(x,,x;)

Separable! MAGIC!

New features are sometimes called basis functions.
Now drop this "augmented” data into our linear SVM.
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... New Features from Old ...

e Here: mapped R — R2 by &: x — [x, x?]

e Found “extra dimensions” = linearly separable!
e In general,

o Start with vector x e %k

e Wanttoadd in x,2, X7 ..

e Probably want other terms —eg x, - X, ...

e Which ones to include?

Why not ALL OF THEM?
(If N" linearly-separable, then any SUPERSET is)

¢ (Xll X2/ X3 ) — , , ,
(1, Xy, X5, X3, X1%, X52, X3%, X1X5, X1X3, X5X3 )
o R3 — RO

e In general, , |
m
m %1+m+m+( j = (m + )2(m+ )



Implied Algorithm
e Training: Given R training instances, each in RM
1. Map each ®™—tuple x, to RM™M2 —tuple d(x)
2. Learn SVM classifier wrt these ®(x;) tuples

e Performance: Given new R™—tuple x
1. Map this x to RM* M2 —tuple P(x)
2. Apply learned SVM classifier to ®(x)

<~
ore tr\C\(-
o Jssue:

e This ®(.) operation is expensive!! — O(m?)
e What if want @’(.) that deals with "x3”, or “x*”,
or ...

See lectures by B Poczos!
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2 Pure

2 > Quadratic
‘ Terms
s0=| | <
Y ﬁxle h
\/§x1x3
: What about those \/5 27
\2x,x,, Quadratic ... stay tuned
ﬁxm Cross-Terms
\/Exlxm

ﬁxm—lxm /
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o 1 1
1
8 wn \/Ecﬁ ﬁbl } +
QO -ld \2a, \2b, .
= 3 : : > ZZaibl
B8 ||| "
O o a’ b’ N  t
g & a2 b2
& | -2 - 2t
a b’
P e P(b)= " [ )
(a) e P(b) \/Ealaz \Fb b, <
\/Eal% \2 2bb, +
\/Ealam \/Eblbm
\/§a2a3 \/Ebzl% >Z ZZalaJ b,
- - i=l j=i+l
\/Ealam \/Eblbm
\V2a _a \N2b b
m—1"m m—1"m




Now consider another fn of @aand b :

=(a-b)’+2a-b+

2
(Z aibij +2) ab, +1
i=l1 i=1

Quadratic Dot
Products

Zm:aba bj+22ab +1

J=1

I

I
—_

l

1+2 ) ab, +i(ai b, )’ +i iZalanle
; i=1

i=l j=i+l

= ( b))’ +222ababj+22ab +1

i=l1 i=1 j=i+l

J They're the same!
.

And this is only O(m) to
compute... not O(m?)

\
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Higher Order Polynomials

Qu=yy,(X,-X,)

Poly- d(x) Cost to Cost if 100 O(a)O(b) Cost to | Cost if
nomial build @, |inputs build @, | 100
matrix: matrix: | inputs
traditional sneaky
Quadratic |All /2 |()R2 /4 [2500 R | rguppgye |72/ 2 |50 R2
terms up
to degree
2
Cubic All m3/6 m3R2/12 83 000 R? (a'b+1)3’ /77R2/2 50 R?
terms up
to degree
3 g —
Quartic | All /24 |(g)R? /48 | 1960 000R? | rgupsrye 2/ 2 |50 A2
terms up
to degree

4

fala]

J




Original QP

Maximize Za' ——ZZO{ ,Q,; where Q,, =y, y,(X, - X,)

ak klll

R
Subjecttothese (<o <C Vk o =0
constraints: T Z Lk

Then define:

_ Then classify with:
W = Z Yy Xy
k=1 fix,w,b) = sign(w - x + )

b=y ., (1—-—€&)—X, W,

where K = arg max «,
k
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QP using Basis Functions

woinie 2., =39 0,10, e 0, = 3,3/(@0%)-@(x)

k 1 I=1

Subjecttothese (<o <C Vk o -0
constraints: -k Z £k

Then define:

) Then classify with:
fix,w,b) = sgn(w Q(x)

kst a,>0

b—yK(l—e ) @

where = arg max o,
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QP usmg Basis Functions

Maximize ZOK ——Zza &, Q, where Q, = ykyl@Xk) (I)(D

k 1 I=1

/\

Subject to these
constraints:

0<q,<C Vk Zak/ 0
k=1

[

Then define:

kst a,>0

®(x,) only appears within dot product!

W = Zakykcp(xk)

b=y, (1—¢€,)=P(x,)W

where K = arg max «,

k

Then classify with:

f(x,w,b) = sgn(w -

= sgn(2 o Vi O(Xp ) O (X) + b)

= sgn(%;, o 1o - 9010
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QP with Quintic basis functions

This matrix requires R2/2 dot products.

In 100-d, each dot product requires 103 ops,
... hot 75 million

But still worries... \

>Ql :yk}’l@k)’q)@

The use of Maximum Margin
magically reduces this problem

constraints:

Subject to thesw eOverfitting due to @normous number of terms

- eThe evaluation phase
(doing a predictions on a test instance x)

Then define: seems expensive...
as w ‘¢p(x) needs 75 million operations

W = Z .y, P(x5 /
a0 w k) = sgn(w - 0(0) + 1)

w-d(x)= D oa,y,P(x,) D(x)

kst. o,>0

= Za’kyk(xk°x+1)5

kst. o,>0

Only S /m operations (S=#support vectors)

= sgn(2 o i 0(X;) - O(X) + b)

= sgn( 2, o vKO(,) - 0 (XD 1)
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The “Kernel Trick”!

maximizea Y05 — 550 j aayiy; K (x4, %)
K(x;,%x;) = P(x;) - P(x5)

> iay; =0
C>Ozi>0

w =) oy;P(x;)
i

o Never represent features
explicitly b=y — w.P(xz)

e Compute dot products in for any k where C'> oy, > 0

closed form

e Constant-time high-
dimensional dot-products for
many classes of features
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... at classification time

e For a new input x, if we need to represent ®(x),
we are in trouble!

e Recall classifier: sign(w.®(x)+b)
e Using kernels we are cool!

w = ay;P(x;)
i

K(u,v) =®(u) - d(v)
b=y — W.P(xg)

for any k where C > ;. >0
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Classifying using SVMs with Kernels

e Choose a set of features and kernel function
e Solve dual problem to obtain support vectors a.
o At classification time, compute:

w-d(x) = Z oy K (X, x;)

b = Y — Z aiyiK(Xk7 X’i) m Sgn(z;( O Vi [(I)(Xk) ’ (])(X)] * b)

7
for any k where C' > a; > 0 = Sgﬂ(z;( o, V. K(x, ,x)+ D)
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What makes a valid kernel?

e In general, K matrix must be
symmetric, positive semidefinite

o A sufficient (but not necessary) condition is for K to
behave like a distance metric

e Nonnegative
e K(x,x)=0
e Symmetric
e Obeys triangle inequality
e Fancy kernels can be constructed by combining simple
ones
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Common Kernels

Polynomials of degree d
K(u,v) = (u-v)¢
Polynomials of degree up to d
K(u,v) = (u-v+1)4

Sigmoid

K(u,v) = tanh(nu-v 4+ v)

Gaussian kernels

K(u,v) = exp (—HU_VH)

D52

Equivalent to ¢(x) of infinite dimensionality!
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Source of Kernels?

e Can generate new kernels from old:

o If k,(,X), k,(x,x’) are kernels, then so is:
o XT AX’ — A any positive semidefinite matrix
e C ky(X,X') —Cce Rt
o f(x) k,(x,x") f(x") — f(.) any function

e q( ki(x,x")) — q(.) any poly function w/
coeff’'s >0
o exp( ky(x,x’) )
o K,(%,X") + ky(x,Xx)
o kK (x,,X',) + Ky(X,,X')
X = (X, X,,) and k(.,.) kernel over “a” space,
Ko(.,.) kernel over "b"” space
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Overfitting?
e Huge feature space with kernels, what about
overfitting???
e Maximizing margin leads to sparse set of
support vectors

e Some interesting theory says that SVMs search
for simple hypothesis with large margin

e Often robust to overfitting
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VC-dimension of an SVM

e Very very very loosely speaking... under some

assumptions, an upper bound on the VC dimension
IS:
Diameter

Margin

e Where

o Diameter = diameter of the smallest sphere that
can enclose all the high-dimensional term-
vectors derived from the training set.

e Margin = smallest margin we'll let the SVM use

e Used in SRM (Structural Risk Minimization) for
choosing the polynomial degree, RBF o, etc.

e But most people just use Cross-Validation...
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SVM Performance

e Anecdotally SVMs do work very very well indeed.

e F£gl: The best-known classifier on a well-studied
hand-written-character recognition benchmark

e Fg2: Many people doing practical real-world work
claim that SVMs have saved them...
when their other favorite classifiers did poorly.

o |Lots of excitement and religious fervor about SVMs
as of 2001...

e Still... some practitioners are a little skeptical...
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Doing Multi-Class Classification

SVMs can only handle two-class outputs
(i.e. a categorical output variable with arity 2)

What can be done?

Answer: with output arity N, learn N SVM’s
e SVM 1 learns "Output==1" vs "Output '= 1"

e SVM 2 learns "Output==2" vs "Output = 2"

e SVM N learns "Output==N" vs "Output = N"
Then, to predict the output for a new input:
e just predict with each SVM and

e select the class w/ largest margin
[whose prediction is furthest into the positive region]
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SVM Regression

Typical loss function:

1
CX 0, =1,° + Sl

... penalty whenever y,_ # t,
To be sparse... don't worry if “close enough”

°Eg(y,t)={

... loss function

No pena

0

Fly—t/<e\ \ ™ ;
ly —t| — ¢ otherwise

e 0

1
CZES(yn’tn)'I'EHWHZ £>0

y(x)

ty if in e-tube

yte

y—€




SVM Regression

I, 2 0 if ly—t] <e
CYEGu 3 Eio= {0
e Nopenaltyif y—e<t <y, +¢ ol o
e Slack variables: {¢,., &}
'tnSyn+8+§n+ " s

yte

y—c€

* 2y, —€e— G

e Error function: 1, 2
CY &+ |

| 1, o
min L(..) =CY (£, +&, ) + EHWH - > (Wl 1, L)
o Zan+(8+§n+ +yn _tn)_ Zan—(8+§n— _yn +tn)

... use Lagrange Multipliers{ a,.., a.., W,., W,. y =0
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SVM Regression, con't
L) = CE G+ E D + ol = &, a1, 6,0
— D4, (e+&, +y,~1)=Da, (e+& —y,+1,)

e Set derivatives to 0, solve for {¢ ., &, Lot s M- F -

- P 1
mlpL(a+’a—) - = 5 Zz(arﬁ _an—)(am+ _am—)k('xn’xm)

st. 0<a,<C 0<a,.=<C

e Prediction for new x :

y(x) = ) (a,, —a,) k(x,,x)
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SVM Regression, con't
y(2)]

y+e
£>Q Yy

y(x) = > (a,, —a, ) k(x,,x) i

e Can ignore x, unless either a,.>0 or a,.>0

ea >0 onlyif t, =y +e+¢& .
ie, if on upper boundary of e-tube (., =0)
or above (&, >0)

ea >0 onlyif t, =y, —e—¢_
ie, if on lower boundary of e-tube (¢,.=0)
or below (¢,.>0)
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Kernels in Logistic Regression

See Poczos lecture

1
1 & e~ (wPGOT)

PY=1|zw) =

e Define weights in terms of support vectors:
W =) a;d(x;)
i

1
1 4 e~ (i ai®(x:)-P(x)+b)

1
1+ e~ (2 O‘@b>

e Derive simple gradient descent rule on o,

PY=1|zw) =
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Difference between SVMs and
Logistic Regression

SVMs

Logistic
Regression

Loss function

High dimensional
features with
kernels

Solution sparse

Semantics of
output

(ela]
Uo




SVM Implementations

e Sequential Minimal Optimization, SMO [Platt]
e efficient implementation of SVMs
e in Weka

e SVMlight
e http://svmlight.joachims.org/

e Run time:
e typically quadratic in the number of data points
e perhaps less if # support vectors is small
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References

e An excellent tutorial on VC-dimension and Support
Vector Machines:

C.J.C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html

e The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-
Interscience; 1998.

BUT YOU SHOULD PROBABLY READ ALMOST
ANYTHING ELSE ABOUT SVMS FIRST.

84



Key SVM Ideas

Maximize the margin between + and — examples
e connects to PAC theory

Sparse:
Only the support vectors contribute to solution

Penalize errors in non-separable case

Kernels map examples into a new, usually
nonlinear space

o Implicitly do dot products in this new space
(in the “dual” form of the SVM program)

o Kernels are separate from SVMs
... but they combine very nicely with SVMs
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Summary I

Advantages

e Systematic implementation through quadratic
programming

e 3 very efficient implementations
e Excellent data-dependent generalization bounds
o Regularization built into cost function

o Statistical performance is /ndependent of
dim. of feature space

e Theoretically related to widely studied fields of
regularization theory and sparse approximation

e Fully adaptive procedures available for determining
hyper-parameters
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Summary II

Drawbacks

e Treatment of non-separable case somewhat
heuristic

e Number of support vectors may depend strongly
on the kernel type and the hyper-parameters

e Systematic choice of kernels is difficult (prior
information)

e ... SOome ideas exist

e Optimization may require clever heuristics for large
problems
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Summary III

Extensions
e Online algorithms

e Systematic choice of kernels using generative
statistical models

e Applications to
e Clustering
e Non-linear principal component analysis
e Independent component analysis

e Generalization bounds constantly improving
e (some even practically useful!)
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What You Should Know

Definition of a maximum margin classifier
Sparse version: (Linear) SVMs

What QP can do for you
(even if you don't know how it works)

How Maximum Margin = a QP problem

How to deal with noisy (non-separable) data
e Slack variable

How to permit “"non-linear boundaries”

e Kernel trick

How SVM Kernel functions permit us to pretend
we're working with a zillion features
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What really happens

e Johnny Machine Learning gets a dataset

e Wants to try SVMs
e Linear: “"Not bad, but I think it could be better.”
e Adjusts C to trade off margin vs. slack

e Still not satisfied: Tries kernels, typically polynomial.
Starts with quadratic, then goes up to about degree 5.

e Johnny goes to Machine Learning conference

e Johnny: "Wow, a quartic kernel with C=2.375 works
great!”

e Audience member: "Why did you pick those, Johnny?”
e Johnny: “Cross validation told me to!”
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Understanding LOO

LOO estimates probability that
a classifier trained on n-1 points
gets the nth point right

For largish n, LOO is = an average of n such draws
For SVM with k support vectors, n training points

o At least n-k draws will produce the same
classifier

e At least this many will get the next point, right

Suggests empirical error of our SVM should be
as low as k/n ...
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Relevance Vector Machine

Bayesian Version of SVM

Provides probabilities on outputs
Tends to produce sparser solutions
Requires non-linear optimization
Can be slow

92



