HFT: Ch 11

Artificial Neural

Networks

R Greiner
Cmput 466 / 551

Thanks: T Dietterich, R Parr, J Shewchuk

“An Intro to Conjugate Gradient Method without Agonizing Pain”

Outline

m [ntroduction
Historical Motivation, non-LTU, Objective
Types of Structures

m Multi-layer Feed-Forward Networks
Sigmoid Unit
Backpropagation

m [ricks
Line Search
Conjugate Gradient
Alternative Error Functions

m Hidden layer representations
Example: Face Recognition

m Recurrent Networks

Motivation for non-Linear Classifiers

m Linear methods are “weak”
Make strong assumptions

Can only express relatively S|mple functions
of inputs : . ,

m Need to learn more-expressive classifiers,
that can do more!
What does the space of hypotheses look like?

How do we navigate in this space?

Skip

" A
Non-Linear = Neural Nets

m Linear separability depends on FEATURES!!
A function can be
not-linearly-separable with one set of features,
but linearly separable in another

m Have system to produce features,
that make function linearly-separatable

m ... heural nets ...

Why “Neural Network”

m Brains — network of neurons — are only known
example of actual intelligence

m Individual neurons are slow, boring
m Brains succeed by using massive parallelism
m |dea: Use for building approximators!

m Raises many issues:

Is the computational metaphor suited to the
computational hardware?

How to copy the important part?
Are we aiming too low?

" A
Artificial Neural Networks

m Develop abstraction of function of actual
neurons

m Simulate large, massively parallel artificial
neural networks on conventional
computers

m Some have tried to build the hardware too

m [ry to approximate human learning,
robustness to noise, robustness to
damage, etc.

Skip

" A
Comparison...

Maybe computers should be more brain-like:

Computers Brains
Computational Units 107 gates/CPU (10" neurons
Storage Units 10" bits RAM |10" neurons

1072 pits HD 104 synapses
Cycle Time 1095 1098
Bandwidth 1019 bits/s” 1074 bits's
Compute Power 109 Ops's 10" Ops's

Skip

.] Axa n
Natural Neurons T % ™ e)
- 3 '1:\ _-'III'. 5'_- IIIII P — E ", ..

Dendrite A W Axon

Cal body or Soma

m Neuron switching time =0.001 second
m Number of neurons =10

m Connections per neuron = 104>

m Scene recognition time =0.1 second

m Only time for =100 inference steps
not enough if only 1 operation/time

— much parallel computation

Skip

" J
Natural, vs Artificial, Neurons

_.-'S
o
. g Axan] 4
.-__.-"'
b Pt Axan from another cell .-___.-"' =
|'-| 3 -
Ji Swnapse e D
d - Y Ason g ‘fH e
T - e Links
o -
i’ M"'\. T
i | " Nudeus L
- Y o
1/ & : -,
Y \ Synapses

Cell body or Soma

Properties of artificial neural nets (ANN's):

m Many neuron-like threshold switching units

m Many weighted interconnections among units
m Highly parallel, distributed process

m Emphasis on tuning weights automatically

" A
Artificial Neural Networks

m Mathematical abstraction!
m Units, connected by links; with weight e R

m Each unit has
+ set of inputs links from other units
+ set of output links to other units
. . . computes activation at next time step

m Lots of simple computational unit
— massively parallel implementation
m Non-Linear function approximation
One of the most widely-used learning methods

“... neural nets are the second best thing for learning anything!” J Denker

10

" A
Artificial Neural Networks

m Rich history, starting in early forties
(McCulloch/Pitts 1943)

m [WO views:

\ Modeling the brain

“dJust” rep'n of complex functions
m Much progress on both fronts
m Interests from:

Neuro-science, Cognitive science,
Physics, Statistics, Engineering, CS / EE,
... and Al

11

" A
Uses of Artificial Neural Nets

m [rained to drive
No-hands across America (Pomerleau)
ARPA Challenge (Thrun)

m [rained to pronounce English (NETtalk)
Training set: Sliding window over text, sounds
95% accuracy on training set
/8% accuracy on test set

m Trained to recognize handwritten digits
>99% accuracy

12

"
Applications of Neural Nets

Learn to. ..

m Control
drive cars
control plants
pronunciation: NETtalk ... mapping text to phonemes

m Recognize/Classify
handwritten characters
spoken words
images (eg, faces)
credit risks

m Predict

Market forecasting
Trend analysis

Skip

" A
Neural Network Lore

m Neural nets have been adopted with an almost
religious fervor within the Al community
... several times

m Often ascribed near magical powers by people...
usually people who know the least about computation or
brains ©

m For most Al people, magic is gone...

but neural nets remain extremely interesting and
useful mathematical objects

Skip

When to Consider Neural Networks

m Inputis
high-dimensional (attribute-value pairs)
discrete or real-valued ead bid b whod hood
possibly noisy [training, testing] T
complete
(eg, raw sensor input)

m Qutput is
vector of values b R

discrete or real valued
“linear ordering"

= R" > R
m ...have LOTS OF TIME to train (performance is fast)
m Form of target function is unknown

m Human readability / Explanability is NOT important

15

I
Multi-Layer Networks

m Perceptrons GREAT if want

SINGLE STRAIGHT -
SURFACE e

m What about . ..)

nnnnn

Skip

" A
Types of Network Structures

B
. .
m Single layer: '&
Linear Threshold Units Dw
Linear Units, Sigmoid Units E"{;f
B

e
Uinits Uit

Parceptron

Single Parceptron

eneral multi-layered feed-forward: N Lt oy O
input / hidden units / output M <

45

m Recurrent + Cycles, to allow “state”

Hopfield networks (used for associative memory),
Boltzmann machines, . ..

17

'__
Threshold Functions

g(x) = sign(x) g(x)=tanh(x) or 1/(1+exp(-x))
(perceptron) (logistic regression; sigmoid)

18

"
Sigmoid Unit

=

e Sigmoid Function: o(z) = 1+1E_m

e Useful properties:
— o R — [0,1]
- %) = g(z) (1 -0o(x))

—If :ci:% then o(z) ~

19

" A
Feed Forward Neural Nets

m SET of connected Sigmoid Functions

20

" A
Artificial Neural Nets

m Can Represent ANY classifier!
w/just 1 “hidden” layer...
in fact...

21

" A
ANNSs: Architecture

m Different # of layers

Different structures
= what's connected to what.. _

Different “squashing function” —
q g e

Computlng Network Output

m “Activation” passed from input to output:

0=0(2,W,5-0,) = G(Wgg5-03+W,5-0,)
O(Wy g +[O(Xg We g - Og)|+ Wy 5 +[0(2 Wyg - 01))
= O(Wgz5-0(Wy3-01+Wp3-0;)

+ W45 O(Wy4-01+Wy4-0,5))

Node #0 set to “1” is input to each node (using w,,)
Final unit (here “#5”) typically NOT o()

23

" A
Representational Power

= Any Boolean Formula
Consider formula in DNF: (x; & =X,) vV (X, & X,) V (—X5 & Xs)
Represent each AND by hidden unit; the OR by output unit.
... but may need exponentially-many hidden units!

m Bounded functions

Can approximate any bounded continuous function to arbitrary
accuracy with 1 hidden sigmoid layer

+ linear output unit
... given enough hidden units.
(Output unit “linear” = computesy =W, - A)

m Arbitrary Functions

Can approximate any function to arbitrary accuracy with
2 hidden sigmoid layers + linear output unit

24

" A
Fixed versus Variable Size

m Network w/fixed # of hidden unit
represents fixed hypothesis space

m But iterative training process
m More steps = can “reach” more functions
m So... view networks as having a variable

hypothesis space
If all w; e = 0, .
then y=wyi=:> ,wis0¢ il _ 5 .

= dwico(y) = Y wiy

= ziu’iZJ wir; = Zj wiT; .
for new constant w/ Skip

"
Learning Neural Networks

Neural Networks Can Represent Complex Decision
Boundaries

m =3Stratified:

More “gradient descent” steps = reach more functions
m Deterministic
m Continuous Parameters

Learning algorithms for neural networks
m Local Search:
same algorithm as for sigmoid threshold units
m Eager
m Batch (typically)

Skip

" S
MultiLayerNetwork Learning Task

m Want to minimize error on training ex's
[not quite. . . why?]

= function minimization problem.

1
Err(D,w) = 5 Z ('if—ﬂg(f))z

(Zy)eD

m Erron outputs, for given input,
is function of weights { w; }
m Minimize:
gradient descent in weight space:
= backpropagation algorithm (aka “chain rule”)

27

Backpropagation
m Perceptron learning relied on direct connection between

input value x; weight w;, output value =N

LR
= could Iocallze contrlbutlon & determine change m.> \\
L2\

m Not true for multilayer network!

m Still, can estimate effect of each weight
.. and make small changes accordingly
Use derivative of error, wrt weight w;; !
Propagate backward (up net) using chain rule
m But no guarantees here... 3 many local minima!

m Need to take DERIVATIVE
= use “sigmoid” squashing function. . . -

AW —

0. New w
AW =0

1. For each instance r, compute

Aw{ = ...

AW += Aw;")
2. Increment w +=1n Aw

AW..

J

{ Awij(r)}

29

Error Gradient for Network

i 3 Z
: w3is
x‘x E \
N w 0
.5 - = O, | —
B W4 ' ‘ ° ©
‘*.M ! /
e 5
E W4+ Of --'-1.!'4—-—--04

wa 4 7

mE = E([x;t]) ="2(0,(x) -1)°

Let

B
11>
Q
[

Ju;
SE((Z, 1)) IE Oys 5 dys
L] m— —
w3 s dys dws s 55}“-’3,5
, Ovs 9 ewes-0p) _ O(w3s-03 + was-04)

owz s dws s ows s

03

30

"
Factoring Derivative

OF ((Z,t))
dws g5

e In General @5@ =

e Compute each o; during

FORWARD sweep

Compute each Jj during

BACKWARD sweep| !

31

"
Computing “Terminal” o.s

N
Zulf:fr Oy —lryfp—lrl-E*5 —= {1}
/ £

OF AE dos
¢ g = — = — —
dys dos Jdys
OE((Z,t)) o 1 2] G
' — — | Z(og —t — og —1t) - —(og — ¢
. 9 os Pom 2('3'5) (05 —t) 605(5—t)
dos do(ys)
° - — , = o(ys) (L—0(ys)) = o (1 —o05)
Y5 ys > >
—

32

Computing Non-Terminal o;s

wa 3
TLEE oy —l-'1;|'5—l- = 05— ()
’Ul¢

'-'-'145
U€4 Oy --1.1'4—-—.

OE({Z.t
AS —@7&1’3) depends only on o3, and hence y3

—.
. oy3 _ a(ZF'u’E,EGE) _
5'&-‘13 5-1;,-'1?3 1

5 OF AE Hos

o — e —= S

> dy3 doz dy3

33

"
Computing o,
'Zé'j e
t(mﬂw]““

5 OE o3
™ o S —
4 S'yg dﬂg d’lfg
OE _ JE Jys (X pwys - 0p)
¢ —— = T—= = 05 —— = 05 -w3s
dos dys o3z dos '
do do(y3)
o2 = _._(> = o(y3) (1-o(y3)) = o3 (1 — 03)
dy3 Jy3

What if Many Children?

U.-:IE
‘LL-:‘E O¢ -.—uE-- ..og \
HEL Of --h'u—a =0 /

U-AL

e AS before. ..
oF OF 0Oyy .
__ — - __ — 04 0]
d-wLA Yy 4 deA
OF oF ©Oo OF
bg = 5 = o o8 = o[04 (1 —04)]
YA dog Jdy 4 doy
; OF
e NoOtice S dEDEﬂdS Oﬂ|}" on BOTH
Jo 4
* B (via yg)

« C (via yo)

35

"
Multiple Children (con't)

wy B
‘LLfE O¢ -.-uﬂ-- .—DE \

HlA
wa.o

OF OFE Oyp 4 OF dyo _ 3 IE Jyy,
-] — i 0
doz dyp doy dyc Doy kechild(A) Iy doy
o d Wy 1.« Op .
_ Y Y, Ok 00) S Sauwas
kechild(A) Joy kechild(A)
Here: SA — DA(]- — CJA) [53 WA B + 5(:_. H}A.—C—.]

o¢ (1 — op) Y Spweg
kechild(f)

m In general: |

36

" A
Basic Computations

m 1. Sweep FORWARD, from input to output
For each node n, compute “output” o,

m 2. Sweep BACKWARD, from output to input

For each node n, compute
_ OE |
S

dUYn

((t — o) if terminal

— l—o0 “" Y
011(”) Z O, Wy, | otherwise
| kechild(n)

o F
dwf .

m Notice everything is trivial to compute!

_ (I.I'Irl D{'

37

Backpropagation Alg @ =F

7 0

Initialize all weights to small random numbers
Until satisfied, do
m For each training example [x, t] , do

1. Sweep forward

Compute network outputs o, for x for each
hidden/output node

2. Sweep backward
For each output unit k
O <= 0 (1 —0y) (t, —0y)
For each hidden unit h
O <= O, (1 = 0p) 2k child(h) Whi Ok
3. Update each network weight

W= W;;+ 1 0 O

38

0. New w
Aw =0
1. For each instance r, compute
d. Forward: O(r)i = (5(> w.. o).)
Sp <]
D. Backward: 6" =0
C. Awij += B(r)j O?I)ji

2. Increment w +=1 Aw

AW,

J

39

Empirical Results (MultiLayer Net

“Restaurant Domain”

Totalarror on training sat

& cormect ontest 2l

bt = >

=

09

0.8

0.7

06 |

Tramning set size

30 100 150 200 250 300 350 400
Mumber of epochs
T T T T T T I‘:I- F,.:--I‘_':p-rl:-l-f”
+::rumﬂﬂﬁﬁ: -I":F"‘ 'Hﬁ- +.|. had 1‘"'1‘.
B+ T ¥ et gt)
#ﬁ: 5 Pt i
1@ - o E
-+
T g |
+
]
Multilaver network .
Dacizion tree 4+
0 20 3 40 50 &0 70 B0 90 100

40

" A
More on Backpropagation

= Gradient descent over entire network weight vector { w; }
m Can be either: “Incremental Mode” Gradient Descent

or “Batch Mode™ ., 5(d)

B Z dw;

a4 Ts i deD

m Easily generalized to arbitrary directed graphs
If have > 1 OUTPUTSs: Just add them up!

Can have arbitrary connections
Not just “everything on level 3 to everything on level 4”

" A
Issues

Backprop will (at best)...

m ... Slowly ...
Faster? Line search, Conjugate gradient, ...

m ... converge to LOCAL Opt ...
Multiple restart, simulated annealing, ...

m ... wrt Training Data
Early stopping, regularization

42

Outline

m Introduction
Historical Motivation, non-LTU, Objective
Types of Structures

m Multi-layer Feed-Forward Networks
Sigmoid Unit

\ Backpropagation

m [ricks for Effectiveness
Efficiency: Line Search, Conjugate Gradient
Generalization: Alternative Error Functions

m Hidden layer representations
Example: Face Recognition

m Recurrent Networks

43

" A
Gradient Desc

Initialize w(0)
For k= 1..m
wktl) = wk) 1 alk) x qk)

m General description:
Want w* that minimizes function J(w)

m Sofar...
w0 is random
ak) = 0.05

dk = vJ = <ﬂ—l> is derivative

B!

m = until bored...

m Alternatively...
1. Use small random values for w(©
2. Use line search for distance o
3. Use conjugate gradient for direction d®
4. Use “cross tuning” for stopping criteria m ... overfitting

44

" S
1. Proper Initialization (variables)

m Put all of the variables on same scale

m Standardize all feature values
Mean = 0, Standard Deviation = 1
(1e, subtract mean, divide by std.dev.)

45

1. Proper Initialization (w

g

m Start in “linear regions”
Keep all weights near 0,
= sigmoid units In linear regions.

)

=

— whole net one linear threshold unit

(very simple function)
m Break symmetry

Ensure each unit has different input weights
(so hidden units move in different directions)
Set weight to random number in range

1

—1, 1| x
| W v fan-in

46

Why BackProp tends to Work?

m Only guaranteed to converge
EVENTUALLY
to a LOCAL opt

m Why does it work so well in practice?

As start w/ w; = 0,

network = linear in weights...

so moves quickly

e

... until in “correct region”

47

" J
Efficiency

= Number of Iterations: Very important!
If too small: high error
If too large: overfitting = high gen'l error
m Learning: Intractable in general
Training can take thousands of iterations .. slow!

Learning net w/ single hidden unit is NP-hard
In practice: backprop is very useful.

m Use: Using network (after training) is very fast

48

" A
2. Line Search

m Task: Seek w that minimize J(w)

m Approach: Given direction d € ®R"
New value w1 :=w0 +nd
But what value of n?

m Good news:n e R = 1 dim search! |
mlet em)=Jd(w+n-d)]
Want n* =argmin e(n) e e

m Line Search: S
Near 0, e(n) = quadratic “ '

" A
Line Search, con't

m Set n, = 0, and guess 2 other values:

Eg,ng=0.2 Ne = 0.5
s.t. e(Ma), eMc) > e(Mmg) : |

mFit2-Dpoly h(n) =rn2+sm+t

to [Na, eMa)ls e €Me)l; M, eMe)]
m [ake min of this poly... the newn*
m Compute e(n)

50

Line Search, Il
m Letn’ = argmin, h(n)

lteration (', Mg, N'c) =

M* Mg, Mgy If " <ng & e(N”) > e(ng)
Ma- N5 Me) I M <mg & e() < e(Mp)
Mg N Mgy If " >mg & e(n’) < e(Mp)
MaMe,M™) I N >Mpg & e(M*) > e(Mp)

m ... for ONE ITERATION of general search

Search can involve m iterations,

e
e

Each iteration may involve 10's of eval'sto get

m Issues:
How to find first 3 values?
Many other tricks... (Brent's Method)
Given assumptions, ANALYTIC form

51

" A
3. Conjugate Gradient

m At step r, searching along gradient d"
.using gm) =J(wh +n-dn)
At minimum 1" 9 50,04 pa0y 2 g

Let w(+!)) 4+ n"-d"
— VJ(Wr+1)T dn = 0O

m Gradient VJ(w)) at r+1st step is ORTHOGONAL to
previous search direction d(|

m Is this the best direction?? 52

"
Problem with Steepest Descent

m Steepest Descent...

from [-2,-2]" to [2,-2]" | | /&u

m Path “zigzag”s as each gradiént IS
orthogonal to the previous gradient

53

L i . iy -I _ " R 1
-4 -2 2 T :

" S
Does Gradient always work??

m Each greenline is
gradient...

m Problematic when going
down narrow canyon

m Red is better...

10p —
5 /
|:| L
A0k . . . : .
30 20 10 0 10 20 30

" A
Better...

m Problem: Gradients { g.} are NOT
orthogonal to each other

SO can “repeat” same directions

m Suppose directions { d. } were Conjugate
Spanning
“Orthogonal” (wrt matrix)

m [hen after n moves (dim of space),
must be at optimum!!

55

" S
Make Descent Directions Orthogonal

m At step r, searching along gradient d,

.. using gm) =J(w,+n-d,)
At minimum: J .
%J(Wr+77 d)=0

Let Wipg — Wy _l_ n*'dr
=>VJ(w,,4)7d, =0

m Gradient VJ(w, 1) atr +1ststep is ORTHOGONAL to
previous search direction d, !

THwirty . i =g d™

Direction d,,, is conjugate to direction d, N \

g r+1) s wir+1)
if component of gradient parallel to d, . N

. \“
remains 0 as move along d

r+1

" A
Conjugate Gradient, lla

o) oJ -
g =VJ = (—.., — Later. . . g, = VJ(w®) on rth iteration

m Let d be DIRECTION of change.
Could haved =gbut. ..

m At time r, require g(w, {)"d =0

Want this to be true for next direction as well:

g(Wr+2)T CIr =0

..wantd. ; s..
Wr+2 = Wr+1 + 7\‘ dr+1
g(wr+1 + 7\' dr+1)T dr =0

57

" A
Conjugate Gradient, llb

m First order Taylor expansion:

0=g(W,q+Ad,)"
= g(r+1) + 7‘dr+1T J (W1t Ydr+1)
for someye (0, A)
m Post-Multiply by d, & use g(w,,{)Td, =0 to
get

A T 9'(Wy +vd,)d =0

mlet #(w,) = g(w) = V(VJ(w,))

58

» S
Hessian Matrix (Second Derivatives)

m Consider J(X, y) = X% +3xy — 5x

e s(ey) = VI o= (S o) = (20+3y -5, 3)

g al(zy) & 8J(zy)
dr dr dy dr

g 8l{ry) & 8J(zy)
Or oy gy Oy

ﬂ—i(?*” + 3y — 5) ﬂ—t;[?m + 3y —-5)

B _ 2 3
B { 2 (3x) 2(3x) - [3 D]

m As J(X, y) Is quadratic, € is constant
If J(X, y) = x3y? +..., then is function of args.

7\.dr+1 T g,(Wr+1 + 'Ydr+1) d=0

m Using ﬂ(wr) = g,(wr) = V(VJ(er))
0=d,' g,(wr+1 +7d,,) d,
= dr+1 T‘f'%(wr+1 + Ydr+1) d,
~ dr+1T FH d,
m Challenge: How to find such d, vectors?
m Assuming J(w) =J, +b'w + 2w’ FEw
theng(w) = VJ(w)= b+ FHw
mJisminatw st. gw)=b+%Fw =0

60

" A
Conjugate Gradient, |V

m Spse 1 k vectors “mutually conjugate wrt €
d'#d =0 j#i
Then { d.} linearly independent (if # pos def)
m Starting from w,; want minimum w’

As {d } spanning, w — w, = Zi=1koci d,

— WJ+1=WJ+OCJC|J
m Series of steps, each parallel some conjugate

direction, of magnitude o; € R
m Earlier: computed optimal o by line search.
But given above assumptions... N

"
To find QL

m [0 find value for Q

multiply w' — w, = 2. Ko d,

by d;" ¥ :
dT(-b —gew,) =2 Ko dTFd;, =o dTFd,
\ \
As W' is optimum, 0 = g(w’) = FE(wW*) +b As di" 5td;=0 unless i = |
o _df(b+HvU) _ _d?(b+Hw®) _ d’g,
! dedj dedj dedj
a N

d"F w; = d;TF [w, +2._,0" o, dj]
- le.% W1 +Zi=1(j-1) (xi leﬂ di - le.% W1
o _/

62

" S
Obtaining d. from g
m Given gradient g,
et d,,:= g, +Bd

m Find B, such that: d.,'#d =0
— gj+1T"76 dj — Bj dJTﬂdJ

_ 8uHd,
- T
dj Ha’j

= ,Bj

63

" A
. . gr Hd .
Simpler version of g = S/
" d'Hd .
m Observe S
di.1 — 9;=[F W, +b] - [FH W+ D]

= So... #d, =[g;,; — gl

. gJT+1de _ g§+1[gj+l_gj]/aj . g]T'+1[gj+1_gj]

B = _ _
' djHd; djlg;.-g), dilg.—g)]

| NOte dJT gk = O VJ <k 64

Computing Actual Direction d
§j11a;

T
d'Hd,

O dj+1 = .— gj+1+BJdl Where ,B] —
m Assuming dJ is quadratic...

T
g isl& ;i — 8,1
d;[gj+1 o gj]

Hestenes-Stiefel: [£i =

[] [] T —
Polak-Ribiere: B = 8,-+1[gT,-+1 g ;]
J ;8
Fletcher-Reeves: ¢l g
IB' — j+1 j+1
J T
8,8

m If J is NOT quadratic, Polak-Ribiere seems best
[If gradients similar, B = 0, so =restarting!]

"
Conjugate Gradient Algorithm

m Update parameters: w;,; =W, + 0 d,
To get DIRECTION dj

'dj+1 = —Oj41 +Bj dj

T
. gj+1[gj+1_gj]
lBj_ T
;8

_dig,
. o ' dJHd,
To find appropriate distance

m |[f J quadratic, converge in n steps!
If not... sometimes reset: d, := —g,

m YA "nAt nAAA A AArmrnEitA LlAcaian L fAr 2

66

Error

0.01
0.009
0.008
0.007
0.006
0.003
0.004
0.003
0.002

4. Avoid Overfitting

Overfitting in ANNS

Error versus weight updates (example 1)

Training set error
Walidation set error

000

10000 15000
Number of weight updates

Error

20000

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Error versus weight updates (example 2)

Training set error
WValidation set error

1 w

OO0

2000 3000 4000 S000
Number of weight updates

+

6000

" J
Local # Global Optimum

m Techniques so far: Seek LOCAL minimal
m For Linear Separators: PERFECT

3 1 minimum

... If everything nearby looks “bad” = Done!
m Not true in general!

m Simulated Annealing
Go wrong-way sometimes ...
with diminishing probabilities

68

" J
4. Stopping Criteria

m After N iterations? (for fixed N)
m \WWhen resubstitution error is suff. small?
BAD: often overfits [EEREs

25

[£&]
L=

Classifcalon Emor

=i =
(=1 h (=1 h
T T T

m Use “validation data set”
1. Do many iterations, 2S5 e BN ERuUEIETElm
then use weights from high-water mark
2. Cross validation:
Plot # iterations vs error — opt =,
Let r =median(r))
Use all data, for r iterations 69

"
Regularized Error Functions

m Penalize large weights: “Regularizing”

. “weight decay”

E(w) = Z Dty —04)° +7/Zwu

de D ke outputs

E(w) = Z Z(tkd_akd) +7/Z

de D ke outputs 1 + W

m = ridge regression

70

Training Error: 0.100
Test Error: 0259 SEEE
Bayes Emor: 0.210 ¢ S

Training Error: 0.160
TestError: 0223
Bayes Error: 0.210 ¢

No Weight Decay

Weight Decay=0.02

Neural Network - 10 Units

71

" A
Other Ideas

m [rain on target slopes as well as values:
(more constraints...)

| 2
E(®) = %y: Y‘ |:(fn‘-:d_f’.!.:d}2+,u Z (rﬂtm B r'j‘m;d) }

J]
de) kCoutputs jeinputs aﬂ'd 61&3

m [ie together weights:

— eg, in phoneme recognition network
(Fewer weights, ...)

m Multiple restarts
m Change structure

72

B B
Dynamically Modifying
Network Structure

m So far, assume structure FIXED..
... only learning values of WEIGHTS

= Why not modify structure as well?

“Cascade Correlation” “Optimal Brain Damage”
1. Initially: NO hidden units start w/ complex network,
.. . just direct connections from input-output prune “inessential" connections
2. Find best weights for this structure Inessential if w, =0
3. If good fit: STOP. ...ordE/dw, =0

Otherwise. . . if significant residual error:
4. Produce new hidden unit
from previous units, and to all output units
w/weights CORRELATED to residual error
Goto 2

73

" A
Neural Network Evaluation

Criterion LMS Logistic LDA DecTree NeuWets
Mixed data NG No No Yes N
Missing values Mo MNo Yes Yes MO
QOutliers NGO Yes No Yes Yes
Monotone :

T No No No Yes kinda
Scalability Yes Yes Yes Yes Yes
Irrelevant :

Inputs NGO No No kinda NG
Linear

SRR Yes Yes Yes No Yes
Interpretable Yes Yes Yes Yes No
Predictive
power Yes Yes Yes No Yes

74

Outline

m [ntroduction
Historical Motivation, non-LTU, Objective
Types of Structures

m Multi-layer Feed-Forward Networks
Sigmoid Unit
Backpropagation

m [ricks
Line Search
Conjugate Gradient

\ Alternative Error Functions

m Hidden layer representations
Example: Face Recognition

m Recurrent Networks

75

"
Learning Hidden Layer Repr'n

Fan
S

m Auto-encoder:

m Goal: Learn

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

76

" J
Hidden Layer Representations

m Learned hidden layer representation:

Input Hidden Output
Values
10000000 — 1 0 0 — 10000000
01000000 — 0 0 1 — 01000000
00100000 — 0 1 0 — 00100000
00010000 — 1 1 1 — 00010000
00001000 — 0 0 0 — 00001000
00000100 — 0 1 1 — 00000100
00000010 — 1 0 1 — 00000010
00000001 — 1 1 0 — 00000001

"

Training Curve #1

0.9
0.5
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Sum of squared errors for each output unit

e
oy -
. S

2000

2500

78

"

Training Curve #2

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Hidden unit encoding for input 01000000

o B

Ty i

79

"
Training Curve #3

Weights from inputs to one hidden unit

4 | | | I

I |
1 L .
Lk)
O e e i —— .
1k _
i S P :
3k .
Al A
-5 ' ' ' '

0 00 1000 | 500 20000 2500

80

= JEE
Neural Nets for Face Recognition

m Performance Task: Recognize DIRECTION of face

m Framework: Different people, poses, “glasses”, different

background, . ..

m Design Decisions:
Input Encoding:
m Just pixels? (subsampled? averaged?)
m or perhaps lines/edges?
Output Encoding:
m Single output ([0, 1/n] =#1,...)
m Set of n-output (take highest value)
Network structure: # of layers
m Connections (training time vs accuracy)
Learning Parameters: Stochastic?
m Initial values of weights?
m Learning rate n, Momentum ¢, . . .
m Size of Validation Set, . . .

81

Neural Nets Used
left strt rght up

Typical input images

90% accurate learning head pose,

and recognizing 1-of-20 faces

left strt rght up

A RR
L1 H'-\. i III _.-'-. |I i

82

" A
Recurrent Networks

Brain needs short-term memory, . ..

= feedforward network not sufficient.
Brain has many feed-back connections.
— brain is recurrent network, with Cycles!

Recurrent nets:
Can capture internal state.
(activation keeps going around)
More complex agents
Much harder to analyze.
... Unstable, Oscillate, Chaotic

Main types:
lterative model
Hopfield networks
Boltzmann machines

83

lterative Recurrent Network

+_'p|_r + 1]

Xt

(@) Peadforward network
(51 Recurrent network

xir— 1

(o) Bacurrant network
unfolded in time

olr— 11

wWr— 1)

84

" J
Hopfield Networks

m Symmetric connections (W;; = W, ;)
Activation only {+1, -1}
o(.) is sign-function

m [rain weights to obtain associative memory
eg, store patterns

m After learning, can “retrieve” patterns:

Set some node values,
other nodes settle to best pattern match

m Theorem:
An N-unit Hopfield net can store up to
0.138N patterns reliably.

m Note: No explicit storage; all in the weights!

85

" A
Boltzmann Machines

m Symmetric connections (W;; = W,)
m Activation only {+1, -1}, but stochastic
m P(n =1)depends on inputs

Network in constant motion,

computing average output value of each node
... like simulated annealing

m Has nice (but slow) learning algorithm.
m Related to probabilistic reasoning
... belief networks!

86

" A
Other Topics

m Architecture

m |nitialization
Incorporating Background Knowledge
KBANN, ...

m Better statistical models
When to use which system?
Other training techniques
Regularizing

m Other “internal” functions
Sigmoid
Radial Basis Function

87

" A
What to Remember

m Neural Nets can represent arbitrarily complex
functions

m |t can be challenging to LEARN the parameters,
as multiple local optima
... gradient descent ... using backpropagation

m Many tricks to make gradient descent work!
Line search

Conjugate gradient
... useful for ANY optimization (not just NN)

88

