
1

Linear Classifiers

R Greiner
Cmput 466/551

HTF: Ch4
B: Ch4



2

Outline
� Framework
� Exact

� Minimize Mistakes (Perceptron Training)
� Matrix inversion (LMS)

� Logistic Regression
� Max Likelihood Estimation (MLE) of P( y | x )
� Gradient descent (MSE; MLE)
� Newton-Raphson

� Linear Discriminant Analysis
� Max Likelihood Estimation (MLE) of P( y, x )
� Direct Computation
� Fisher’s Linear Discriminant
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Diagnosing Butterfly-itis
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Classifier: Decision Boundaries
� Classifier: partitions input space X into

“decision regions”

� Linear threshold unit has a 
linear decision boundary

� Defn: Set of points that can be separated by 
linear decision boundary is “linearly separable"
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Linear Separators

� Draw “separating line”

� If  #antennae ≤ 2,  then butterfly-itis

��

�

�

� �

�

�

�

�

�

�

�
�

�

�

���
�����

�
�
��
�
	

� So  ? is  Not butterfly-itis.
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Can be “angled”…

� If   2.3 ×××× #Wings – 7.5 ×××× #antennae + 1.2 >  0

then butterfly-itis
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2.3 ×××× #w  – 7.5 ×××× #a  +  1.2 =  0
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Linear Separators, in General

� Given data  (many features)
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� find “weights” {w1, w2, …, wn, w0}
such that
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Linear Separator
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Linear Separator
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� Performance
� Given {wi}, and values for instance, compute response

� Learning
� Given labeled data, find “correct” {wi}

� Linear Threshold Unit … “Perceptron”
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Geometric View

� Consider 3 training examples:

� Want classifier that looks like. . .

( [1.0, 1.0]; 1 )
( [0.5; 3.0]; 1 )
( [2.0; 2.0]; 0 )
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Linear Equation is Hyperplane

� Equation w·x =�i wi·xi is plane

y(x) = 1     if w·x > 0
0     otherwise
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Linear Threshold Unit: “Perceptron”

� Squashing function:
sgn: ℜ→ {-1, +1 }

sgn(r) =

(“Heaviside”)

� Actually w · x > b but. . .
Create extra input x0 fixed at 1
Corresponding w0 corresponds to -b

1     if r > 0
0     otherwise
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� Remarkable learning algorithm: [Rosenblatt 1960]

If function f can be represented by perceptron,
then ∃learning alg guaranteed to quickly converge to f!

� enormous popularity, early / mid 60's
� But some simple fns cannot be represented

… killed the field temporarily!

� Can represent Linearly-Separated surface
. . . any hyper-plane between two half-spaces…

Learning Perceptrons
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Perceptron Learning

� Hypothesis space is. . .
� Fixed Size:

∃ O(2n^2) distinct perceptrons over n boolean features
� Deterministic
� Continuous Parameters

� Learning algorithm:
� Various: Local search, Direct computation, . . .
� Eager
� Online / Batch
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Task

� Input: labeled data

Transformed to

� Output: w ∈ℜr+1

Goal: Want w s.t.
∀∀∀∀i  sgn( w · [1, x(i) ]) = y(i)

� . . . minimize mistakes wrt data . . .
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Error Function
Given data { [x(i), y(i) ] }i=1..m,  optimize...

� 1. Classification error
Perceptron Training; Matrix Inversion

� 2. Mean-squared error (LMS)
Matrix Inversion; Gradient Descent

� 3. (Log) Conditional Probability (LR)
MSE Gradient Descent; LCL Gradient Descent

� 4. (Log) Joint Probability (LDA; FDA)
Direct Computation
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#1: Optimal Classification Error
� For each labeled instance [x, y]

Err = y – ow(x)
y = f(x) is target value
ow(x) = sgn(w · x) is perceptron output

� Idea: Move weights in appropriate direction, 
to push Err → 0

� If Err > 0 (error on POSITIVE example)
� need to increase sgn(w · x)
� need to increase w · x

� Input j contributes wj · xj to w · x
� if xj > 0, increasing wj will increase w · x
� if xj < 0, decreasing wj will increase w · x

� wj ←wj + xj
�If Err < 0 (error on NEGATIVE example)

� wj ←wj – xj
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Local Search via Gradient Descent
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#1a: Mistake Bound Perceptron Alg

OK#3[1 -1  2]

+x#1[1 -1  2]

OK#2[1 -1  2]

OK#1[1 -1  2]

OK#1[1  0  2]

-x#2[1  0  2]

OK#3[0 -1  2]

OK#1[1  0  1]

-x#2[1  0  1]

+x#3[0 -1  1]

+x#3[0 -1  0]

-x#2[1  0  0]

+x#1[0  0  0]

ActionInstanceWeightsInitialize w = 0
Do until bored

Predict “+” iff w · x > 0
else “–"

Mistake on y = +1:  w ←w + x
Mistake on ��� ��� � w ←w – x
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Mistake Bound Theorem

Theorem: [Rosenblatt 1960]
If data is consistent w/some linear threshold w,
then number of mistakes is ≤ (1/∆)2 ,

where

� ∆ measures “wiggle room” available:

If |x| = 1, then ∆ is max, over all consistent planes, 
of minimum distance of example to that plane

� w is ⊥ to separator,  as w · x = 0 at boundary
� So |w · x| is projection of x onto plane,

PERPENDICULAR to boundary line
… ie, is distance from x to that line (once normalized)

See SVM…
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Proof of Convergence

� Let w* be unit vector rep'ning target plane
∆ = minx { w* · x }

Let w be hypothesis plane

� Consider:

� On each mistake, add x to w w = Σ{x | x · w < 0 } x

x wrong  wrt w iff w · x < 0
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Proof (con't)
If w is mistake…

∆ = minx { w* ·x }

w = Σ{x | x · w < 0 } x
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#1b: Perceptron Training Rule
� For each labeled instance [x, y]

Err( [x, y] ) =  y – ow(x) ∈ { -1, 0, +1 }

� If Err( [x, y] ) = 0    Correct!  … Do nothing!
∆w = 0  ≡ Err( [x, y] ) · x

� If Err( [x, y] ) = +1 Mistake on positive!   Increment by +x
∆w = +x   ≡ Err( [x, y] ) · x

� If Err( [x, y] ) = -1 Mistake on negative!   Increment by -x
∆w = -x   ≡ Err( [x, y] ) · x

In all cases...      ∆w(i) = Err( [x(i), y(i) ] ) · x(i) =  [y(i) – ow(x(i))] · x(i)

� Batch Mode: do ALL updates at once!

∆wj = �i ∆wj
(i)

= �i x(i)
j ( y(i) – ow(x(i)) )

wj += η ∆w j
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x(i)
jx(i)

feature j

∆wj

0. Fix w
∆w := 0

1. For each row i, compute
a. E(i) := y(i) – ow(x(i))
b. ∆w += E(i) x(i)

[ … ∆wj += E(i) x(i)
j … ]

2. Increment w += η ∆w

E(i)

∆w

0. New w
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Correctness
� Rule is intuitive:  Climbs in correct direction. . .

� Thrm: Converges to correct answer, if . . .
� training data is linearly separable
� sufficiently small η

� Proof: Weight space has EXACTLY 1 minimum!
(no non-global minima)

� with enough examples, finds correct function!

� Explains early popularity

� If η too large, may overshoot
If η too small, takes too long

� So often η = η(k) … which decays with # of iterations, k
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#1c: Matrix Version?

� Task: Given  { �xi, yi }i

� yi ∈ { –1, +1 } is label

Find { wi } s.t.

� Linear Equalities  y = X w

� Solution:  w = X-1 y
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Issues

1. Why restrict to only yi ∈ { –1, +1 } ?
� If from discrete set yi ∈ {  0, 1, …, m } :

General (non-binary) classification
� If ARBITRARY yi ∈ ℜ: Regression

2. What if NO w works?
...X is singular; overconstrained ...
Could try to minimize residual

�i �[ y(i) ≠ w · x(i) ]

|| y – X w ||1 =   �i | y(i) – w · x(i) |
|| y – X w ||2 =   �i ( y(i) – w · x(i) )2

NP-Hard!

Easy!
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L2 error vs 0/1-Loss

� “0/1 Loss function” not smooth, 
differentiable

� MSE error is smooth, differentiable…
and is overbound...
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Gradient Descent for Perceptron?
� Why not Gradient Descent 

for THRESHOLDed perceptron?
� Needs gradient (derivative), not

� Gradient Descent is General approach.
Requires

+ continuously parameterized hypothesis
+ error must be differentiatable wrt parameters

But. . .
– can be slow (many iterations)
– may only find LOCAL opt
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Linear Separators – Facts

� GOOD NEWS:
� If data is linearly separated,
�Then FAST ALGORITHM finds correct {wi} !

�

� �

�

� But…
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Linear Separators – Facts

� GOOD NEWS:
� If data is linearly separated,
�Then FAST ALGORITHM finds correct {wi} !

� Some “data sets” are 
NOT linearly separatable!

�

� �

�

� But…

Stay tuned!
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#1. LMS version of Classifier

� View as Regression
�Find “best” linear mapping w from X to Y

� w* = argmin ErrLMS
(X, Y)(w) 

� ErrLMS
(X, Y)(w) = �i ( y(i) – w · x(i) )2

�Threshold: if  wTx > 0.5, 
return 1; 
else 0

� See Chapter 3…
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General Idea

� Use a discriminant function δk(x) for each class k
� Eg, δk(x) = P( G=k | X)

� Classification rule: 
Return k = argmaxj δj(x)

� If each δj(x) is linear,

decision boundaries are piecewise hyperplanes
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Linear Classification using
Linear Regression

� 2D Input space: X = (X1, X2)
K-3 classes:

� Training sample (N=5):

� Regression output:

� Classification rule:
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Use Linear Regression for 
Classification?

� But … regression minimizes 
sum of squared errors on target function

… which gives strong influence to outliers

Great separation

Bad separation
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#3: Logistic Regression 

xe
x −+

=
1

1
)(σ

� Want to compute Pw(y=1| x)
... based on parameters w

� But …
� w·x has range [-∞, ∞]
� probability must be in range ∈ [0; 1]

� Need “squashing” function [-∞, ∞] →[0, 1]
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Alternative Derivation…
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Sigmoid Unit
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Logistic Regression (con’t)

� Assume 2 classes:
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How to learn parameters w ?

� … depends on goal?
� A: Minimize MSE?

�i ( y(i) – ow(x(i)) )2

� B: Maximize likelihood?

�i log Pw(y(i) | x(i))
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MSError Gradient for Sigmoid Unit

� Error: �j ( y(j) – ow(x(j)) )2 = �j E(j)

For single training instance
� Input: x(j) = [x(j)

1, …, x(j)
k]

� Computed Output: o(j) = σ( �i x(j)
i · wi ) = σ( z(j) ) 

� where z(j) = �i x(j)
i · wi using current  { wi }

� Correct output: y(j)

Stochastic Error Gradient (Ignore (j) superscript)
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Derivative of Sigmoid
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� Update   wi += ∆wi where

Updating LR Weights (MSE)

ze
z −+

=
1

1
)(σ

Note: As already computed o(j) = σ( z(j)) to get answer, 
trivial to compute σ’( z(j)) = σ( z(j))( 1– σ( z(j)) )
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(LMS)

x(i)
jx(i)

feature j

∆wj

E(i)

0. Fix w
∆w = 0 

1. For each row i, compute
a. E(i) = y(i) – ow(x(i))
b. ∆w += E(i) x(i)

[ … ∆wj += E(i) x(i)
j … ]

2. Increment w += η∆w

∆w

0. New w

(o(i) – y(i)) o(i) (1– o(i) )
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B: Or... Learn Conditional Probability

� As fitting probability distribution,
better to return probability distribution (≈ w)
that is most likely, given training data, S

Bayes Rules

As P(S) does not depend on w

As P(w) is uniform 

As log is monotonic
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ML Estimation

� P( S | w) ≡ likelihood function
L(w) = log P( S | w)

� w* = argmaxw L(w)
is “maximum likelihood estimator” (MLE)
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Computing the Likelihood

� As training examples [x(i), y(i)] are iid
� drawn independently from same (unknown) prob Pw(x, y)

� log P( S | w )  =  log Πi Pw(x(i), y(i) )

= �i log Pw(x(i), y(i) ) 

= �i log Pw(y(i) | x(i))  + �i log Pw( x(i))
� Here Pw(x(i)) = 1/n …

not dependent on w, over empirical sample S

�w* = argmaxw �i log Pw(y(i) | x(i))
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Fit Logistic Regression…
by Gradient Ascent

�Want w* = argmaxw J(w)
�J(w) =�i r(y(i), x(i), w) 

�For y ∈ {0, 1}

r(y, x, w) = log Pw( y | x ) =
y log( Pw( y=1 | x )) + (1 – y) log(1 – Pw( y=1 | x ))

� So climb along… � ∂
∂=

∂
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i j

ii

j w
yr

w
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Gradient Descent …
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Gradient Ascent
for Logistic Regression (MLE)
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Comments on MLE Algorithm

� This is BATCH;
∃ obvious online alg

(stochastic gradient ascent)
� Can use second-order (Newton-Raphson)

alg for faster convergence
�weighted least squares computation;

aka 
“Iteratively-Reweighted Least Squares” (IRLS)



52

Use Logistic Regression for Classification

� Return YES iff
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Logistic Regression for K > 2 Classes

Note:  k-1  different w
i weights,

… each of dimension |x| 
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Learning LR Weights

∆w(i)
j = (o(i) – y(i)) o(i) (1– o(i) )

∆w(i)
j = (y(i)  – p(1|x(i) )) x(i)

j
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(LMS)

x(i)
jx(i)

feature j

∆wj

E(i)

0. Fix w
∆w = 0 

1. For each row i, compute
a. E(i) = y(i) – ow(x(i))
b. ∆w += E(i) x(i)

[ … ∆wj += E(i) x(i)
j … ]

2. Increment w += η∆w

∆w

0. New w

(o(i) – y(i)) o(i) (1– o(i) )(y(i) – p(1|x(i) ))(MaxProb)
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Logistic Regression Computation…

� (p+1) non-linear equations 
� Solve by Newton-Raphson method:
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Newton-Raphson Method

� A gen’l technique for solving f(x)=0
�… even if non-linear

� Taylor series:
� f( xn+1 ) ≈ f(xn) + (xn+1 – xn) f’( xn )
� xn+1 ≈ xn +  [ f( xn+1 ) – f(xn) ] / f’( xn )

� When xn+1 near root, f( xn+1 ) ≈ 0

�
)(
)(

:1
n

n
nn xf

xf
xx

′
−=+

Iteration…
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Newton-Raphson in Multi-dimensions

� To solve the equations:

� Taylor series:

� N-R:
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Newton-Raphson : Example

� Solve
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Maximum Likelihood Parameter 
Estimation

� Find the unknown parameters 
mean & standard deviation of a Gaussian pdf, 

given N independent samples, {x1,….,xN }

� Estimate the parameters that maximize the 
likelihood function
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Logistic Regression Algs for LTUs
� Learns Conditional Probability Distribution  P( y | x )

� Local Search:
Begin with initial weight vector;
iteratively modify to maximize objective function

log likelihood of the data
(ie, seek w s.t. probability distribution Pw( y | x ) is
most likely given data.)

� Eager: Classifier constructed from training examples, 
which can then be discarded.

� Online or batch
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Masking of Some Class

3213 )1(ˆ βxxY =

2212 )1(ˆ βxxY =

Linear regression of the indicator matrix can lead to masking

LDA can avoid this masking

2D input space and three classes Masking

1211 )1(ˆ βxxY =

Viewing direction
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#4: Linear Discriminant Analysis
� LDA learns joint distribution P( y, x )

� As P( y, x ) � P( y | x );
optimizing P( y, x ) � optimizing P( y | x )

� “generative model”
� P( y,x ) model of how data is generated
� Eg, factor

P( y, x ) = P( y ) P( x | y )
� P( y ) generates value for y; then
� P( x | y ) generates value for x given this y

� Belief net: Y

X
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Linear Discriminant Analysis, con't

� P( y, x ) = P( y ) P( x | y )
� P( y ) is a simple discrete distribution

�Eg: P( y = 0 ) = 0.31; P( y = 1 ) = 0.69
(31% negative examples; 69% positive examples)

� Assume P( x | y ) is multivariate normal,
with mean µk and covariance �
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Estimating LDA Model

� Linear discriminant analysis assumes form

� µy is mean for examples belonging to class y;
covariance matrix � is shared by all classes !

� Can estimate LDA directly:
mk = #training examples in class y = k
� Estimate of P( y = k ): pk = mk / m

(Subtract each xi from corresponding        before taking outer product)

P( x,y) = 

T

i yiyi ii
xx

m� −−=Σ )ˆ)(ˆ(
1ˆ µµ� =

=
}:{

1ˆ
kyi ik

i
x

m
µ

iyµ̂
m – k 
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Example of Estimation

� m=7 examples; 
m+ = 3 positive; m- = 4 negative
� p+ = 3/7   p- = 4/7

Note: do NOT pre-pend x0=1!

4

T

T

T

T

T
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Estimation…

… z(7) := …

T T
T

T T

T
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Classifying, Using LDA
� How to classify new instance, given estimates

� Class for instance x = [5, 14, 6]T ?

T

T

T T
T

T T

T

T
T T

T
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LDA learns an LTU

� Consider 2-class case with a 0/1 loss function
� Classify � = 1 if

iff
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LDA Learns an LTU (2)
� (x–µ1)T �-1 (x–µ1) – (x–µ0)T �-1 (x–µ0) 

= xT�-1 (µ0 –µ1) + (µ0 –µ1)T �-1 x +
µ1

T �-1 µ1  – µ0
T �-1 µ0

� As �-1 is symmetric,
… = 2 xT�-1 (µ0 –µ1)+ µ1

T �-1 µ1  – µ0
T �-1 µ0 
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LDA Learns an LTU (3)

� So let…

� Classify � = 1 iff w · x + c > 0
LTU!!
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LDA: Example

LDA was able to avoid masking here
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View LDA wrt Mahalanobis Distance

� Squared Mahalanobis distance between x and µµµµ

DM
2(x, µµµµ) = (x–µµµµ)T �-1 (x–µµµµ)

� �-1 ≈ linear distortion
… converts standard Euclidean distance into Mahalanobis distance.

� LDA classifies x as 0  if
DM

2(x, µµµµ0)  < DM
2(x, µµµµ1)

� log P( x | y = k )   ≈ log πk – ½ DM
2(x, µµµµk) 



74

Generalizations of LDA
� General Gaussian Classifier: QDA

Allow each class k to have its own ����k

� Classifier ≡ quadratic threshold unit (not LTU)

� Naïve Gaussian Classifier
Allow each class k to have its own �k

but require each �k be diagonal.
� within each class, 

any pair of features xi and xj are independent
� Classifier is still quadratic threshold unit 

but with a restricted form
� Most “discriminating” Low Dimensional Projection

� Fisher’s Linear Discriminant
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QDA and Masking
Better than Linear Regression in terms of handling masking:

Usually computationally more expensive than LDA
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Variants of LDA � Covariance matrix �
� n features; k classes

General 
Gaussian 
Classifier

Naïve 
Gaussian 
Classifier

LDA

Name

k n2——

k n+—

n2—+

k++

#param’sDiagonalSame for all 
classes?
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Versions of ?L?Q?N? DA

� LDA

� Quadratic

� Naïve

� SuperSimple
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Summary of
Linear Discriminant Analysis
� Learns Joint Probability Distr'n P( y, x )
� Direct Computation. 

MLEstimate of P( y, x ) computed directly from data 
without search.
But need to invert matrix, which is O(n3)

� Eager:
Classifier constructed from training examples, 
which can then be discarded.

� Batch: Only a batch algorithm.
An online LDA alg requires online alg for incrementally 
updating �-1

[Easy if �-1 is diagonal. . . ]
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Fisher's Linear Discriminant
� LDA 

� Finds K–1 dim hyperplane
(K = number of classes)

� Project x and { µk } to that hyperplane

� Classify x as nearest µk
within hyperplane

� Better:
Find hyperplane that maximally 
separates projection of x's wrt �-1

Fisher’s Linear Discriminant
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Fisher Linear Discriminant
� Recall any vector w projects ℜn → ℜ
� Goal: Want w that “separates” classes

�Each w · x+ far from each w · x–

� Perhaps project onto m+ – m– ?
� Still overlap… why?

µ+

µ-
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Fisher Linear Discriminant

� Problem with m+ – m– :
� Does not consider “scatter” within class
� Goal: Want w that “separates” classes

� Each w · x+ far from each w · x–

� Positive x+'s:  w · x+ close to each other
� Negative x–'s: w · x– close to each other

� “scatter” of +instance;  –instance

� s+
2 = ����i y(i) (w · x(i) – m+)2    

� s–
2 = ����i (1 – y(i) ) (w · x(i) – m-)2

µ+

µ-
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Fisher Linear Discriminant
� Recall any vector w projects ℜn → ℜ
� Goal: Want w that “separates” classes

� Positive x+'s: w · x+ close to each other
� Negative x–'s: w · x– close to each other
� Each w · x+ far from each w · x–

� “scatter” of +instance;  –instance

� s+
2 = ����i y(i) (w · x(i) – m+)2    

� s–
2 = ����i (1 – y(i) ) (w · x(i) – m+)2

µ+

µ-
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FLD, con't

� Separate means m– and m+

� maximize (m– – m+)2

� Minimize each spread s+
2, s–

2

� minimize (s+
2 + s–

2)
� Objective function: maximize

#1:(µ– – µ+)2 =  ( wT m+ – wT m–)2

=  wT (m+ – m–)(m+ – m–)T w   =   wT SB w

SB  =  (m+ – m– ) (m+ – m–)T“between-class scatter”

)(
)(

)( 22

2

−+

−+

+
−=

ss
wJS

µµ
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FLD, III

� s+
2 = ����i y(i) (w · x(i) – m+)2  

= ����i wT y(i) (x(i) – m+) (x(i) – m+)T w
= wT S+ w

� Sw = S+ + S– so s+
2 + s–

2 = wT SW w

S+ = ����i y(i) (x(i) – m+) (x(i) – m+)T

… “within-class scatter matrix” for +

S– = ����i (1 – y(i)) (x(i) – m–) (x(i) – m–)T

… “within-class scatter matrix” for –

)(
)(

)( 22

2

−+

−+

+
−=

ss
wJS

µµ



85

FLD, IV

� … w* is eigenvector of SB
-1Sw

��������

��������
����

w
T

B
T

S S
S

ss
J =

+
−=

−+

−+

)(
)(

)( 22

2µµ

)2(2
),(

��������
����

����
wB SS

L λλ −=
∂

∂

� Minimizing JS(w) …
w*  =  argminw wTSBw s.t.   wTSww = 1

� Lagrange:  L(w, λ) = wTSBw + λ (1 - wTSww )

��������
����

����

λ
λ 1

0
),( 1 =�=

∂
∂ −

wB SS
L
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FLD, V

� Optimal w* is eigenvector of SB
-1Sw

� When P( x | yi ) ~ N(µi; �)
∃ LINEAR DISCRIMINANT: w = �-1(µ+ – µ–)
� FLD is optimal classifier, 

if classes normally distributed
� Can use even if not Gaussian:

After projecting d-dim to 1, 
just use any classification method
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Fisher’s LD vs LDA

� Fisher’s LD = LDA when…
� Prior probabilities are same
� Each class conditional density is 

multivariate Gaussian
� … with common covariance matrix

� Fisher’s LD…
� does not assume Gaussian densities
� can be used to reduce dimensions even 

when multiple classes scenario
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Comparing
LMS, Logistic Regression, LDA, FLD
� Which is best: LMS, LR, LDA, FLD ?
� Ongoing debate within machine learning 

community about relative merits of
�direct classifiers    [ LMS ]
�conditional models P( y | x ) [ LR ]
�generative models P( y, x )  [ LDA, FLD ]

� Stay tuned...
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Issues in Debate
� Statistical efficiency

If generative model P( y, x ) is correct, then …
usually gives better accuracy, particularly if training sample is small

� Computational efficiency
Generative models typically easiest to compute
(LDA/FLD computed directly, without iteration)

� Robustness to changing loss functions
LMS must re-train the classifier when the loss function changes.
… no retraining for generative and conditional models

� Robustness to model assumptions.
Generative model usually performs poorly when the assumptions 
are violated.
Eg, LDA works poorly if P( x | y ) is non-Gaussian.
Logistic Regression is more robust, … LMS is even more robust

� Robustness to missing values and noise. 
In many applications, some of the features xij may be missing or 
corrupted for some of the training examples. 
Generative models typically provide better ways of handling this
than non-generative models.
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Other Algorithms for learning LTUs

� Naive Bayes [Discuss later]
For K = 2 classes, produces LTU

� Winnow [?Discuss later?]
Can handle large numbers of “irrelevant" 
features
� (features whose weights should be zero)
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Learning Theory
Assume data is truly linearly separable. . .
� Sample Complexity: Given ε, δ ∈ (0, 1),

want LTU has error rate (on new examples)
� less than ε
� with probability  > 1 – δ .

Suffices to learn from (be consistent with)

labeled training examples.

� Computational Complexity:
There is a polynomial time algorithm for
finding a consistent LTU
(reduction from linear programming)

Agnostic case… different…


