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" A
Outline

m Framework

m Exact
Minimize Mistakes (Perceptron Training)
Matrix inversion (LMS)

m Logistic Regression
Max Likelihood Estimation (MLE) of P(y | x)
Gradient descent (MSE; MLE)
Newton-Raphson

m Linear Discriminant Analysis

Max Likelihood Estimation (MLE) of P(y, x)
Direct Computation
Fisher’s Linear Discriminant



Diagnosing Butterfly-itis




" A
Classifier: Decision Boundaries

m Classifier: partitions input space X into
“decision regions”

+ +7

+ T + =
+

#wings

+ + -

#antennae

m Linear threshold unit has a
linear decision boundary

m Defn: Set of points that can be separated by
linear decision boundary is “linearly separable”



" J
Linear Separators

m Draw “separating line”

#wings

|
5 #antennae

m [f #antennae <2, then butterfly-itis
m S0 ? is Not butterfly-itis.



"
Can be “angled”...

& |+ + ? -
=
=
+: + + -
+
) #antennae
23x#w — 75 x#a + 1.2 =0

mIf |2.3|x#Wings -|7.5|x #antennae + 1.2 > 0
then butterfly-itis




" A
Linear Separators, in General

m Given data (many features)

F, F, F, Class
35 95 . 3 No
22 80 . -2 Yes
10 50 o 1.9 No

m find “weights” {w,, w,, ..., w,, w,}
such that

WJYF]+... +W/7XF/7 +W0>0

means | (Jass =




"
Linear Separator

| @

9.5 @2\> _» L Yes
o

Just view F, = 0, so wy ...



" J
Linear Separator

46.8

5 @23
o @@ . [©
: @/ ]

m Performance

Given {w,}, and values for instance, compute response
m Learning

Given labeled data, find “correct” {w }

m Linear Threshold Unit ... “Perceptron”




" A
Geometric View

m Consider 3 training examples:

1.0, 1.0];
([0.5; 3.0];

2.0; 2.0];

m Want classifier that looks like. . .

10




" A
Linear Equation is Hyperplane

m Equation w-x =2 w:x IS plane

1 fwX>0
y(X) = i 0 otherwise




S
Linear Threshold Unit: “Perceptron”

=) W~ N
_//'.;%“'f-"r‘ \\_1—-// _{Hf_fw-_r-m

-1 othe rwise

(:11 T ) e 1 I'r LTy —|— U1 —|— e _|_ Wy ~ 0
OBy cceylin) By L

=. signf (wo;wiieesqws) - (Yyerpeeaan))

m Squashing function:
sgn: R— {-1, +1}

1 ifr>0
sgn(r) = [ 0 otherwise
(“Heaviside”)
m Actuallyw - x> b but. ..
Create extra input x, fixed at 1

Corresponding w, corresponds to -b
12



Learning Perceptrons =

m Can represent Linearly-Separated surface
... any hyper-plane between two half-spaces...

I

'i‘: 'i‘I ]
|T - 1 L 1 s}
0 1 - 0 o1 Rk

0 1 &

0§ asd I, ik §, o T, () Iy moe I i) Baparning gl i) Waighin snd lreatodi

m Remarkable learning algorithm: [rosenblatt 1960]

.
e

If function fcan be represented by perceptron,
then dlearning alg guaranteed to quickly converge to fl

= enormous popularity, early / mid 60's
m But some simple fns cannot be represented
... Killed the field temporarily!

13



"
Perceptron Learning

m Hypothesis space is. . .

Fixed Size:
3 O(27*2) distinct perceptrons over n boolean features

Deterministic
Continuous Parameters

m Learning algorithm:
Various: Local search, Direct computation, . . .
Eager
Online / Batch

14



Task

r1 o r3 v Trr | Y
161 —=22.T 03 --- 40|+

m Input: labeled data T
-162 —-770 -12 --- —40 |+

1 T2 r3 -t Ir | Y

16.1 =22.7 03 .. =40 | +

Transformed to o I

1 /-162 —-77v.0 -—-1.2 --- —4.0 |+

m Output: w e R™
Goal: Want w s.t.
Vi sgn(w - [1, x0 1) = y@
. .. minimize mistakes wrt data . . .

15



"
Error Function
Given data { [x®, y® ]1}._, ., optimize...

m 1. Classification error err () = 3 1y %0, ()]
Perceptron Training; Matrix Inversion m iz

m 2. Mean-squared error (LMS) err, . (w) = li L0 o (x)p
Matrix Inversion; Gradient Descent miT 2

m 3. (Log) Conditional Probability (LR)  rczow = L3 10gP, (39 14%)
MSE Gradient Descent; LCL Gradient Descent i

= 4. (Log) Joint Probability (LDA; FDA) 12(w) = -3 logP,(+",x")

Direct Computation
16



" J
#1: Optimal Classification Error

m For each labeled instance [x, y]

Err = y — Ow(x)
y = f(x) is target value

0, (X) = sgn(w - X) is perceptron output
m ldea: Move weights in appropriate direction,
to push Err - 0

m If Err > O (error on POSITIVE example)

need to increase sgn(w - X)
= need to increase w - X

Input | contributes w; - x; to w - X
m if X, >0, mcreasmg w WI|| incr N
m if x < 0, decre 20 (err of Onx_

:>W %W +X




" S
Local Search via Gradient Descent

Err(w) '

Gradient Vector

. » - - - =
wd  owlo owl2 o owl wil W

Start w/ (random) weight vector w@.
Repeat until converged V' bored

Compute Gradient

gerr(wt derr(w:* gerr(w:*
Verr(w) = (2 ZerrGe) ... DerfGe })
Let witl = wt 4+ pVerr(wt)

If CONVERGED: Return(w?') 18



1a: Mistake Bound Perceptron Alg

Weights Instance Action
[0 0 O] #1

Initialize w =0
Do until bored
Predict “+” iff w - x>0
else “-"
Mistake ony = +1: w«<w + X

Mistake ony =-1. W «w —X

Orig Data ;
{({x1 x2) ec(x))
0 0 +
1 0 —
1 1 -+
Data 4+ “2g =1"
({xg 21 =) e(z))
T 1 0 0 =3
2 . 1 1 0 —
i3 . 1 1 1 +

19




Mistake Bound Theorem

Theorem: [Rosenblatt 1960]
If data is consistent w/some linear threshold w,
then number of mistakes is < (1/A)?,

o wex
where A = mgn‘ |
Tolw| x|z

m A measures “wiggle room” available:

class 2

If x| = 1, then A is max, over all consistent planes,
of minimum distance of example to that plane

m Wwis 1 toseparator, as w - x =0 at boundary
m S0 |w - X| is projection of x onto plane,
PERPENDICULAR to boundary line
... le, Is distance from x to that line (once normalized)

class 1-

20



"
Proof of Convergence

For simplicity:
0. Use x0 = 1, so target plane goes thru 0

1. Assume target plane doesn't hit any examples

2. Replace negative point  {{xg, 21, ..., ) O) x wrong wrt w iff w-x <0

by positive point  {({(—xq. —21, ..., —xn) 1}

3. Normalize all examples to have length 1

m Let w' be unit vector rep'ning target plane
A=min, {wW - X}
Let w be hypothesis plane

m Consider: (H‘H‘K)
w

m On each mistake, add xtow |W = Z{xlx-w<0} X_




" A
Proof (con't) (ww*)
If w is mistake...
Numerator increases by =z - w* = A
(denominator)< becomes . .
(wH+2)2 =w?+ 22+ 2(w-2) < w241 A= mlnx{w 'X}

as w-x < 0
W=2nxw<0}X

w

As initially w = (0,...,0).
After m mistakes,
numerator is > m x A

(denominator)<is <0414+ ...+1=m

T
so denominator < /m

cos(angle between w and w™)

1, so
denominator

e As (ww*)/|lw| =
it must be <
numerator <

= Axm < /n = m < Zlg' 22

[




#1b: Perceptron Training Rule

m For each labeled instance [x, y]
Err([x,y]) = y—o0,(X) e {-1,0, +1}

If Err([Xx,y]) =0 Correct! ... Do nothing!
Aw =0 =Err([x,y]) - x

If Err( [Xx, y] ) =+1 Mistake on positive! Increment by +x
Aw = +x =Err([x,y]) - x

If Err( [X,y])=-1 Mistake on negative! Increment by -x
Aw =-x =Err([x,y]) X

In all cases...  Aw() = Err( [x0), yO ]) - xO = [y®) — o, (x®)] - xO
m Batch Mode: do ALL updates at once!
Aw; = 2 Awi()
= 3 x0; (y0 = 0,,(x0) )
W +=T1 AW

. : 2
n is learning rate (small pos “constant” ...~ 0.057) °



0. New w
Aw =0

1. For each I’OWI compute
a. E0 =yl —o,,(x1)

b. aw += E0 x(i>
| \ [ ... AW += EOxO) ]
feature | 2. Incrementw o n Aw

N

AW — Aw;




" A
Correctness

m Rule is intuitive: Climbs in correct direction. ..

m Thrm: Converges to correct answer, if . . .
training data is linearly separable
sufficiently small 7

m Proof: Weight space has EXACTLY 1 minimum!
(no non-global minima)
= with enough examples, finds correct function!

m Explains early popularity

m |f » too large, may overshoot
If 7 too small, takes too long
m So often 7 = n(k) ... which decays with # of iterations, k

25



" A
#1c: Matrix Version?

m Task: Given { (X', y' }.
y e {—1,+1} is label

. 1 — ., 1 1
Yy = wp 1 w) & + - + Wy &L,
Flnd { WI} St v = wo + wi 1‘-% + o 4wy a

y" = wg + wiel + - + wazl)

y = [yl‘. o m]T
. T a 11‘.1
m Linear Equalities y=Xw ( L 23
b — . d :ﬂ
\ l ry Ty
m Solution: w=X"y w = [wo,wi,... wn]’

26




Task: Given { (x!, 3*) } y' e {—1, +1} is label
Find w; s.t.

ISsueS _yl — wp _I_ w1 .T.% _I_ _I_ Wn .T.%
y? = wo + wyxi + -+ + wna}
= g+ wnat 4 e 4wl

1. Why restricttoonly y'e {1, +1} ?

If from discrete sety'e { 0,1, ..., m}:
General (non-binary) classification
If ARBITRARY yie R: Regression
2. What if NO w works?
...X is singular; overconstrained ...
Could try to minimize residual ‘ NP-Hard!
to minim _ [NP-Hardl]
2y zw - x0)] « a
—Xw = > |y —w - x0

ly=Xwll; = 2 (y?—w- x{ )

27




" J
L, error vs 0/1-Loss

m “0/1 Loss function” not smooth,
differentiable

m MSE error is smooth, differentiable...
and is overbound...

28



" S
Gradient Descent for Perceptron?

m Why not Gradient Descent
for THRESHOLDed perceptron? P

m Needs gradient (derivative), not

m Gradient Descent is General approach.
Requires
+ continuously parameterized hypothesis
+ error must be differentiatable wrt parameters
But. . .
— can be slow (many iterations)
— may only find LOCAL opt 29



" J
Linear Separators — Facts

m GOOD NEWS:

If data is linearly separated,
Then FAST ALGORITHM finds correct {w} !

m But...
cHy
+ -

30



" J
Linear Separators — Facts

m GOOD NEWS:

If data is linearly separated,

Then FAST ALGORITHM finds correct {w} !
m But...

m Some “data sets” are
NOT linearly separatable!




" A
#1. LMS version of Classifier

m View as Regression
Find “best” linear mapping w from Xto Y
mW = argmin Err g% Y(w)
mErrpys® V(w) =25 (YO —w - x0))2

Threshold: if wix > 0.5,
return 1;
else O

m See Chapter 3...

32



" A
General ldea

m Use a discriminant function o,(x) for each class k
Eg, 6(x) = P(G=k | X)

m Classification rule:
Return k = argmax; o(x)

m |f each o(x) is linear,
decision boundaries are piecewise hyperplanes

33



Elnear E‘assﬁication using

Linear Regression

m 2D Input space: X=(X;, X5)  ([1,0,0]
K-3 classes: Y =(Y,,Y,,Y,) € <[0,1,0]

[0,0,1]
m Training sample (N=5):[ 1 », x,] B
Ioxy x, Yao Y2 Va3
X=1 x;; xj Y=yy Yn Vi
Loxy, xy, Yar Yo Vi
Ioxs X5 Vs Y2 Vs

m Regression output:
Y((xl,xz)) 1x x,)X'X)'X'Y=U"B x'B, x'B)

Y1((x1 X5 )) — (1 X X, )ﬁl
m Classification rule: Y,((x, x,))=(1 x, x,)p,

G((x, x,))=argmax ¥, ((x, x,)) Y, (5 x)) =1 x, x,)5
k

34



" S
Use Linear Regression for

Classification?

m But ... regression minimizes
sum of squared errors on target function

... which gives strong influence to outliers

|«——| Great separation

Bad separation




" A
#3: Logistic Regression

m Want to compute P (y=1| x)
... based on parameters w

m But ...
w-X has range [-oo, 0]
probability must be in range € [0; 1]
m Need “squashing” function [-eo, co] —[0, 1]

B
o(x) = |

l+e J



" A
Alternative Derivation...

P(+y]x) = Px1+y)P(+y)

P(xl+y)P(+y) + P(x|=y)P(—y)

1+exp(—a)

In P(x|+y)P(+Yy)
P(x|=y)P(-y)




"
Sigmoid Unit

. : — 5 1
e Sigmoid Function: o(z) = E b=
e Useful properties:

— o R — [0,1]

- %) = g(z) (1-0(z))

— Ifz=0, then o(z) = =z

38



"
Logistic Regression (con't)

m Assume 2 classes:

1

+e

1 e
P(-ylx) =1- =
W=y 1) I+ 1+

P (+y x) = Linear
log— =<:::>
P, (—ylx)

P (+ylx)=0(w-x)=

m Log Odds:

39




"
How to learn parameters w 7

m ... depends on goal?
A: Minimize MSE?
2 (Y = 0,(x®) )2
B: Maximize likelihood?

2.l0g Py, (y® | x)

40



MSError Gradient for Sigmoid Unit

mEror: X (y0-o0,(x9) )2 =2E0  60)-

For single training instance

m Input: x0) =[x, ... x0]

s Computed Output: 00 = o( X x0. . w;) =c(20)
where z0) = X x0) wi using current { w; }

m Correct output: y

Stochastic Error Gradient (ignore o superscript)

1

l+e°

Oz

= (0-v) (L) = (o-y) 22 2

o

s

41




" J
Derivative of Sigmoid

d d 1
—o(a) = -
da da (1+e “)
L4 ey = L (e
(1+e “V* da (1+e™)
e B 1 e

S e T (re(ren  c@li-ot)

42



" S
Updatlng LR Weights (MSE)

d-u,-.,;

e Using:

do(z)

Oz
Oz

Er‘w,; -

oE ()
—

ow;

Note: As already computed oU)

m Update w, += Aw; where |Auw;

Oo(z) Oz
-9 =5, o
1
0(z) = e
sl (i —ela) = ofig) te
O ; wi - xi) .
é‘-wi "
(o) — 4Gy ol (1 — 00 I—Sj)
(z )) to get answer,
trivial to compute ¢’( z0)) = ( N(1-o(z0))
oE()
— n - -
Ow;

43




feature j \

0. New w
AW =0

1. For each row I, compute

a. E0 = (o0 _y(i)) ol) (1-00))

b. Aw += El) x

[ -

2. Incrementw+ nAw

AW+ E ]

AW —

AW,

44




B: Or... Learn Conditional Probability

m As fitting probability distribution,
better to return probability distribution (= w)
that is most likely, given training data, S

Goal: w* =

argmax P(w|S)
“?’
P(S|w)P(w)

argmax Bayes Rules
W P(5)
argmax P(S|w)P(w) As P(S) does not depend on w
W
= argmaxP(S|w) As P(w) is uniform
“?’

argmaxlog P( S |w) As log is monotonic
“?’
45



" A
ML Estimation

m P(S | w) = likelihood function
L(w) =log P(S | w)
B W = argmax,, L(w)
IS “maximum likelihood estimator” (MLE)

46



" J
Computing the Likelihood

m As training examples [x®, y0] are iid
drawn independently from same (unknown) prob P (X, y)

mlogP(S|w) = log Il P, (x®, y®)
3 log Py(x", y0)

= 2.log Py, (y? | x0) + 2 log Py( x1)
m Here P,,(x)) =1/n ...
not dependent on w, over empirical sample S

BW = argmax,, 2 log P, (y® | x)

47



" S
Fit Logistic Regression...
by Gradient Ascent

m Want w' = argmax,, J(w)
J(w) =2 r(y®, x®, w)
Fory e {0, 1}
r(y,X,W)=|Og PW(Y|X)=
y log( Py (y=1[x)) + (1= y)log(1 -Py(y=1[x))

0J (W) _ 5+ (s x",w)

ow, ,- ow,

m SO climb along...

48



- —
Gradient Descent ...

E)r(y,X,W): d [ylog(p1)+(1—}7)10g(1_pl)
aWj awj
S TR PV e B TR e N
p1aWj l_plawj pl(l_pl)awj
dp, 9P, (y=1lx) 4 (0(x-w))
aWj awj awj
d

(i)

=o(x-wl-o(x-wl—I-w)=p,d-p)-x!

W,

oJ(w) :Z dr(y ™, xD w) _ Z yD —p,
aWj i awj i pl(l_pl)

=2, (" =P, (y=11x) x}"

pl(l_ p1) ')CE-I.)

49



Gradient Ascent
for Logistic Regression (MLE)

Given: training examples (x®, y®) i=1.N
Set initial weight vector w = (0,0,0,0,...,0)
Repeat until convergence
Let gradient vector AW: (0,0,0,0,...,0)
For : = 1 to N do
p’=1/(1 expf‘w x()7)
erh::rrl — —p
FDI‘j=1tDr1d0
AWj + = error; - Tij
w +="1n Aw % Step in direction of increasing gradient

50




" J
Comments on MLE Algorithm

m Thisis BATCH;

1 obvious online alg
(stochastic gradient ascent)

m Can use second-order (Newton-Raphson)

alg for faster convergence

weighted least squares computation;
aka
“Iteratively-Reweighted Least Squares” (IRLS)

51



"
Use Logistic Regression for Classification

m Return YES iff

P(y=1Ix) > P(y=0lx)
P(y=1Ix) S i
P(y=01lx)
In Py =11x) > 0
P(y=01lx)
In 1 /(1+exp(—w- X)) S 0

exp(—w-x)/(1+exp(—w- x))

In I =w-x >0
exp(—w- x)

52



. Logistic Regression for K > 2 Classes

o 10 handle K > 2 classes P(y=1]x)
- T n I P(U_I”X) -
— Let class K be “reference  Py=2]%)
0qg — K x = W2:X
— Represent each other class k# K as 7/ H1)
0gistic function of odds of Ply—K—1[x)
class k versus class K: O p—R) = EL
e Apply gradient ascent to learn /Vol‘e kes
all w;, weight vectors, in parallel. eaCh d/ffe/,e
e Conditional probabilities: exp (W - x) % g e/;;’;(l)’ll ’Q/;
Plr=klxl = 1+ K Texp(we - x) "y S
and
P(y=K|x) = .

1+ S texp (we - x)

53



"
Learning LR Weights

Task: Given data ((x(9), )y, |

if y=1
. . I +exp( —w-x)
find win pw(y|x) = exp( —w - x)

I +exp( —w-x)
S.t. pw(’y(é)\x(é)) ;s % iff :y("i’) = 1

if y=0

Approach 1: MSE — “Neural nets”
Minimize T2, (o(®) — y())2

cradient: | AWM. = (o _y()) o) (1- 0 )

Approach 2: MLE — “Logistic Regression”
Maximize Y ; pw(y|x)

Gradient: Aw(l)l — (y(') - p(1 |X(i) )) X(I)I




(MaxProb) /

feature j \

0. New w
AW = 0
1. For each row I, compute
a. EO = (y¥-p(1)x"))
b. Aw += E0) x0)
[... Aw, += EO X0, ]

2. Incrementw+ NAW

AW — Aw;

55




" S
Logistic Regression Computation...

I(B) = Z{logPr«; y1X =)}

—Zyi log(Pr(G =11 X = x,))+(1— y,)log(Pr(G =01 X =x,))

L
I+ exp(F'x)

=2 (38" x,— (1= y;)log(l+exp(5' x,)))

N
= Z(yiﬂTxi +(1-y,)log
i=1

AP _ N exp(B'x) ) _
df3 —;[)’i 1+exp(8' x)j =0

m (p+1) non-linear equations

m Solve by Newton-Raphson method:

new __ old . al(ﬁdd) -1 al(ﬁdd)
B =p [Jacobian( Y )] Y;




Newton-Raphson Method

m A gen’l technique for solving f(x)=0
... even if non-linear

m [aylor series:
f( Xn+1 ) = f(Xn) + (Xn+1 — Xn) f,( Xn)
Xnet = X+ [F(Xner ) = () 1/ (%, )

m When x,, near root, f( x,,; ) =0

— X, =X — f,(x”) e
f(x,) :

lteration... 4t




" I
Newton-Raphson in Multi-dimensions

. fi(x %, xXy)=0
m [0 solve the equations: |/u.x,.....x)=0
Iy (XX, e, xy)=0
' f;(x+Ax) f()+iafij i=1,..,N
. AX = AX - . — L.
m Taylor series: 7 T LG e
[
[ n+l] [ n+l ] ax ax ax B n n ny |
] -R: X X 1 2 N fi(x/,x5,..., Xy)
N-R e | e | 12 % | | )
= | . | 7| ox Ox, ox,,
o B Bj:”N BJZ‘N af_N (XX, LX) |
| Ox,  ox, oxy |

/ 58
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"
Newton-Raphson : Example

m Solve
fl(xl,xz)lez—cos(xz) =0

£, (x;,x,) =sin(x,)+x" +x, =0

e 2 sin(x) | [ (x")? —cos(x")
x5y X, cos(x)+2x"  3(x))° sin(x") + (x")* +(x5)’

59



Mammum E||<elihood Parameter

Estimation

m Find the unknown parameters
mean & standard deviation of a Gaussian pdf,

1
p(xX; U, 0) = Tono exp(— (xzaﬂ ’

)

given N independent samples, {x,.....,xy}

m Estimate the parameters that maximize the
likelihood function ;5 - H exp(— )

2o 20°

)

({t,6) =argmax L(u,0)
U,c

60



" S
Logistic Regression Algs for LTUs

Learns Conditional Probability Distribution P(y | x)

Local Search:

Begin with initial weight vector;

iteratively modify to maximize objective function
log likelihood of the data

(le, seek w s.t. probability distribution P,(y | x ) IS
most likely given data.)

Eager: Classifier constructed from training examples,
which can then be discarded.

Online or batch

61



" J
Masking of Some Class

Linear regression of the indicator matrix can lead to masking

2D input space and three classes Masking

Viewing direction

LDA can avoid this masking

62



"
#4: Linear Discriminant Analysis

m LDA learns joint distribution P(y, x )
As P(y,x)#P(y|x);
optimizing P(y, x ) # optimizing P(y | x )
m “generative model”

P(y,x ) model of how data is generated
Eg, factor

P(y,x)=P(y)P(x]|y)
m P(y ) generates value for y; then
s P( x|y ) generates value for x given this 'y

m Belief net:

63



= S
Linear Discriminant Analysis, con't

mP(y,x)=P(y)P(x]|y)

m P(y)Is asimple discrete distribution
Eg:P(y=0)=0.31;P(y=1)=0.69
(31% negative examples; 69% positive examples)

m Assume P( x | y ) Is multivariate normal,

with mean p, and covariance 3
P(xly=k) =
1
K2y e =

exp [—5(}: — pe) T (x - )



" A
Estimating LDA Model

m Linear discriminant analysis assumes form

1 1
exp {—E(x — ) (X — py)

P(x’y) = 'P(y){z,,.._)ﬂf-"ﬁ|'£|1;":'

= L, is mean for examples belonging to class y;
covariance matrix 2. is shared by all classes !
m Can estimate LDA directly:
m, = #training examples in classy =k
Estimate of P(y =k ):p, =m,/m

. 1 2 1 N A T
My = _Z{i:yi:k}xi 2 :@;i (xi —ﬂyi )(xi _'Llyi)

m
= m-—Kk

(Subtract each x; from corresponding 'ay,- before taking outer product)



"
Example of Estimation

T T T3 V
131 202 04+

6.0 17.7 -42 |+ | m m=7 examples;
_|_

8.2 18.2 -2.5 m, = 3 positive; m_ = 4 negative
0.4 10.1 19.2 | — = p,=3/7 p.=4/7

-4.2  12.8 51 | —
-4.3 150 21.7 | —

0.9 10.1 19.2 | - e Compute ji; over each class

-~ — 1 ]
j'_i_l_ o ?Eii :ym:—l—i }{(?)

(13.1, 20.2, 0.4] +
= 1[[6.0, 177, —4.2]'+

[8.2, 18.2, —2.5]T
— [0.1. 187, -2.1] '

- T
i == Y x(® = [-18, 120, 16.3]
ir{yt=-)



" ]

EStImathn - e Compute common X

— “Normalize” each z = X — px)
z(1) = [13.1, 20.2, ara]T— [9.1, 18.7, —2.1]T
= [4.0, 1.5, —1.7]
Irq Io Iz '_',l'r T T
13.1 20.2 0.4 |+ z(*) := [0.4,10.1, 19.2] — [-1.8, 12.0, 16.3]
6.0 17.7 -4.2 |+ = [2.2, —1.9, 2.9]T
8.2 18.2 -2.5 |+
7(7) =

0.4 10.1 19.2 | — = e

-4.2 12.8 51| — : ; :
43 150 21.7 | — — Compute covariance matrix, for each i:

0.9 10.1 19.2 | —

For x1), via z(1):

= 4.0
z(1) x z(1) = 0.5 | -[4.0,0.5, —1.7]
—1.7

40-4.0 4.0-0.5 4.0+-=1.7
= 0.5-4.0 .5 -0.5 0.8 ~1.7
—1.7:40 =1.07-085 —=1.T:=1.7

16.0 20 —-6.8
= 2.0 025 -0.85
—-6.8 -0.85 -2.89

- l * £ —|_
—Set ¥ = =Y £W,0 57
m
1,




" J
Classifying, Using LDA

m How to classify new instance, given estimates
=0 Py =3/T P =47 b} {m} =

* ﬂ-_|_
i

-

'irz:

(9.1, 18.7. —2.1]"
[—1.8, 12.0, 16.3]"

702 —1.31 6,35]

—1.31 2.91 0.32
6.35 0.32 26.03

m Class for instance x =[5, 14, 6]" ?
P(y=+, x=5. 14, 6]) = P(y=+)P([5. 14. 6]|y=+)

=

3« P(x=[5, 14, 6f|x ~ N (it,E))

%}c’: {h_}lz -exp [ 2(1—;;.,_)—'_2 L(x—fiq)]
— 16.63E-11
P(y=—, x=[5 14, 6]) = P(y =) P(I5. 14, 6f v = —)
= "4 ke P [A(x— )T I (X~ )
= 43.33E-11 o P(y=+|[5, 14, 6]) =

P(y=+, [5, 14, 6]N

P(y=+, [5, 14, 6]N+P(y=—, [5, 14, 6
P(y=—|[5 14, 6]) =0.7226

5 = 0.2774

)8




" A
LDA learns an LTU

m Consider 2-class case with a 0/1 loss function
m Classify y =1 if

Ply=1]|x) Ply=1,%x)
log —- > 0 Y y X
P(y=0|x) Iff IDgp(.y:{]:K) > 0
P(x,y=1)  P(v=1)gmmemep [50c—p) 271 (x — 1))
P(x,y=0) - P(y= G)Wﬁexp [—2(x — po) TEZ (X — po)]

P(y=1)exp|—3(x —p1)TZ1(x — p1)]
P(y=0)exp |—3(x — po) TZ~1(x — po)]

P(x,y=1) |

W Py=1) 1
P(x,y=0) _ "P(y=0)

> (¢ — 1) T2 (X — 1) — (X — o) TE (X — o)

69



" J
LDA Learns an LTU (2)

m (X)) " 2T (X)) — (X—g) T 2T (X—g)
—XTZ1(HO _H1) (Ho —q) T 2T X+
T 2Ty = He" 27 g

m As > Tis symmetric,
L= 2XT 2T (M )+ My T2y — T 2T g

P(x,y=0)
B 535 [0 = ) TE 05— ) = (x = ) TE 7 (x o)

— ln%{tir%% + xTZ (1 —po) + %ILLEE_IILLD — %;qz-lm

eb “(p1—po) + In %ﬁ'——lm—i—zgﬁz Lio— EILL T m Y]

70



" A
LDA Learns an LTU (3)

'”igil:éi = X' @ (11— po DA =gy +3ud T po— 31 T 1D
m So let...
w = I (u1 - po)
¢ = In ggiég RVTED S VIS SURD s T8

m Classifyy=1iff W-X+Cc>0
LTU!

71



_
| DA: Example

LDA was able to avoid masking here

72



"
View LDA wrt Mahalanobis Distance

Mahalanobis Distance Ellipses

m Squared Mahalanobis distance between x and p: |

Dy(X, 1) = (Xx=p) " 227 (x—p)

Z 1 = linear distortion wo
. converts standard Euclidean distance into Mahalanobls dlstance

m LDA classifies x as O if
DMZ(XS !'LO) < DMZ(XS !'L1)

mlogP(x|y=k) = logm — 2 Dy2(X, )

73



" A
Generalizations of LDA

m General Gaussian Classifier: QDA

Allow each class k to have its own 2.,

= Classifier = quadratic threshold unit (not LTU)
m Naive Gaussian Classifier

Allow each class k to have its own >,

but require each 2., be diagonal.

= within each class,
any pair of features x; and x; are independent

Classifier is still quadratic threshold unit
but with a restricted form

m Most “discriminating” Low Dimensional Projection
Fisher's Linear Discriminant

74
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QDA and Masking

Better than Linear Regression in terms of handling masking:

|1_’4 | 3
1 D Pt i1—\— —————————————————
L T
\ P,
05 F-—------ T Sy - SR
..Zig} i "IT 3?3 -'“".‘t._}
. F« ] el by

0.0 |- Pgiee_n s Tim, ~=1r11ﬁ?éf_t+"-7 |

Usually computationally more expensive than LDA



Variants of LDA

m Covariance matrix >,
m n features; k classes

Same for all . ,
Name Diagonal #param’s
classes”?
+ + k
LDA + — n2
Naive
Gaussian — + Kn
Classifier
General
Gaussian — — kK n2

Classifier

76



" A
Versions of 2L?Q?N? DA

m Quadratic - .

m Naive - .

m SuperSimple ‘



gummary of

Linear Discriminant Analysis

m Learns Joint Probability Distr'n P( vy, x)

m Direct Computation.
MLEstimate of P( y, x ) computed directly from data
without search.

But need to invert matrix, which is O(n3)
m Eager:
Classifier constructed from training examples,
which can then be discarded.
m Batch: Only a batch algorithm.
An online LDA alg requires online alg for incrementally
updating >
[Easy if 21 is diagonal. . . ]
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» BN
Fisher's Linear Discriminant

m LDA
Finds K—1 dim hyperplane

(K = number of classes) R I _________

Project x and { L, } to that hyperplane

Classify x as nearest L,
within hyperplane

m Better:
Find hyperplane that maximally

separates projection of x's wrt 2

Fisher’'s Linear Discriminant

79



Fisher Linear Discriminant

m Recall any vector w projects R" — R

m Goal: Want w that “separates” classes

Each w - x* far from each w - X~

e Using m = S @ m_ > (1—y ()
Mean of x's projections: |
p, = DD Ty
H- - Zl(lz_afii)u?!;hﬁ} — w ! - m_ 0
Yl

of e
1; . )
AT
C

LY .
:.i‘ PIRCEN I N ..
See -,
.:- ‘-'.-l::"‘-;...':-
) %% B " *
"h,

- odfy P
oo,
[/
.,

oo e -
W, Y e
s N - e
" gl *®
."._:.- .

m Perhaps project onto m_—m_7
m Still overlap... why?

2

6




" I
Fisher Linear Dlscrlmmant

e Using my = D00, R OoO)0 R
Mean of x's D"OJ'E)C“‘TD”(S.; | —”":'J“‘ :
u, — D i 'yZi ;’*;:!_}"k — w . m . ol \\.’," :
_ Da-yD)wTx® ¢ "'Il,
T > (1—5) - e 2l Qe
Q
m Problem with m, —m_: > a ;
b} . .
m Does not ConS|der ‘'scatter” within class

m Goal: Want w that “separates” classes
Each w . x* far from each w - x-
Positive x*'s: w - X* close to each other
Negative x~'s: w - X~ close to each other

m “scatter” of +instance; —instance
5.2= %, y0 (- x0—m,)

s2=2,(1-y0) (w.x—m)>2 o



" I
Fisher Linear Discriminant

m Recall any vector w projects R" — R

m Goal: Want w that “separates” classes
Positive x*'s: w - x* close to each other
Negative x~'s: w - X~ close to each other
Each w - x* far from each w - x-

] L) 5 (1) (1 —g Dy 5 (1)
e Using m = ng _y(;; m_ — Zéi(ly—ygﬂ};
Mean of x's projections:
() o T e (i 4 .
n, o= R = wTomy A
B (A—y)wTx® .
L - X Z_?l_y?j})}“ = w! . .m_ 0 \0’,"
i Q)
1 L} . . -2 "',".
m “scatter’ of +instance; —instance

S+2 = Zi y(i) (W - x® — m+)2

5223, (1-y0) (w-x0-m,)2



" S
FLD, con't

m Separate means m_and m,
= maximize (m_-m,)?
m Minimize each spread s,2, s_2

= minimize (s,2 + s_?) (U, — i )2
= Objective function: maximize |J g (W) = ~—5——
(s, +s7)
#1 :(“— - M+)2 = ( w' m, - w! m—)2
- w' (m+ — m_)(m+ — m_)T w = w' SB W

“between-class scatter” S
B

= (m,-m_) (m,-m)’
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FLD., Il T (w) = AT A

2 2
(s, +5°)

. 52=%,y0 (wox0—m,)

=2, WTy0) (x0 —m,) (x0 —m,)Tw
=w'S. w

+

S, =2,y (x®—m,) (x®—m,)T
. “within-class scatter matrix” for +

S, = Z 1 —y0) (x® = m_) (xO —m_)T

.. “within-class scatter matrix” for —

mS, =S +S_so s2+s8?2=wWS,w

84




FLD, IV )=zl W S,w

2 2 T
(s, +s7) w'S w

m Minimizing Jg(w) ...
w' = argmin, wiSgw s.t. wTS,w =1

m Lagrange: L(w, A) =wTSgw + A (1 -wTS, w)

0L(W,A)
oW

2« 2 S 4 e L

of ety e
0,
1 ]

JL(W, A) =0 = S, SwW=—-w
oW A

m ... W is eigenvector of Sg'S,, e e

0 !
2
2

6
85




" J
B
FLD, V Js (W)= (s> +5%) wTSWw

= Optimal W’ is eigenvector of Sg'S,,

m When P(x |y;) ~ N(u; 2)
J LINEAR DISCRIMINANT: w = (1, — )

= FLD is optimal classifier,
if classes normally distributed

m Can use even if not Gaussian:

After projecting d-dim to 1,
just use any classification method o6



" A
Fisher's LD vs LDA

m Fisher's LD = LDA when...

Prior probabilities are same

Each class conditional density is
multivariate Gaussian

... with common covariance matrix

m Fisher's LD...

does not assume Gaussian densities

can be used to reduce dimensions even
when multiple classes scenario
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" B
Comparing
LMS, Logistic Regression, LDA, FLD

m Which is best: LMS, LR, LDA, FLD ?

m Ongoing debate within machine learning
community about relative merits of
direct classifiers [ LMS]

conditional models P(y | x) [ LR]
generative models P(y, x) [ LDA, FLD]

m Stay tuned...
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Issues in Debate

m Statistical efficiency

If generative model P(y, x ) is correct, then ... _
usually gives better accuracy, particularly if training sample is small

m Computational efficiency
Generative models typically easiest to compute
(LDA/FLD computed directly, without iteration)
m Robustness to changing loss functions
LMS must re-train the classifier when the loss function changes.
.. o retraining for generative and conditional models
m Robustness to model assumptions.

Generative model usually performs poorly when the assumptions
are violated.

Eg, LDA works poorly if P( x | y ) is non-Gaussian.
Logistic Regression is more robust, ... LMS is even more robust

m Robustness to missing values and noise.
In many applications, some of the features x; may be missing or
corrupted for some of the training examples
Generative models typically provide better ways of handling this

than non-generative models.
89



Other Algorithms for learning LTUs

m Naive Bayes [Discuss later]
For K = 2 classes, produces LTU

m Winnow [?Discuss later?]

Can handle large numbers of “irrelevant”
features

(features whose weights should be zero)
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" I
Learning Theory

Assume data is truly linearly separable. . .
m Sample Complexity: Given e, d € (0, 1),
want LTU has error rate (on new examples)
less than ¢
with probability >1-9.
Suffices to learn from (be consistent with)

. 1
., = ) (T [IHE + (n+1)In ?D
labeled training examples.

m Computational Complexity:
There is a polynomial time algorithm for
finding a consistent LTU
(reduction from linear programming)

Agnostic case... different...



