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Outline

m Linear Regression

y(a:Ov

MLE = Least Squares.
Basis functions

m Evaluating Predictors
Training set error vs Test set error
Cross Validation

m Model Selection
Bias-Variance analysis
Regularization, Bayesian Model



What is best choice of Polynomial?
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Fit using Degree 0,1,3,9




Comparison

m Degree 9 is the best
match to the samples

(over-fitting)
m Degree 3 is the best
match to the source

m Performance on test
data:




"
What went wrong?

m A bad choice of polynomial?

m Not enough data?
Yes




" A
Terms

m X — input variable
X" — new input variable

m h(X) — “truth” — underlying response function
m t = h(X) + € — actual observed response
m y(X; D) — predicted response,

based on model learned from dataset D
m y(X) = Ep[ y(X; D) | — expected response,

averaged over (models based on) all datasets
m Eerr = Ep o[ (T*— y(x*))? ]

— expected L, error on new instance x*



" S
Bias-Variance Analysis in Regression

m Observed value is t(x) = h(x) + ¢
e ~ N(0, 62)

= normally distributed: mean 0, std deviation 62
Note: h(x) = E[t(x) | X ]
m Given training examples, D = {(x, 1)},
let
y(.)=Yy(;:D)
be predicted function,

based on model learned using D

m Eg, linear model y,,(X) =W - X + w,
using w =MLE(D)



" S
Example: 20 points

t =x + 2 sin(1.5x) + N(0, 0.2)

fitted hypothesis

true function




Bias-Variance Analysis

m Given a new data point x*
return predicted response: y(x*)
observed response: t* = h(X*) + ¢

m The expected prediction erroris ...

Eerr = Ep o [ (T y(x*))* ]
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"
Expected Loss

m[y(x) —t]2 = [y(x) = h(x) + h(x) — ]2 =

[y(x) — h(X)]
+ [ZhEY()X) t_]zh(X)]
+ [h(X) —

Expected value is 0 as h(x) =

E[t|X]

-Eerr=j[y( —’[]2 p(Xx,1) ax dt

iy - rog poocx + S
N

Mismatch between OUR hypothesis y(.) & target h(.)
... we can influence this

x t)axdt

Noise in distribution of target

... hothing we can do
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B F
Ferr = [(y(x) - h(O)2 pok + [{(x) =42 px,0akat

Relevant Part of Loss

m Really y(x) =y(x; D) fittodataD...
SO consider expectation over data sets D
Let y(x) = Eply(x; D)]
m Ep[ {h(x) —y(x; D) }*
= Ep[h(x)—y(x) + ¥(x) —y(x; D) ]}
= Ep[ {h(X) = Y(X)}?] + 2Eq[ {h(x) - §(x)} { wx Dy—EG[¥TX; D) }
+ Epl{ y(x; D) — Eply(x; D)] }*]
= {h(x) — 9(x)}* + Eo[ { y(x; D) = y(x) }?]

L
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50 fits (20 examples each)

true function

10
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Bias, Variance, Noise

50 fits (20 examples each)
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Understanding Bias
{ y(x) — h(x) }°

m Measures how well
our approximation architecture
can fit the data

m Weak approximators
(e.g. low degree polynomials)

will have high bias

m Strong approximators
(e.g. high degree polynomials)
will have lower bias
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" J
Understanding Variance #°

Epl { y(x; D) — yp(x) }¢]

m No direct dependence on target values

m For a fixed size D:

Strong approximators tend to have more variance
... different datasets will lead to DIFFERENT predictors

Weak approximators tend to have less variance
... slightly different datasets may lead to SIMILAR

predictors
m Variance will typically disappear as |D| —

16



Summary of Bias,Variance,Noise

mEerr = E[ ("~ y(X*))?] =
E[ (y(x*) —y(x*))*]
+ (Y(x*)=h(x*))=
+

_Var( h(x*) ) + Bias( h(x*) )2 + Noise

Expected prediction error
= Variance + Bias? + Noise
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Bias, Variance, and Noise

m Bias: y(x")— h(x")
the best error of model y(x*) [average over datasets]

m Variance: Ep[ (yp(x*) — y(x*) )?]
How much yp(x*) varies from
one training set D to another

m Noise:
How much t* varies from h(x*) =1 +¢
Error, even given PERFECT model, and «~ data
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50 fits (20 examples each
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Predictions at X=2.0
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50 fits (20 examples each)
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"
Predictions at X=5.0
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Observed Responses at X=5.0
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" A
Model Selection: Bias-Variance

m C, “more expressive than” C, @ .
Iff
representable in C, = representable in C,
“‘C,cC/”
m Eg, LinearFns C QuadraticFns
0-HiddenLayerNNs C 1-HiddenLayerNNs
— can ALWAYs get better fit using C,, over C,

m But ... sometimes better to look fory € G,
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Standard Plots..
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"
Why?

mC,cC, =
VyeG,
1 x" e C, that is at-least-as-good-as y

m But given limited sample,
might not find this best x’

m Approach: consider Bias? + Variance!!
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" S
Bias-Variance tradeoff — Intuition

m Model too “simple” =
does not fit the data well

A biased solution

m Model too complex =
small changes to the data,
changes predictor a lot

A high-variance solution
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Bias-Variance Tradeoff

m Choice of hypothesis class introduces learning bias
More complex class = less bias
More complex class = more variance
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Select points by clicking on the graph or press Example Select points by clicking on the gragph or press Example Select points by clicking on the gragph or press Example
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Biaf + Epariance] ——-—-

Select paints by clicking on the graph or press  Example

Select paints by clicking on the graph or press _ Example
4 I & FitYtox
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Calculate | View Polynomial | Reset
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Model Complexity (df)

m Behavior of test sample and training sample error as function of model
complexity
light blue curves show the training error err,
light red curves show the conditional test error Err T
for 100 training sets of size 50 each

m  Solid curves = expected test error Err and expected training error E[err].
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Empirical Study

0.15
(bias)’
0.12¢ variance
(blas) + variance
0.09} =— testerro
0.06
0

—3

m Based on different regularizers

2
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" S
Effect of Algorithm Parameters
on Bias and Variance

m k-nearest neighbor:

iIncreasing k typically

iIncreases bias and reduces variance
m decision trees of depth D:

increasing D typically

iIncreases variance and reduces bias
m RBF SVM with parameter c:

iIncreasing o typically
Increases bias and reduces variance
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"
] a datapoint
Least Squares Estimator |, ]/p

= Truth: f(x) = x'f IRRRAI
Observed: y =f(x) + € E[g]:OX= -

m | east squares estimator )
ﬁ(XO) = XOTE ﬁ = (XTX)-1XTy Kco\mpoplfent vjalues
Unbiased: f(x,) = E[ £(X,) ]

f(Xxo) — E[ £(Xo) |
= Xo' B —E[ Xo"(XTX) X"y ]
= Xo' B —E[ Xo"(XTX)IXT(XB + €) |
=Xo' B —E[ Xo"B + X, (XTX) 1 XTe ]
=X B —Xo"P + X' (XTX)TXT E[e ]

sjuiod eyep N

Il
)
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" A
Gauss-Markov Theorem

m | east squares estimator £(x,) =

... Is unbiased: f(x,) = E[ £(X,) ]
...islineariny ... £(x,) = Cc,"y where c,'
m Gauss-Markov Theorem:

Least square estimate has the minimum variance
among all linear unbiased estimators.

BLUE: Best Linear Unbiased Estimator

m [nterpretation: Let g(x,) be any other ...
unbiased estimator of f(x,) ... i1e, E[ g(Xg) ] = f(Xp)
thatis lineariny ... ie, g(x,) =c'y

then Var[ £(x,) ] < Var[ g(xo) ]
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» S
Variance of Least Squares Estimator

m | east squares estimator
£(xo) =XB B = (XTX)"XT
m Variance:
E[ (£(Xo) — E[ £(Xo) ] )? ]
= E| (ﬁ(xo) —f(xo) )= ]
= B[ (xo! (XTX)™XTB —x,"B)*]
= B[ (Xo (XTX)TXT(XB + &) —x,'B )* ]
=E[ (Xo'B + X" (X"X) ' XTe —x,"B )?]

= B[ (xo"(XTX) X" ¢)* ]
i

... In “in-sample error” model ...
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" A
Trading off Bias for Variance

m What is the best estimator for the given
linear additive model?

m Least squares estimator
f(Xo) =X%'B B = (XTX)XTy
IS BLUE: Best Linear Unbiased Estimator

Optimal variance, wrt unbiased estimators
But variance is O(p/N) ...

m So If FEWER features, smaller variance...
... albeit with some bias??
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" A
Feature Selection

m LS solution can have large variance
variance « p (#features)

m Decrease p = decrease variance...
but increase bias

m If decreases test error, do it!
— Feature selection

m Small #features also means:
easy to interpret
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" A
Statistical Significance Test

mY =Bo+2 B X
m Q: Which X, are relevant?

A: Use statistical hypothesis testing!
m Use simple model:

Y=B+2 B X+e €~N(0, 6.2
m Here: 5 ~ N( B, (X"X)" 6.2)
m Use  _ 4

A 1 N
OV, 6= —$,)
J N—p—1;(y’ $)

v, is the " diagonal element of (X7X)-

. Keep variable X; if z; is large...
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Measuring Bias and Variance

m |n practice (unlike in theory),
only ONE training set D

m Simulate multiple training sets by

bootstrap replicates

D’ = {x | x is drawn at random with
replacement from D }

D’ = |D]
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Estimating Bias / Variance

Original Data  Bootstrap Replicate Hypothesis h,’s predictions
Learning
] — @ —®
% T,=5/S, {h,(¥) |xeTY
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Estimating Bias / Variance

Original Data  Bootstrap Replicate Hypothesis

.
/-

S

T

Learning
Alg
N

Learning
Alg
N

m  Each S, is bootstrap replicate
m T,=S/S
m  h, = hypothesis, based on S,

h ‘s predictions

{h,(X) | xe T}

{h,(x) | xe T.}
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Average Response for each x

X, .

Ty hy(x4)
e’T, h,(X,)
€T, h,(X4) h,(X;)
h(x;) = 1/k; Z h(xq) ... h(x,) =1/ X hi(x)

h(X;) = Xy iy Ni(X5) / {02 x ETi}L‘



" B
Procedure for Measuring
Bias and Variance

m Construct B bootstrap replicates of S
S, ..., Sg

m Apply learning alg to each replicate S,
to obtain hypothesis h,

mlet T, =5S\S, =data points notin S,
(out of bag points)

m Compute predicted value

Ny (X)
foreach x e T,
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Estimating Bias and Variance

mForeach x e S,
observed response y
predictions yy, ..., Y,

m Compute average prediction h(x) = ave; {y;
m Estimate bias: h(x) —vy
m Estimate variance:
2 x Tl ( hi(x) —h(x) )/ (k-1)
m Assume noise is 0
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Outline

m Linear Regression

y(a:Ov

MLE = Least Squares.
Basis functions

m Evaluating Predictors
Training set error vs Test set error
Cross Validation

m Model Selection

\ Bias-Variance analysis

Regularization, Bayesian Model
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Regularization

m Ildea: Penalize overly-complicated answers
m Regular regression minimizes:

> (vxswy—r,f

m Regularized regression minimizes:

Zi (y(X(i) W) — 1, )2 + A||w|

Note: May exclude constants from the norm 46



Regularization: Why?

m For polynomials,
extreme curves typically require extreme
values

m [n general, encourages use of few features

only features that lead to a substantial
increase in performance

m Problem: How to choose A
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Solving Regularized Form

Solving w =argmin Z[tj - w.x’ i

wH=(X"X)"'X"t

Solving w =argmin Z[tj -Y wx/ ]2
|

wh = (X X4 A" X"t




Regularization: Empirical Approach

m Problem:
magic constant A trading-off complexity vs. fit
m Solution 1:
Generate multiple models

Use lots of test data to discover
and discard bad models

m Solution 2: k-fold cross validation:
Divide data S into ksubsets { S, ..., S, }

Create validationset S, =S, - S
m Produces k groups, each of size (k -1)/k

Fori=1..k: Trainon S, Teston S,
Combine results ... mean? median? ...
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"
A Bayesian Perspective

m Given a space of possible hypotheses H={h}
m Which hypothesis has the highest posterior:
P(DIh)P(h)

P(hID)= P(D)

m As P(D) does not depend on h:
argmax P(h|D) =argmax P(D|h) P(h)
m “Uniform P(h)” = Maximum Likelihood Estimate
(model for which data has highest prob.)
m ... can use P(h) for regularization ...
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Bayesian Regression

m Assume that, given X, noise is iid Gaussian

m Homoscedastic noise model
(same o for each position)

&

¢ y(z, w) ,

71 (PR | SARERS—— —— T )
’ p(t|$03 W, /6)

o T



Maximum Likelihood Solution

—(tV—y(x; W))*
202

P(DIh)=P@"...t" | yx:w).0) = []°
: 270

MLE fit for mean is
m just linear regression fit
m does not depend upon 67
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= I
Bayesian learning of
Gaussian parameters

m Conjugate priors Ren

. : Cmeb

Mean: Gaussian prior  tisag |
Variance: Wishart Distribution '

m Prior for mean:

1
ILMOOE Wor

*P(un,A)
2\

v



Bayesian Solution

m Introduce prior distribution over weights
p(h) = pwi Ay = Nlwl o, 21 )

m Posterior now becomes:

P(DIWP(h) = PEP,...t" | y(X;W),0) P(W)

(17 =y (x?w))” —w'w

2 2
e 20 e 2A

H \/272'02 N/Zﬂﬂ/zk

54



= S
Regularized Regression
vs Bayesian Regression

m Regularized Regression minimizes:
i 2
> = yxw) + xw]
m Bayesian Regression maximizes:

- —y(xVsw))’  —w'w
COFle+Z 202 i 212

m [hese are identical (up to constants)
... take log of Bayesian regression criterion 55



Viewing L, Regularization

* .
w =argmin

Z [tj _Zi Wixij ]2 T ZZ Wi2
) : i

m Using Lagrange

* .
= w =argmin

S.t Zwiz <o 4
l

Multiplier...

— 1,U2“

IO

N

wy



Use L, vs L, Regularization

W= argminw{Z[tj -y, wl.xl.j]2 +A) Iw, I"}
J i

= w*=argminw{2[fj_ziwixij]2} S.t.

1
| N
- 5 |
TN ~ i / \ |
:\CE*», [‘ i / “‘
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Intersections often on axis!
..sow; =01



What you need to know

m Regression
Optimizing sum squared error == MLE !
Basis functions = features
Relationship between regression and Gaussians

m Evaluating Predictor
TestSetError # Prediction Error
Cross Validation

m Bias-Variance trade-off
Model complexity ... Play W

m Regularization = Bayesian modeling
m |, regularization — prefers 0 weights!
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