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Linear Regression,

Regularization

Bias-Variance Tradeoff

HTF: Ch3, 7

B: Ch3

Thanks to C Guestrin, T Dietterich, R Parr, N Ray
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Outline

� Linear Regression
�MLE = Least Squares!

�Basis functions

� Evaluating Predictors
�Training set error vs Test set error

�Cross Validation

� Model Selection
�Bias-Variance analysis

�Regularization, Bayesian Model
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What is best choice of Polynomial?

Noisy Source Data
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Fit using Degree 0,1,3,9



5

Comparison

� Degree 9 is the best 
match to the samples

(over-fitting)

� Degree 3 is the best 
match to the source

� Performance on test 
data:
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What went wrong?

� A bad choice of polynomial?

� Not enough data?

�Yes
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Terms

� x – input variable

� x* – new input variable

� h(x) – “truth” – underlying response function

� t = h(x) + ε – actual observed response

� y(x; D) – predicted response, 

based on model learned from dataset D

� ŷ(x) = ED[ y(x; D) ] – expected response, 

averaged over (models based on) all datasets

� Eerr = ED,(x*,t*)[ (t*– y(x*))2 ]
– expected L2 error on new instance x

*
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Bias-Variance Analysis in Regression

� Observed value is   t(x) = h(x) + ε
� ε ~ N(0, σ2) 

� normally distributed: mean 0, std deviation σ2

� Note: h(x)  =  E[ t(x) | x ]

� Given training examples, D = {(xi, ti)},
let 

y(.) = y(.; D) 
be predicted function, 
based on model learned using D

� Eg, linear model yw(x)  = w ⋅ x + w0
using w =MLE(D)
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Example: 20 points

t = x + 2 sin(1.5x) + N(0, 0.2)
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Bias-Variance Analysis

� Given a new data point x*

� return predicted response: y(x*)

�observed response:            t* = h(x*) + ε

� The expected prediction error is …

Eerr = ED,(x*,t*)[ (t*– y(x*))2 ]
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Expected Loss

� [y(x) – t]2 = [y(x) – h(x) + h(x) – t]2 = 
[y(x) – h(x)]2

+ 2 [y(x) – h(x)] [h(x) – t] 
+ [h(x) – t]2

Mismatch between OUR hypothesis y(.) & target h(.)

… we can influence this
Noise in distribution of target

… nothing we can do

Expected value is 0  as h(x) = E[t|x]

� Eerr = ∫ [y(x) – t]2 p(x,t) dx dt

= ∫{y(x) − h(x)}2 p(x)dx +   ∫{h(x) − t}2 p(x, t)dxdt
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Relevant Part of Loss

� Really y(x) = y(x; D) fit to data D…
so consider expectation over data sets D

�Let   ŷ(x) = ED[y(x; D)] 

� ED[ {h(x) – y(x; D) }2 ]
= ED[h(x)– ŷ(x)  + ŷ(x) – y(x; D) ]}2

= ED[ {h(x) – ŷ(x)}2]  + 2ED[ {h(x) – ŷ(x)} { y(x; D) – ED[y(x; D) }]

+ ED[{ y(x; D) – ED[y(x; D)] }2 ]

= {h(x) – ŷ(x)}2 +  ED[ { y(x; D) – ŷ(x) }2 ]

Bias2
Variance

Eerr = ∫{y(x) − h(x)}2 p(x)dx +   ∫{h(x) − t}2 p(x,t)dxdt

0
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50 fits (20 examples each)
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Bias, Variance, Noise
Bias

Variance

Noise

=

50 fits (20 examples each)
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Understanding Bias

� Measures how well 
our approximation architecture

can fit the data

� Weak approximators
� (e.g. low degree polynomials) 

will have high bias

� Strong approximators
� (e.g. high degree polynomials)

will have lower bias

{ ŷ(x) – h(x) }2
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Understanding Variance

� No direct dependence on target values

� For a fixed size D:
� Strong approximators tend to have more variance

… different datasets will lead to DIFFERENT predictors

� Weak approximators tend to have less variance
… slightly different datasets may lead to SIMILAR 

predictors

� Variance will typically disappear as |D| →∞

ED[ { y(x; D) – ŷD(x) }2 ]
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Summary of Bias,Variance,Noise

� Eerr =   E[ (t*– y(x*))2 ]  =

E[ (y(x*) – ŷ(x*))2 ]

+ (ŷ(x*)– h(x*))2

+ E[ (t* – h(x*))2 ] 

= Var( h(x*) ) + Bias( h(x*) )2 + Noise

Expected prediction error
= Variance + Bias2 + Noise
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Bias, Variance, and Noise

� Bias: ŷ(x*)– h(x*)

� the best error of model ŷ(x*)  [average over datasets]

� Variance:   ED[ ( yD(x*) – ŷ(x*) )2 ]

� How much yD(x*) varies from 

one training set D to another

� Noise: E[ (t* – h(x*))2 ] = E[ε2] =  σ2

� How much  t*  varies from  h(x*) = t* + ε

� Error, even given PERFECT model, and ∞ data
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50 fits (20 examples each)
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Predictions at x=2.0
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50 fits (20 examples each)
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Predictions at x=5.0

Bias

Variance

true value
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Observed Responses at x=5.0

Noise Plot

Noise
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Model Selection: Bias-Variance

� C1 “more expressive than” C2

iff

representable in C1 ⇒ representable in C2

“C2 ⊂ C1”

� Eg, LinearFns ⊂ QuadraticFns

0-HiddenLayerNNs ⊂ 1-HiddenLayerNNs

⇒ can ALWAYs get better fit using C1, over C2

� But … sometimes better to look for y ∊ C2

C1

C2
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Standard Plots…
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Why?

� C2 ⊂ C1 ⇒
∀ y ∊ C2

∃ x* ∊ C1 that is at-least-as-good-as y

� But given limited sample,
might not find this best x*

� Approach: consider Bias2 + Variance!!
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Bias-Variance tradeoff – Intuition 

� Model too “simple” ⇒
does not fit the data well
�A biased solution

� Model too complex ⇒
small changes to the data, 
changes predictor a lot
�A high-variance solution
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Bias-Variance Tradeoff
� Choice of hypothesis class introduces learning bias

� More complex class ⇒ less bias

� More complex class ⇒ more variance
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2

2

~Bias2

~Variance
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� Behavior of test sample and training sample error as function of model 
complexity
� light blue curves show the training error err, 

� light red curves show the conditional test error ErrT

for 100 training sets of size 50 each
� Solid curves = expected test error Err and expected training error E[err].
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Empirical Study…

� Based on different regularizers
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Effect of Algorithm Parameters

on Bias and Variance

� k-nearest neighbor: 

� increasing k typically 

increases bias and reduces variance 

� decision trees of depth D: 

� increasing D typically 

increases variance and reduces bias

� RBF SVM with parameter σ:  

� increasing σ typically
increases bias and reduces variance
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Least Squares Estimator

� Truth:  f(x) = xTβ
Observed: y = f(x) + ε Ε[ ε ] = 0

� Least squares estimator 
f(x0) = x0

Tβ β = (XTX)-1XTy

�Unbiased: f(x0) = E[ f(x0) ]

f(x0) – E[ f(x0) ] 

= x0
Tβ −Ε[ x0

T(XTX)-1XTy ]

= x0
Tβ −Ε[ x0

T(XTX)-1XT(Xβ + ε) ]

= x0
Tβ −Ε[ x0

Tβ + x0
T(XTX)-1XTε ]

= x0
Tβ −x0

Tβ + x0
T(XTX)-1XT Ε[ε ]  =  0

N
 d
a
ta
 p
o
in
ts

K component values

a datapoint

X =

x1, …, xk
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Gauss-Markov Theorem

� Least squares estimator   f(x0) = x0
T (XTX)-1XTy

� … is unbiased: f(x0) = E[ f(x0) ]

� … is linear in y … f(x0) = c0
Ty where c0

T

� Gauss-Markov Theorem:

Least square estimate has the minimum variance

among all linear unbiased estimators.

� BLUE: Best Linear Unbiased Estimator

� Interpretation: Let g(x0) be any other …

� unbiased estimator of f(x0) … ie, E[ g(x0) ] = f(x0)

� that is linear in y … ie,  g(x0) = cTy

then Var[ f(x0) ] ≤ Var[ g(x0) ]
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Variance of Least Squares Estimator

� Least squares estimator 
f(x0) = x0

Tβ β = (XTX)-1XTy

� Variance: 
E[ (f(x0) – E[ f(x0) ] )

2 ] 
= E[ (f(x0) – f(x0) )

2 ]

= E[ ( x0
T (XTX)-1XT β − x0

Tβ )2 ]
= Ε[  (x0

T(XTX)-1XT(Xβ + ε) − x0
Tβ )2 ]

= Ε[  (x0
Tβ + x0

T(XTX)-1XT ε − x0
Tβ )2 ]

= Ε[  (x0
T(XTX)-1XT ε)2 ] 

= σε
2 p/N

y = f(x) + ε    Ε[ ε ] = 0

var(ε) = σ
ε

2

… in “in-sample error” model …
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Trading off Bias for Variance

� What is the best estimator for the given 
linear additive model?

� Least squares estimator 
f(x0) = x0

Tβ β = (XTX)-1XTy

is BLUE: Best Linear Unbiased Estimator

�Optimal variance, wrt unbiased estimators

�But variance is O( p / N ) …

� So if FEWER features, smaller variance…
… albeit with some bias??
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Feature Selection

� LS solution can have large variance

� variance ∝ p  (#features)

� Decrease p ⇒ decrease variance…
but increase bias 

� If decreases test error, do it!

⇒ Feature selection

� Small #features also means:

� easy to interpret
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Statistical Significance Test

� Y = β0 + ∑j βj Xj

� Q: Which Xj are relevant? 

A: Use statistical hypothesis testing!

� Use simple model:
Y = β0 + ∑j βj Xj + ε ε ~ N(0, σe

2)

� Here: β ~ N( β, (XTX)-1 σe
2)

� Use

vj is the jth diagonal element of (XTX)-1

• Keep variable Xi if zj is large…

j
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Measuring Bias and Variance

� In practice (unlike in theory),

only ONE training set D

� Simulate multiple training sets by 

bootstrap replicates
�D’ = {x | x is drawn at random with

replacement from D   }

� |D’| = |D| 



40

Estimating Bias / Variance

S

S1

Original Data Bootstrap Replicate

Learning
Alg h1

Hypothesis

{ h1(x) | x ∈ T1}

h1’s predictions

T1=S/S1
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Estimating Bias / Variance

S

S1

� Each Si is bootstrap replicate

� Ti = S / Si

� hi = hypothesis, based on Si

Original Data Bootstrap Replicate Hypothesis h ’s predictions

Learning
Alg h1

{ h1(x) | x ∈ T1}T1

Learning
Alg hb

{ hb(x) | x ∈ Tb}Tb

Sb

⋮ ⋮ ⋮
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Average Response for each xi

hb(xr)…hb(x1)∈? Tb

h2(xr)…--∈? T2

h(xr) = 1/kr Σ hi(xr)…h(x1) = 1/k1 Σ hi(x1)

⋮

…h1(x1)∈? T1

xr…x1

h(xj) = Σ{i: x ∈Ti} hi(xj) / ||{i: x ∈Ti}||
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Procedure for Measuring 

Bias and Variance

� Construct B bootstrap replicates of S
S1, …, SB

� Apply learning alg to each replicate Sb

to obtain hypothesis hb

� Let Tb = S \ Sb = data points not in Sb
(out of bag points)

� Compute predicted value 
hb(x)

for each x ∈ Tb
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Estimating Bias and Variance

� For each x ∈ S, 

�observed response y

�predictions   y1, …, yk

� Compute average prediction h(x) = avei {yi}

� Estimate bias:    h(x) – y

� Estimate variance:

Σ{i: x ∈Ti} ( hi(x) – h(x) )2 / (k-1)

� Assume noise is 0



45

Outline

� Linear Regression
�MLE = Least Squares!

�Basis functions

� Evaluating Predictors
�Training set error vs Test set error

�Cross Validation

� Model Selection
�Bias-Variance analysis

�Regularization, Bayesian Model
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Regularization

� Idea: Penalize overly-complicated answers

� Regular regression minimizes:

� Regularized regression minimizes:

Note: May exclude constants from the norm
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Regularization: Why?

� For polynomials,
extreme curves typically require extreme 
values

� In general, encourages use of few features 

�only features that lead to a substantial 

increase in performance

� Problem: How to choose λ
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Solving Regularized Form
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Regularization: Empirical Approach

� Problem: 
magic constant λ trading-off complexity vs. fit

� Solution 1:
� Generate multiple models

� Use lots of test data to discover 
and discard bad models

� Solution 2:  k-fold cross validation:
� Divide data S into k subsets { S1, …, Sk }

� Create validation set S-i = Si - S
� Produces k groups, each of size (k -1)/k

� For i=1..k: Train on S-i, Test on Si

� Combine results … mean?  median? …
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A Bayesian Perspective

� Given a space of possible hypotheses H={hj}

� Which hypothesis has the highest posterior:

� As P(D) does not depend on h:

argmax P(h|D)  = argmax P(D|h) P(h)

� “Uniform P(h)” ⇒ Maximum Likelihood Estimate

� (model for which data has highest prob.)

� … can use P(h) for regularization …

)(

)()|(
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hPhDP
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Bayesian Regression
� Assume that, given x, noise is iid Gaussian

� Homoscedastic noise model 
(same σ for each position)
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Maximum Likelihood Solution

MLE fit for mean is 

� just linear regression fit

� does not depend upon σ2
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Bayesian learning of 

Gaussian parameters

P(µ |η,λ)

2λ

η

� Conjugate priors
� Mean: Gaussian prior

� Variance: Wishart Distribution

� Prior for mean:

Remember this??
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Bayesian Solution

� Introduce prior distribution over weights

� Posterior now becomes:
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Regularized Regression

vs Bayesian Regression

� Regularized Regression minimizes:

� Bayesian Regression maximizes:

� These are identical (up to constants)
… take log of Bayesian regression criterion
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Viewing L2 Regularization

� Using Lagrange Multiplier…
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Use L2 vs L1 Regularization

[ ] 







+∑−= ∑ ∑

j i

q

ii

j

ii

j

w wxwtw ||minarg
2* λ

[ ] 







∑−= ∑

j

i

j

ii

j

w xwtw
2* minarg⇒ ω≤∑

i

q

iw ||s.t. 

Intersections often on axis!

… so wi = 0 !!

LASSO!
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What you need to know
� Regression

� Optimizing sum squared error == MLE !

� Basis functions = features

� Relationship between regression and Gaussians

� Evaluating Predictor
� TestSetError ≠ Prediction Error

� Cross Validation

� Bias-Variance trade-off
� Model complexity …

� Regularization ≈ Bayesian modeling

� L1 regularization – prefers 0 weights!

Play with Applet


