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i Outline |
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= Foundations 4

= Bayes Theorem

= (Conditional) Independence
= Dutch Book Theorem

= Moments: Mean, Variance

= Estimation
=« MLE (Binomial)
= Bayesian model

= Gaussian (Normal)



o =2
rasse A

= Consider flipping a Thumbtack.
What is the probability it will land with
the nail up?

= Try flipping it a few times...
observe H,H,T,T,H

= What is your BEST GUESS?



‘_L Binomial Distribution

= Model:
=« P(Heads) = 06, P(Tails) = 1-6
« Flips are i.i.d.:

= Independent events
= Identically distributed according to distribution

s P(HHT,T,H) =060 (1-06) (1-6) 6 = 63(1- 6)

s Sequence D of o, Heads and o Tails:

P(D|60) =0“H(1 —0)T
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‘L Maximum Likelihood Estimation

= Data: Observed set D of
oy Heads and o Tails

= Hypothesis Space: Binomial distributions

= Learning “best” 6 is an optimization problem
= What's the objective function?

= MLE: Choose 6 that maximizes
the probability of observed data:

f = arg m@ax P(D | 0)

= arg m@ax In P(D | )



i Simple “Learning” Algorithm

= arg m@ax In P(D | 0)
= arg m@ax INGH (1 — )T

d
— InP(D|6) =0
—5 INP(D|6)

s Set derivative to zero:

%, h —t
—In[8"(1- =— =
0 n[8"(1-6)'] Y [hln9+tln(1 6)' ] =

9 (1-6)

h —1 R [
=0 f=—
0 (1-6) t+h




How many flips are “needed”?

Oy
o, +O,;

QML —

= Given 3 heads and 2 tails, 6, = 3/5 = 0.6

= But...
Given 30 heads and 20 tails, 6, = 0.6

= SAME!!!
Which is better? ... more precise?
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Using Variance

4

= Variance measures
“spread” around mean

= For Binomial(h, t)
= Mean: u = h/(h+t)

= Variance:
c = W(1-u)/(h+t)

= Binomial(3H, 2T)
u=0.6 ¢=0.048

= Binomial(30H, 20T)
u=0.6 5=0.0048




Binomial Distribution

P(D|0) for fixed 6=0.6

niz

n=50

0ir

0.08 -

0.06 -

0.04 -

0.02 -

1 1
-0z 0 0.z

Prob that p=0.6 coin generates k/n heads, in n flips
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Probability Functions

P(D|6) for fixed D

Prob that p=6 coin generates h heads, t tails

10



‘.L Hoeffding’s Equality

1 & .
Defn: S, =—> X, observed average over m r.v.s in {0,1}
n -

» P[S,, >+ A]<e2m”2

—A

7 >
( Pr[|S,,—u|<A]=>1-2e2m®D)

r'—II—I_'
= Holds Vv (bounded) distributions ... not just Bernoulli...

= Sample average likely to be close to true value
as #samples (/m) increases...
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Simple bound
(using Hoeffding’s Inequality)

Here...
n #flips m = o +o

A o
= Sample average = 6,,,, = H

= Let 6" be the true parameter

For any £>0:
~ p
P(|O—0"|>¢) < 2e2N€
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i PAC Learning

= PAC: Probably Approximate Correct
P(|—0"|>e) < 2e2N€

= To know the thumbtack parameter 0,
= within € = 0.1,
= With probability >1-6 = 0.95
require #flips m > (In 2/d)/ 2¢?

=~ 460.2

13



i What about prior knowledge?

= Spse you krnow the thumbtack 6 is
“close” to 50-50

= You can estimate it the Bayesian way...

= Rather than estimate a single 6,
obtain a distrib’n over possible values of 6

Beta(2,2)




Two (related) Distributions: g,

i Parameter, Instances %

, Uniform density ®
1.0
/ | Q
®=0.1 ®=0.5 ®=03
T T H
T T H
T H T
T T H
H H H
T H H
. . . {5




Two (related) Distributions: g,

i Parameter, Instances

S

, Uniform density ®

oo g g g g

0.1

0.5 ®=038

veemm=T ==

ceemmm= oz |
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i Bayesian Learning

= Use Bayes rule: //ke//mod 7/0r
PO | D) = P(D|0)P(0)
/ P(D)

posterior

= Or equivalently (wrt argmax, P(6|D) )
P(O| D) «x P(D|6)P(H)



‘_L Bayesian Learning for Thumbtack

PO | D) < P(D|O)P(H)
\

posterior likelihood prior

= Likelihood function is simply Binomial:
P(D|6)=0"H(1—0)™T

= What about prior?
= Represent expert knowledge
= Simple posterior form

= Conjugate priors:

= Closed-form representation of posterior
(more details soon)

« For Binomial, conjugate prior is Beta distributions




Beta pdf

‘L Beta prlor distribution — P(0)

Beta(1,1) 6 | Beta(2,2) Beta(3,2) . _ Beta(30,20)

Beta pdf
Beta pdf
Beta pdf

. gor—1(1 —g)or—1
m Prior: P9 = ( ) ~ Beta(agy, aT)
B(ay,ar)

= Likelihood function: P(D|6)=0mH(1—0)™T
= Given X ~ Beta(a, b):
= Mean: a/(a+ b)

= Unimodal if a,b>1... here mode: (a-1) / (a+b-2)
= Variance: a b/ (a+b)? (a+b-1)

19




Posterior distribution... from Beta

Beta(1,1) 16 Beta(2,2) Beta(3,2)

Prior P(6)

P(6|D) « P(8) P(D|6)

Beta(30,20)

Likelihood P(D|)

=@ 1(1-0) T T @"Hi(1-©)"T_D

— QOH mH—l(l_e)aT

mT—l

~ Beta(ays +my, ap +mr)

So Posterior is same form as Prior!! Conjugate!

20




Posterior Distribution

= Prior: 6 ~ Beta(oy, o)
= Data 9: my heads, m; tails

s Posterior distribution:
0|9 ~Beta( my + oy, My + 07 )

16 Beta(2,2) | Beta(3,2) . Beta(30,20)
141
15} S
1.2¢
1 4l
I - s
9 a
0.8/ SO @ 3
@ @
061 & ol
0.4} 0.5
1+
0.2+
0 : : : : 0 : : ‘ ‘ % 0.2 04 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 parameter value
parameter value parameter value
Prior + observe 1 head + observe

27 more heads:

18 tails 21



Conjugate Prior

L

= Given
= Prior: ® ~ Beta( oy, o)
= Data: © with m, heads and m-- tails
(binomial likelihood)

» Posterior distribution:
®|® ~ Beta( oy + my, o + My )

= (Parametric) prior P(6|a) is conjugate to likelihood function
if posterior is of the same parametric family,
and can be written as:
P(6|a) for some new set of parameters o’



Beta(30,20)

Uirg Bayesian Posterior

Beta pdf

s Posterior distribution:

P(0| D) ~ Beta(myg + ag, mp + ar)

= Bayesian inference ... want f(0)
= No longer single parameter
= Can use Expected value:

1
ELf(0)] = /O £(0)P(6 | D)do

... but integral is often hard to compute
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Beta(30,20)

MAP: Maximum a posteriori /\ *

approximation

)P(H | D) ~ Beta(By + oy, Br + ar)

= As more data is observed, dist. is more peaked...
more of distribution is at MAP:

éMAp=argmaXP(9ID): CBH_l_IBH_1
Z 0(H+IBH+0(T+IBT_2

e Like MLE = argmax,P(D| 6 )
but after “observing” prior = (B,-1 , B+-1) extra flips

= MAP: use most likely parameter:

BU@I = [ FO)PO D)0 = [(§,,)

24



MAP for Beta distribution

gPnton—1(1 — g)frtar—1
BBy + oy, Br + ar)

PO | D) = ~ Beta(By~+a, Br+or)

= MAP: use most likely parameter:

b —argmax P(01D)=— % T Pu~1
6 CL’H+IBH+05T+IBT_2

= Beta prior equivalent to extra thumbtack flips
s As N — o, prior is “forgotten”

= For small sample size, prior is importanzg!



Bayesian Prediction of /\ +

i a New Coin Flip

s Prior: ® ~ Beta( o, 01 )
= Observed m,, heads, m- tails
= What is probability that next (m+1st) flip is heads?

1
P(X,,=H\D) = [P(X,,, =H|®,D)xP(®| D) d®
0

1 / /
= |OxBeta®:a, +m,,0. +m,.) dO
[ @xBeta(©: at, +my.0 +m;)d

o, +my
o, +my + 0 +m.*°

= EBeta(@:a’H +my Oy +my) [®]



i Alternative “Encoding”

Beta(1,1)

m Beta(a, b)=B(m, u)

where

= M = (a+b)
... effective sample size

ta pdf

Be

= 0 = a/(a+b)

N Eg o _ Beta22)
=« Beta(1,1) =B( 2,0.5)
= Beta(10,10) = B( 20, 0.5)
« Beta( 7,3) =B( 10, 0.7)

pdf

Beta
o




Asymptotic behavior and
equivalent sample size

Fix m’, change o

Beta prior equivalent to extra flips:

mpyg + ag
mH—I-aH—I-mT—I—aT

As m — oo, prior is “forgotten”

= E[f] =

- 0 20 40 60 80 100
But, for small sample size, M = #samples
prior is important!
/ Fix o, change m’
Bl = —14 T om =
mH—I—mT+m’ %0.4
sl |
Equivalent sample size: :i\: _
= Prior parameterized by o, 0., OF |
= m’ (equivalent sample size) and o .

0 20 40 60 80 100
M =#samples



Bayesian learning ~ Smoothing

&y, +my, + o, +m, ... equivalent sample size
— Oy + my

prior

eMLE 0.1 5 10 1 24: 25 30 35 4n 45 50

* MLE estimate, biased towards prior... “[][] H_H BN
= M=0 = prior parameter
= M—oo = MLE

29



Bayesian learning for Mu/thomial

= What if you have a k-sided thumbtack???
= ... still just ONE thumbtack (so just one event)

= Likelihood function if multinomial:
= PX=i)=96, i=1.k
u Zi Gi —_ 1 Gi > O
= Conjugate prior for multinomial is Dirichlet:

= 6~ Dirichlet(ay, . ..,ap) ~ []6%*
7

= Observe m data points, m;from assignment i,
posterior:
« Dirichlet( a;, + m, ..., oy + m,)

o, +m,

= Prediction:p(X  =ilD)=
" E (ax.+m.)
J J J




i Outline

= Foundations
= Bayes Theorem
= (Conditional) Independence
« Dutch Book Theorem
= Moments: Mean, Variance

= Estimation
=« MLE (Binomial)
\ = Bayesian model
= Gaussian (Normal)

= Properties of Gaussians
= Learning Parameters of Gaussians
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Multivariate Normal Distributions:

i A tutorial

= univariate normal (Gaussian),
with mean u; variance 2
= PDF (probability distribution function)




Some Properties of Gaussians

= Affine transformation
(multiplying by scalar and adding a constant)

'XNN(HIGZ)
sY=aX+b = Y~ N(au+b, a?c?)

= Sum of Gaussians
n X~ N(MXI GZX)
=Y ~ N(uy, GZY)
n/=X+Y = I~ /V( Lyt Ly, 62X+62Y)

33



i The Multivariate Gaussian

MVG = MultiVariate Gaussian

= Gaussian over many variables...

= A 2-dimensional Gaussian is defined by

= ameanvector u =1[ u;, W, ]

= a covariance matrix: Y, =

where ¢;;2 = E[ (X — 1) (%= 1) |

. 1/
IS (co)variance

= Note: > is symmetric,
“positive semi-definite”: vx:

2 2
O-l,l 62,1

2 2
O, 62,2_
x">x >0

34



Standard Normal Distribution

AL
Tl 2z
i

0.25

0.2

0.15

0.1

/
T}
<
o

Standard normal for

Y —

IX

the identity matr

(0,0)

2
u
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3_

‘-E/IVG examples — contour plots

2_

1+




Standard Independent Gaussian

oL

e Standard independent normal:
1 O
,u_(O,O)andZ_IQ_[01]

Here: Tl =1y, [£| =1 n=2""

6100 H 1
= e 90 =5k = 1) T (x - )]

= G o0 [3(3-2) - (0,0) R(3,-2) - 0,0))

o ((3,-2)-{0,0))'B((3,-2) - (0,0))
iy

= (3x3)+(2x-2) = 13

SoP((-3,2)|...) = ﬁexp[—%l?,} =

37



MVG examples

0.25

0.2

0.15

0.1

0.05
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‘-ﬂ/IVG examples

39



MVG examples

0.25

0.2

0.15

0.1

0.05
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‘-ﬂ/IVG examples

41



* Independent Variables

e Variables independent =
Covariance matrix is Diagonal
Lines of equal probability = ellipses parallel to axes

* P(<$ay>=<3!_2>| <$ay>mN( <0!0>: ))

=P(x=3| £~N(0,1) ) x P(y=-2] y~N(0,1) )

o P((e,5) = (3,~2)| (@) ~ N( (2,3), [ ))

=P(z=3]| 2~N(2,2) ) x P(y=—-2| y~N(3,1)

42



The Multivariate Gaussian: Ex 3

e If > is arbitrary,
then x1 and 2o are dependent

Lines of equal probability are
“tilted” ellipses

Eg For p=(2,3) and X = [ < 0'5}:

&

4B
"
4
3 x2

12
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0

{82‘

2

= ol
= Diag(c, ...

- >

o )

Marginal...

L1

Examples of Gaussians

{82‘

@

>. = Diag(ay, ... o, ) General X

Tp — 0.7

/"/ )

)

p 4

7
77

>

o
sl
o

(Iaamb

)
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iUsefuI Properties of Gaussians I

urfaces of equal probability ..

» for standard (mean 0, covariance I) Gaussians:
spheroids

= general Gaussians: ellipsoids

= Every general Gaussian =
a standard Gaussian that has undergone an
affine transformation

45



iUsefuI Properties of Gaussians II

= A Gaussian distribution is completely
specific by
= @ vector of means
= @ covariance matrix

= Requires O(n?) space

= Requires O(n3) time to manipulate

= Bad but... a joint distribution over n binary
variables requires O(2") space

46



#Useful Properties of Gaussians III

= Marginals of Gaussians are Gaussian

= Given: x=(x,, %), 1= (1L, 14,)

(Zaa Zabj
Yy —

Zba be
= Marginal Distribution:

p(xa) — N(xa lﬂa’zaa)

= (Marginalize by ignoring)

47



iUsefuI Properties of Gaussians IV

= Conditionals of Gaussians are Gaussian
= Notation:

~ A A
A:ZIZ( “ j
Aba Abb
= Conditional Distribution:

p('xa | 'xb) — N('xa |1Llalb’Aaa_1)
ﬂalb — ﬂa _Aaa_lAab ('xb _ILla)

48



Visualizing Marginalization &
Conditioning

Iy
By =0t )
g
0.... ../; ) Vs -._../ I 'J.__-"/I./’/ o




i Useful Properties of Gaussians V

s Affine transformations of Gaussian variables
are Gaussian

= Suppose x is Gaussian
=« Y=Ax+Db is Gaussian
= Uses:

= Compute distribution on Y from distribution on x
= Compute posterior on x after observing y

50



‘_L Useful Properties of Gaussians

= Lots of things can (arguably) be
approximated well by Gaussians

s Central Limit Theorem:
The sum of IID variables with finite
variances will tend towards a Gaussian
distribution

= CLT often used a hand-waving argument to
justify using the Gaussian distribution for
almost anything

51



i Learning a Gaussian

= Collect a set of data, D
of real-valued i.i.d. instances

99
75
82

93

= €.7., eXadm SCOores

N (x|p, o?)
= Learn parameters A
= Mean, u
= Variance, ¢
1 —(z—-w)?
P(z | p,o) = e 202




i MLE for Gaussian

s Prob. of i.i.d. instances D= {Xx,,....X\} :

P(DI,u,O')zﬁP(xiW,o-):( 1 jﬁe‘xzdz

OAN2TT

= Log-likelihood of data:

InP(D | n,0) = In (

o\ 2T

=l

o 2
CNinovas— S &= 1)
. D52

|
 —

1 53



:LIVILE for mean of a Gaussian

= What is ML estimate #..: for mean u?

d
—|ﬂP(D|/L,O‘)
dp

(-]
20"

—lnP(DI,u o)=0 =

MLE
= 1

d N (g — )2
— @{—Nlna\/ﬂ—i; - ]

Just empirical mean!!
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‘.L MLE for Variance

d

do

N P(D | 10)

K3 e @i )
— % |:N|n0'\/277/; 20_5 :|
d Nd (@ — p)?
ﬂ . —2(Xi—ﬂ)2
o Z,: 207
~9 . 1 2
Ovir ﬁZ(xz _:u)

Just empirical variance!!
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i, 1S unbiased

s Estimator y of y is unbiased

s Observe { Xy, ..., X, }

ffELy] =y

= drawn iid (independent and identically distributed)
= ... with common mean E[x ] = pn

Elfy, ;1= E _in :_Z

56



Learning Gaussian parameters

= MLE:

UMLE

1=1

= But... MLE for Gaussian variance is biased
= Expected result of estimation # true parameter!

= Unbiasec

57



i Why is it Biased?

= Bias is wrt Mean; MLE is wrt Mode
... Mean # Mode

= Consider...

58



i Estimating a Multivariate Gaussian

iven data set {x,, ..., X}, MLE is...

. 1
Myre = ﬁ Z ue

A 1 . .
e = ﬁz(xi — ) (x, -’

= Recall...
e e ] T1Yy1 T1Y2 T1Y3 |
xy = |z ["ly1yayal] = oY1 T2Y2 T2Y3
| | . T3Y1 T3Y2 T3Y3 |
|



Bayesian learning of
Gaussian parameters

= Conjugate priors
= Mean: Gaussian prior
= Variance: Wishart Distribution

s Prior for mean:

1
P(u @@ = "ot

*P(un,A)
2\




i MAP for mean of Gaussian
P(ulD,o,n,A) « P(Dlu,c)P(uln,A)

1 N N —(z;-p)? 1 —(u=n)?
PO o) = (s ) e ¥ Plrlnd)= e 20
d d d
—InPDIw)P(u) = —mmPD|u)+—In P(u)

du du du




‘_L MAP for mean of Gaussian

Myap =

= If know nothing, A? — o
— MAP estimate is same as MLE!

= Butif A2 < o,
then MAP is WEIGHTed AVERAGE of
MLE and “prior” n
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i Limitations of Gaussians

= (Gaussians are unimodal
= Single peak at mean

= O(n%) and O(n3) can get expensive

= Definite integrals of Gaussian distributions
do not have a closed form solution
(somewhat inconvenient)

= Must approximate, use lookup tables, etc.
= Sampling from Gaussian is inelegant
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‘_L Mixtures of Gaussians

= Want to approximate distribution that is not
unimodal?

= Density is weighted combination of Gaussians
p(x)=) mN(xlu X))

K
Y 7 =1
k=1

= Idea: Flip coin (roll dice) to select Gaussian, then
sample from the Gaussian

= Can be arbitrarily expressive with enough Gaussians

64



* Mixture of Gaussians Example

a
0.5 03 =
al [l




i What you need to know

= Probability 101

= Point Estimation
=« MLE
= Hoeffding inequality (PAC)

= Bayesian learning
= Beta, Dirichlet distributions
« Gaussian, ...

= MAP
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Factoids...

sina®>=blna
sln(@a*b)=Ilnha+Inb

68



i Basic concepts for random variables

= Atomic outcome: assignment x;,...,x, to Xy,..., X,
= Conditional probability: P(X,Y) = P(X) P(Y|X)

s Bayes rule: P(X]Y) = P(Y|X) P(X) / P(Y)

= Chain rule:

P(Xy,..., X)) =
P(X1) POGIX ) POXIX e X)) - POGIX s Xig)
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i Chebyshev’s Inequality

= X with finite mean, variance
Var(X)
2
C
= Variance governs chance of missing mean

PUX-EX)I>c) <

70



i Convergence of Sample Mean

= Apply Chebyshev’s Inequality to sample
mean:

PUX-EX)I>c) <

Var(X)

C

Var(X) = var(Zi - j =2 L Var(x,) = YarX)
n

n n
Var(X)

2
nc

lim _P(IX-EX)>c¢) < lim__ 0

n—

/1



i Random Variable

= Events are complicated — we think about attributes
= Age, Grade, HairColor

= Random variables formalize attributes:
= Grade=A shorthand for event {weQ: f; 4 (®) = A}

= Properties of random vars, X:
= Val(X) = possible values of random var X
= For discrete (categorical): >._; a0 P(X=Xx) = 1

= For continuous: fx p(X=x)dx =1
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l_The Multivariate Gaussian: Ex 2

O 1

2 0
o P((3.-2)] M(23).[ 5§ )
— (2,,,)21;221;2 exp [_%“3: _2> o <2: 3})TZ_1(<3: _2} o (2: 3))]

= ﬁexp(—% [ _15] [é (1)] [1,—5])
= lexp(—3[5x1%2 4+ 1x(-5)3))
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