

Probability 101

Outline

- Bayes Theorem
- (Conditional) Independence
- Dutch Book Theorem
- Moments: Mean, Variance
- Estimation
 - MLE (Binomial)
 - Bayesian model
- Gaussian (Normal)

Learning involves Estimation

Consider flipping a Thumbtack. What is the probability it will land with the nail up?

Try flipping it a few times... observe H,H,T,T,H

What is your BEST GUESS?

- Model:
 - $P(Heads) = \theta$, $P(Tails) = 1-\theta$
 - Flips are i.i.d.:
 - Independent events
 - Identically distributed according to distribution

■
$$P(H,H,T,T,H) = \theta \theta (1-\theta) (1-\theta) \theta = \theta^3 (1-\theta)^2$$

• Sequence D of α_H Heads and α_T Tails:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- **Data:** Observed set D of α_H Heads and α_T Tails
- Hypothesis Space: Binomial distributions
- Learning "best" θ is an optimization problem
 - What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \ln P(\mathcal{D} \mid \theta)$$

Simple "Learning" Algorithm

$$\widehat{ heta} = \arg\max_{ heta} \ \ln P(\mathcal{D} \mid heta)$$
 $= \arg\max_{ heta} \ \ln heta^{lpha_H} (1- heta)^{lpha_T}$

• Set derivative to zero:
$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$\frac{\partial}{\partial \theta} \ln[\theta^{h} (1-\theta)^{t}] = \frac{\partial}{\partial \theta} [h \ln \theta + t \ln (1-\theta)^{t}] = \frac{h}{\theta} + \frac{-t}{(1-\theta)}$$

$$\frac{h}{\theta} + \frac{-t}{(1-\theta)} = 0 \Rightarrow \hat{\theta} = \frac{t}{t+h}$$
So just average!!!

How many flips are "needed"?

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- Given 3 heads and 2 tails, $\theta_{MIF} = 3/5 = 0.6$
- But... Given 30 heads and 20 tails, $\theta_{MLE} = 0.6$
- SAME!!!
 Which is better? ... more precise?

Using Variance

- Variance measures "spread" around mean
- For Binomial(h, t)
 - Mean: $\mu = h/(h+t)$
 - Variance: $\sigma = \mu(1-\mu)/(h+t)$
- Binomial(3H, 2T) μ =0.6 σ =0.048
- Binomial(30H, 20T) μ =0.6 σ =0.0048

Binomial Distribution

Prob that p=0.6 coin generates k/n heads, in n flips

Probability Functions

$P(D | \theta)$ for fixed D

Prob that $p=\theta$ coin generates h heads, t tails

Hoeffding's Equality

Defn:
$$S_m = \frac{1}{m} \sum_{i=1}^m X_i$$
 observed average over m r.v.s in {0,1}

•
$$P[S_m > \mu + \lambda] < e^{-2m\lambda^2}$$

$$\Pr[|S_m - \mu| < \lambda] \ge 1 - 2e^{-2m(\lambda/\Gamma)^2}$$

- Holds ∀ (bounded) distributions ... not just Bernoulli...
- Sample average likely to be close to true value as #samples (m) increases...

Simple bound (using Hoeffding's Inequality)

Here...

• #flips
$$m = \alpha_H + \alpha_T$$

Sample average =
$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Let \(\theta^*\) be the true parameter

For any $\varepsilon > 0$:

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

PAC Learning

PAC: Probably Approximate Correct

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

- To know the thumbtack parameter θ ,
 - within $\varepsilon = 0.1$,
 - with probability $\geq 1-\delta = 0.95$

require #flips m > (ln
$$2/\delta$$
)/ $2\varepsilon^2$

≈ 460.2

What about prior knowledge?

- Spse you *know* the thumbtack θ is "close" to 50-50
- You can estimate it the Bayesian way...
- Rather than estimate a single θ , obtain a *distrib'n* over possible values of θ

Two (related) Distributions: Parameter, Instances

Two (related) Distributions:

Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$
posterior

likelihood

• Or equivalently (wrt $argmax_{\theta} P(\theta|D)$)

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Bayesian Learning for Thumbtack

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

posterior | likelihood | prior

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior (more details soon)
 - For Binomial, conjugate prior is Beta distribution8

Beta prior distribution – $P(\theta)$

• Prior:
$$P(\theta) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)} \sim Beta(\alpha_H, \alpha_T)$$

• Likelihood function:
$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- Given $X \sim Beta(a, b)$:
 - Mean: a/(a + b)
 - Unimodal if a,b>1... here mode: (a-1) / (a+b-2)
 - Variance: a b / (a+b)² (a+b-1)

4

Posterior distribution... from Beta

$$P(\theta \mid \mathcal{D}) \propto P(\theta) P(\mathcal{D} \mid \theta)$$

Prior
$$P(\theta)$$

Likelihood
$$P(D|\theta)$$

$$= \Theta^{\alpha_H + m_H - 1} (1 - \Theta)^{\alpha_T + m_T - 1}$$

$$\sim$$
 Beta $(\alpha_M + m_H, \alpha_T + m_T)$

Posterior Distribution

- Prior: $\theta \sim \text{Beta}(\alpha_H, \alpha_T)$
- Data D: m_H heads, m_T tails
- Posterior distribution:

$$\theta \mid \mathcal{D} \sim \text{Beta}(m_H + \alpha_H, m_T + \alpha_T)$$

Prior

+ observe 1 head

+ observe 27 more heads; 18 tails

Conjugate Prior

- Given
 - Prior: $\Theta \sim \text{Beta}(\alpha_H, \alpha_T)$
- Posterior distribution:

$$\Theta | \mathcal{D} \sim \text{Beta}(\alpha_H + m_H, \alpha_T + m_T)$$

• (Parametric) prior $P(\theta|\alpha)$ is **conjugate** to likelihood function if **posterior is of the same parametric family**, and can be written as:

 $P(\theta | \alpha')$ for some new set of parameters α'

Using Bayesian Posterior

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$

- Bayesian inference ... want $f(\theta)$
 - No longer single parameter
 - Can use Expected value:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

... but integral is often hard to compute

MAP: Maximum a posteriori approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

As more data is observed, dist. is more peaked... more of distribution is at MAP:

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta \mid D) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Like MLE = $argmax_{\theta}P(D|\theta)$ but after "observing" prior $\approx (\beta_H-1,\beta_T-1)$ extra flips
- MAP: use most likely parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta \approx f(\hat{\theta}_{MAP})$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta \mid D) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra thumbtack flips
- As $N \rightarrow \infty$, prior is "forgotten"
- For small sample size, prior is important!

Bayesian Prediction of a New Coin Flip

- Prior: Θ ~ Beta(α_H , α_T)
- Observed m_H heads, m_T tails
- What is probability that next (m+1st) flip is heads?

$$P(X_{m+1} = H \mid D) = \int_{0}^{1} P(X_{m+1} = H \mid \Theta, D) \times P(\Theta \mid D) d\Theta$$

$$= \int_{0}^{1} \Theta \times \underbrace{Beta(\Theta : \alpha_{H} + m_{H}, \alpha_{T} + m_{T})}_{0} d\Theta$$

$$= E_{Beta(\Theta : \alpha_{H} + m_{H}, \alpha_{T} + m_{T})} [\Theta] = \frac{\alpha_{H} + m_{H}}{\alpha_{H} + m_{H} + \alpha_{T} + m_{T}^{26}}$$

Alternative "Encoding"

- Beta(a, b) \equiv B(m, μ) where
 - m = (a+b)... effective sample size
 - $\mu = a/(a+b)$
- Eg...
 - Beta(1,1) = B(2,0.5)
 - Beta(10,10) = B(20,0.5)
 - Beta(7, 3) = B(10, 0.7)

...

Asymptotic behavior and equivalent sample size

$$E[\theta] = \frac{m_H + \alpha_H}{m_H + \alpha_H + m_T + \alpha_T}$$

- As $m \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

$$E[\theta] = \frac{m_H + \alpha m'}{m_H + m_T + m'}$$

- Equivalent sample size:
 - Prior parameterized by $\alpha_{\rm H}, \alpha_{\rm T}$, or
 - m' (equivalent sample size) and α

Bayesian learning \approx Smoothing

$$E[\Theta] = \frac{\alpha_H + m_H}{\alpha_H + m_H + \alpha_T + m_T}$$

$$m = m_H + m_T ... \alpha = \alpha_H + \alpha_T$$

... equivalent sample size

$$=\frac{\alpha_{H}}{m+\alpha}+\frac{m_{H}}{m+\alpha}$$

$$=\frac{\alpha_{H}}{\alpha}\left[\frac{\alpha}{m+\alpha}\right]+\frac{m_{H}}{m}\left[\frac{m}{m+\alpha}\right]$$
prior θ_{MLE}

m

- MLE estimate, biased towards prior...
- m=0 \Rightarrow prior parameter
- $m \rightarrow \infty \Rightarrow MLE$

Bayesian learning for *Multi*nomial

- What if you have a k-sided thumbtack???
 - ... still just ONE thumbtack (so just one event)
- Likelihood function if multinomial:
 - $P(X = i) = \theta_i$ i = 1..k
- Conjugate prior for multinomial is Dirichlet:
 - ullet $heta \sim \mathsf{Dirichlet}(lpha_1, \dots, lpha_k) \sim \prod_i heta_i^{lpha_i 1}$
- Observe m data points, m_i from assignment i, posterior:
 - Dirichlet($\alpha_1 + m_i$, ..., $\alpha_k + m_k$)
- Prediction: $P(X_{m+1} = i \mid D) = \frac{\alpha_i + m_i}{\sum_j (\alpha_j + m_j)}$

Outline

- Bayes Theorem
- (Conditional) Independence
- Dutch Book Theorem
- Moments: Mean, Variance

Estimation

- MLE (Binomial)
- Bayesian model
- Gaussian (Normal)
 - Properties of Gaussians
 - Learning Parameters of Gaussians

Multivariate Normal Distributions: A tutorial

- univariate normal (Gaussian), with mean μ ; variance σ^2
- PDF (probability distribution function)

$$p(x) = \frac{1}{(2\pi)^{1/2} \sigma} \exp\left[-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right]$$

Some Properties of Gaussians

- Affine transformation
 (multiplying by scalar and adding a constant)
 - $\blacksquare X \sim N(\mu, \sigma^2)$
 - Y = aX + b \Rightarrow Y $\sim N(a\mu+b, a^2\sigma^2)$
- Sum of Gaussians
 - $\blacksquare X \sim N(\mu_X, \sigma^2_X)$
 - \bullet Y ~ $\mathcal{N}(\mu_{Y}, \sigma^{2}_{Y})$
 - $Z = X+Y \Rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

The Multivariate Gaussian

- A 2-dimensional Gaussian is defined by

 - a mean vector $\mu = [\mu_1, \mu_2]$ a covariance matrix: $\Sigma = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{2,1}^2 \\ \sigma_{1,2}^2 & \sigma_{2,2}^2 \end{bmatrix}$

where
$$\sigma_{i,j}^2 = E[(x_i - \mu_i)(x_j - \mu_j)]$$
 is (co)variance

Note: ∑ is symmetric, "positive semi-definite": $\forall x: x^T \sum x \geq 0$

Standard Normal Distribution

- Standard normal for
 - Σ = the identity matrix

•
$$\mu = (0,0)$$

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

MVG examples – contour plots

Standard Independent Gaussian

$$\mu = \langle 0, 0 \rangle$$
 and $\Sigma = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Here:
$$\Sigma^{-1} = I_2$$
, $|\Sigma| = {}^{x}1$; $n = 2$

$$P(\langle 3, -2 \rangle | \mathcal{N}(\langle 0, 0 \rangle, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}))$$

$$= \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right]$$

$$= \frac{1}{(2\pi)^{2/2}} \exp\left[-\frac{1}{2}(\langle 3, -2 \rangle - \langle 0, 0 \rangle)^{\top} I_2(\langle 3, -2 \rangle - \langle 0, 0 \rangle)\right]$$

Independent Variables

- Variables independent ≡
 Covariance matrix is Diagonal
 Lines of equal probability ≡ ellipses parallel to axes
- $P(\langle x, y \rangle = \langle 3, -2 \rangle \mid \langle x, y \rangle \sim \mathcal{N}(\langle 0, 0 \rangle, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}))$ = $P(x = 3 \mid x \sim \mathcal{N}(0, 1)) \times P(y = -2 \mid y \sim \mathcal{N}(0, 1))$

• $P(\langle x, y \rangle = \langle 3, -2 \rangle \mid \langle x, y \rangle \sim \mathcal{N}(\langle 2, 3 \rangle, \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}))$ = $P(x = 3 \mid x \sim \mathcal{N}(2, 2)) \times P(y = -2 \mid y \sim \mathcal{N}(3, 1))$

4

The Multivariate Gaussian: Ex 3

• If Σ is arbitrary, then x_1 and x_2 are dependent

Lines of equal probability are "tilted" ellipses

x1

Examples of Gaussians

44

0.5

Useful Properties of Gaussians I

- Surfaces of equal probability ...
 - for standard (mean 0, covariance I) Gaussians:
 spheroids
 - general Gaussians: ellipsoids

Every general Gaussian ≡ a standard Gaussian that has undergone an affine transformation

Useful Properties of Gaussians II

- A Gaussian distribution is completely specific by
 - a vector of means
 - a covariance matrix
- Requires O(n²) space
- Requires O(n³) time to manipulate
- Bad but... a joint distribution over n binary variables requires O(2ⁿ) space

Useful Properties of Gaussians III

- Marginals of Gaussians are Gaussian
- Given:

$$x = (x_a, x_b), \mu = (\mu_a, \mu_b)$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$$

Marginal Distribution:

$$p(x_a) = N(x_a \mid \mu_a, \Sigma_{aa})$$

(Marginalize by ignoring)

Useful Properties of Gaussians IV

- Conditionals of Gaussians are Gaussian
- Notation:

$$oldsymbol{\Lambda} = oldsymbol{\Sigma}^{-1} = egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix}$$

Conditional Distribution:

$$p(x_a \mid x_b) = N(x_a \mid \mu_{a|b}, \Lambda_{aa}^{-1})$$
$$\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (x_b - \mu_a)$$

Useful Properties of Gaussians V

- Affine transformations of Gaussian variables are Gaussian
 - Suppose x is Gaussian
 - y=Ax+b is Gaussian

Uses:

- Compute distribution on Y from distribution on x
- Compute posterior on x after observing y

- Lots of things can (arguably) be approximated well by Gaussians
- Central Limit Theorem:
 The sum of IID variables with finite variances will tend towards a Gaussian distribution
- CLT often used a hand-waving argument to justify using the Gaussian distribution for almost anything

Learning a Gaussian

- Collect a set of data, D
 of real-valued i.i.d. instances
 - e.g., exam scores
- Learn parameters
 - Mean, µ
 - Variance, σ

99

75

82

93

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian

• Prob. of i.i.d. instances $D = \{x_1, ..., x_N\}$:

$$P(D \mid \mu, \sigma) = \prod_{i=1}^{N} P(x_i \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^{N} \prod_{i=1}^{N} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

MLE for mean of a Gaussian

• What is ML estimate $\hat{\mu}_{MLE}$ for mean μ ?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]
= -\sum_{i=1}^{N} \frac{d}{d\mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right] = \frac{1}{2\sigma^2} \sum_{i=1}^{N} 2(x_i - \mu) = \frac{1}{\sigma^2} \left[\sum_{i=1}^{N} x_i - N\mu \right]$$

$$\frac{d}{d\mu}\ln P(D\mid \mu, \sigma) = 0 \implies \left[\sum_{i=1}^{N} x_i - N\mu\right] = 0$$

$$\Rightarrow \hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 Just empirical mean!!

MLE for Variance

$$\frac{d}{d\sigma} \ln \overline{P(\mathcal{D} \mid \mu, \sigma)} = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{-N}{\sigma} - \sum_{i} \frac{-2(x_i - \mu)^2}{2\sigma^3}$$

$$\dots = 0 \implies \widehat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i} (x_i - \mu)^2$$

Just empirical variance!!

$\hat{\mu}_{MLF}$ is unbiased

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Estimator \hat{y} of y is unbiased iff $E[\hat{y}] = y$
- Observe { x₁, ..., x_n }
 - drawn iid (independent and identically distributed)
 - ... with common mean $E[x_i] = \mu$

$$E[\hat{\mu}_{MLE}] = E\left[\frac{1}{N}\sum_{i=1}^{N}x_i\right] = \frac{1}{N}\sum_{i=1}^{N}E[x_i] = \frac{1}{N}\sum_{i=1}^{N}\mu = \mu$$

Learning Gaussian parameters

MLE:

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- But... MLE for Gaussian variance is biased
 - Expected result of estimation ≠ true parameter!
 - Unbiased variance estimator:

Homework#1!!
$$\widehat{\sigma}_{unbiased}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

Why is it Biased?

Bias is wrt Mean; MLE is wrt Mode... Mean ≠ Mode

Consider...

Estimating a Multivariate Gaussian

Given data set $\{\mathbf{x}_1, ..., \mathbf{x}_m\}$, MLE is...

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i} x_{i}$$

$$\hat{\Sigma}_{MLE} = \frac{1}{N} \sum_{i} (x_i - \hat{\mu}) \cdot (x_i - \hat{\mu})^T$$

Recall...

$$\mathbf{x} \cdot \mathbf{y}^{\mathsf{T}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot [y_1 \ y_2 \ y_3] = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{bmatrix}$$

١

Bayesian learning of Gaussian parameters

Mean: Gaussian prior

Variance: Wishart Distribution

Prior for mean:

$$P(\mu \mid \eta)(\lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

4

MAP for mean of Gaussian

$$P(\mu \mid D, \sigma, \eta, \lambda) \propto P(D \mid \mu, \sigma) P(\mu \mid \eta, \lambda)$$

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-(x_{i}-\mu)^{2}}{2\sigma^{2}}} \quad P(\mu \mid \eta, \lambda) = \frac{1}{\lambda\sqrt{2\pi}} e^{\frac{-(\mu-\eta)^{2}}{2\lambda^{2}}}$$

$$\frac{d}{d\mu}\ln P(D\mid \mu)P(\mu) = \frac{d}{d\mu}\ln P(D\mid \mu) + \frac{d}{d\mu}\ln P(\mu)$$

$$= -\sum_{i} \frac{(\mu - x_{i})}{\sigma^{2}} - \frac{(\mu - \eta)}{\lambda^{2}}$$

$$\dots = 0 \implies \hat{\mu}_{MAP} = \begin{bmatrix} \sum_{i} \frac{x_{i}}{\sigma^{2}} + \frac{\eta}{\lambda^{2}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{N}{\sigma^{2}} + \frac{1}{\lambda^{2}} \end{bmatrix}$$
61

MAP for mean of Gaussian

$$\hat{\mu}_{MAP} = \begin{bmatrix} \left[\sum_{i} \frac{x_{i}}{\sigma^{2}} \right] + \frac{\eta}{\lambda^{2}} \right] \\ \left[\frac{N}{\sigma^{2}} + \frac{1}{\lambda^{2}} \right] \end{bmatrix}$$

- If know nothing, $\lambda^2 \rightarrow \infty$
 - ⇒ MAP estimate is same as MLE!
- But if λ² < ∞,
 then MAP is WEIGHTed AVERAGE of MLE and "prior" η

Limitations of Gaussians

- Gaussians are unimodal
 - single peak at mean
- O(n²) and O(n³) can get expensive
- Definite integrals of Gaussian distributions do not have a closed form solution (somewhat inconvenient)
 - Must approximate, use lookup tables, etc.
 - Sampling from Gaussian is inelegant

Mixtures of Gaussians

- Want to approximate distribution that is not unimodal?
- Density is weighted combination of Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k N(x \mid \mu_k, \Sigma_k)$$

$$\sum_{k=1}^K \pi_k = 1$$

- Idea: Flip coin (roll dice) to select Gaussian, then sample from the Gaussian
- Can be arbitrarily expressive with enough Gaussians

Mixture of Gaussians Example

What you need to know

- Probability 101
- Point Estimation
 - MLE
 - Hoeffding inequality (PAC)
 - Bayesian learning
 - Beta, Dirichlet distributions
 - Gaussian, ...
 - MAP

Factoids...

- In ab = b In a
 - $\ln (a * b) = \ln a + \ln b$

$$\frac{\partial}{\partial \theta} \ln \theta = \frac{1}{\theta}$$

$$\frac{\partial}{\partial \theta} \ln (1 - \theta) = \frac{-1}{(1 - \theta)}$$

4

Basic concepts for random variables

- Atomic outcome: assignment $x_1,...,x_n$ to $X_1,...,X_n$
- Conditional probability: P(X,Y) = P(X) P(Y|X)
- Bayes rule: P(X|Y) = P(Y|X) P(X) / P(Y)
- Chain rule:

$$P(X_1,...,X_n) = P(X_1) P(X_2|X_1)... P(X_k|X_1,...,X_{k-1}) ... P(X_n|X_1,...,X_{n-1})$$

Chebyshev's Inequality

X with finite mean, variance

$$P(|X - E(X)| \ge c) \le \frac{Var(X)}{c^2}$$

Variance governs chance of missing mean

Convergence of Sample Mean

Apply Chebyshev's Inequality to sample mean:

$$P(|X - E(X)| \ge c) \le \frac{Var(X)}{c^2}$$

$$Var(\overline{X}) = Var\left(\sum_{i} \frac{X_{i}}{n}\right) = \sum_{i} \frac{1}{n^{2}} Var(X_{i}) = \frac{Var(X)}{n}$$

$$\lim_{n\to\infty} P(|X-E(X)| \ge c) \le \lim_{n\to\infty} \frac{Var(X)}{nc^2} = 0$$

4

Random Variable

- Events are complicated we think about attributes
 - Age, Grade, HairColor
- Random variables formalize attributes:
 - Grade=A shorthand for event $\{\omega \in \Omega: f_{Grade}(\omega) = A\}$
- Properties of random vars, X:
 - Val(X) = possible values of random var X
 - For discrete (categorical): $\sum_{i=1...|Val(X)|} P(X=x_i) = 1$
 - For continuous: $\int_{X} p(X=x) dx = 1$

The Multivariate Gaussian: Ex 2

$$Eg \quad \mu = \langle 2, 3 \rangle \quad \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

•
$$P(\langle 3, -2 \rangle | \mathcal{N}(\langle 2, 3 \rangle, \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}))$$

$$= \frac{1}{(2\pi)^{2/2} 2^{1/2}} \exp \left[-\frac{1}{2} (\langle 3, -2 \rangle - \langle 2, 3 \rangle)^{\top} \Sigma^{-1} (\langle 3, -2 \rangle - \langle 2, 3 \rangle) \right]$$

$$= \frac{1}{(2\pi)^{2/2}} \exp \left(-\frac{1}{2} \begin{bmatrix} 1 \\ -5 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix} [1, -5] \right)$$

$$= \frac{1}{2} \exp \left(-\frac{1}{2} [\frac{1}{2} \times 1^2 + 1 \times (-5)^2] \right)$$