

## **Probability 101**



### Outline



- Bayes Theorem
- (Conditional) Independence
- Dutch Book Theorem
- Moments: Mean, Variance
- Estimation
  - MLE (Binomial)
  - Bayesian model
- Gaussian (Normal)





### Probability: Who needs it?

- Learning without probabilities is possible
  - Version spaces
  - Explanation-based learning but rare...
- Learning almost always involves
  - Noise in data (training, testing)
  - Prediction about the future
- Learning systems
   that don't use probability in some way
   tend to be very, very brittle



### **Probabilities**

- Natural way to represent uncertainty
- ∃ intuitive notions about probabilities
  - Many notions are wrong or inconsistent
  - Many people don't get what probabilities mean
- ⇒ Have FORMAL description, that is consistent and useful
  - Overall framework is understood
  - Fine details of "meaning" still debated

- Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations.
- Rank the following by probability
  - (1 = most probable; 8 = least probable)
    - a. Linda is a teacher in elementary school.
    - b. Linda works in a bookstore and takes yoga classes.
    - c. Linda is an active feminist.
    - d. Linda is psychiatric social worker.
    - e. Linda is a member of the League of Women Voters.
- f. Linda is a bank teller.
  - g. Linda is an insurance salesperson.
  - h. Linda is a bank teller and is an active feminist.



### Understanding Probabilities

- Probabilities have dual meanings
  - Relative frequencies (frequentist view)
  - Degree of belief (Bayesian view)
- Neither is entirely satisfying
  - No two events are truly the same (reference class problem)
  - Statements should be grounded in reality in some way

### Probability as Relative Frequency?

- What is probability of event E?
- Over long sequence of experiments, ratio of
  - (# of times E occurred)
     number of times E occurs in sequence, to
  - (# of trials) total number of experiments
- Estimate: P(E) ≈ (# of times E occurred) /(# of trials)
- As (# of trials) → ∞, ratio approaches true probability
  - given std assumptions

# Examples...

- P( ... swimmer succeeds ... )
  - Swimmer S ...
    - tries 100 times to swim 50' in 15 secs.
    - succeeds 20 occasions
  - Estimate: probability that S can swim 50' in 15 seconds is:
    - P( S can swim 50' in 15 seconds )  $\approx 20/100 = 0.2$
- For probability to be meaningful, must clearly defined
  - experiments
  - sample space
  - events
- What is the probability of a *nuclear accident*?

# Interpretations of probability – A can of worms!

- Frequentists
  - $P(\alpha)$  = the frequency of  $\alpha$  in the limit
  - Many arguments against this interpretation
    - What is the frequency of the event "it will rain tomorrow"?
      ... "nuclear war tomorrow"?
- Subjective interpretation
  - $P(\alpha)$  = my degree of belief that  $\alpha$  will happen
  - Where "degree of belief" means... If I say  $P(\alpha)=0.8$ , then I am willing to bet!!!
- For this class...
   we (mostly) don't care what camp you are in



- Subjectivists: probabilities are degrees of belief
- Is any degree of belief = probability?
  - AI has used many notions of belief:
    - Certainty Factors
    - Fuzzy Logic

#### NO!!

- Dutch book
- If you follow doesn't follow probability theory, you will lose... see below.

### Terms from Probability Theory

- Random Variable:
  - Weather ∈ { Sunny, Rain, Cloudy, Snow }
- **Domain**: Possible values a random variable can take. (... finite set, ℜ, functions...)
- Probability distribution: mapping from domain to values ∈ [0, 1]
- P( Weather ) =  $\langle 0.7, 0.2, 0.08, 0.02 \rangle$

```
means  \begin{cases} P( \text{ Weather} = \text{Sunny} ) = 0.7 \\ P( \text{ Weather} = \text{Rain} ) = 0.2 \\ P( \text{ Weather} = \text{Cloudy} ) = 0.08 \\ P( \text{ Weather} = \text{Snow} ) = 0.02 \end{cases}
```

Event: Each assignment (eg, Weather = Rain) is "event"



? Hepatitis?







Jaundiced



BloodTest

? Hepatitis, not Jaundiced but +BloodTest



# -

### Typical Task

- Given observations  $\{O_1 = V_1, ..., O_k = V_k\}$  (J=No, B=Yes [ symptoms, history, test results, ...])what is best DIAGNOSIS  $Dx_i$  for patient? (Hep=Yes, Hep=No)
- Compute Probabilities of Dx;

```
given observations \{O_1 = v_1, ... O_k = v_k\}
```

$$P( Dx = u | O_1 = V_1, ..., O_k = V_k )$$



### **General Events**

- Atomic Event: "Complete specification" Conjunction of assignments to EVERY variable [PossibleWorld]
- Joint Probability Distribution:

Probability of every possible atomic event

*n* binary variables:  $2^n$  entries  $(2^n - 1)$  independent values, as sum = 1) A huge table!

| J | В | Н | P(j,b,h) |
|---|---|---|----------|
| 0 | 0 | 0 | 0.03395  |
| 0 | 0 | 1 | 0.0095   |
| 0 | 1 | 0 | 0.0003   |
| 0 | 1 | 1 | 0.1805   |
| 1 | 0 | 0 | 0.01455  |
| 1 | 0 | 1 | 0.038    |
| 1 | 1 | 0 | 0.00045  |
| 1 | 1 | 1 | 0.722    |

H Hepatitis

J Jaundice

B (positive) Blood test

### Inference by Enumeration

- Using only joint probability distribution:
- For any proposition φ, add the atomic events where it is true:

$$P(\varphi) = \sum_{\omega:\omega \models \varphi} P(\omega)$$

$$P(+j) = 0.01455 + 0.038 + 0.00045 + 0.722 = 0.775$$



### Cost of Marginalization

Called "marginal"

$$P(X_n) = \sum_{x_1, \dots, x_{n-1}} P(x_1, \dots, x_{n-1}, X_n)$$

- To compute marginal distribution  $P(X_n)$ : If all binary,  $2^{n-1}$  additions
  - one term for each value of X<sub>1</sub>, ..., X<sub>n-1</sub>

H Hepatitis

J Jaundice

**B** • (positive) Blood test

## Inference by Enumeration

- Using only joint probability distribution:
- For any proposition φ, add the atomic events where it is true:

$$P(\varphi) = \sum_{\omega:\omega \models \varphi} P(\omega)$$

| В | Н                     | P( j,b,h )                  |
|---|-----------------------|-----------------------------|
| 0 | 0                     | 0.03395                     |
| 0 | 1                     | 0.0095                      |
| 1 | 0                     | 0.0003                      |
| 1 | 1                     | 0.1805                      |
| U | 0                     | 0.01455                     |
| 0 | 1                     | 0.038                       |
| 1 | 0                     | 0.00045                     |
| 1 | 1                     | 0.722                       |
|   | 0<br>0<br>1<br>1<br>0 | 0 0 0 1 1 0 1 1 0 0 0 1 1 0 |

■ P(-j v +b)

$$= .03395 + .0095 + .0003 + .1805 + .00045 + .722 = 0.9467$$

### **Conditional Probabilities**

- After learning that  $\beta$  is true, how do we feel about  $\alpha$ ?
- If roll EVEN, what is chance of rolling 2?
- If have hepatitis, what is chance of jaundice?

 $\alpha$ 

$$P(\alpha | \beta)$$



## 4

### **Conditional Probability**

- Conditional Probability:
  - $P(\alpha \mid \beta)$  = Probability of event  $\alpha$ , given that event  $\beta$  has happened
- P( Jaundice | Hepatitis ) = 0.8
- In gen'l:

$$P(\alpha \mid \beta) = \frac{P(\alpha \& \beta)}{P(\beta)}$$

$$P(\alpha \& \beta) = P(\alpha \mid \beta) P(\beta)$$



### **Conditional Probability**

$$P(\alpha \mid \beta) = \frac{P(\alpha \& \beta)}{P(\beta)}$$

$$P(\alpha \& \beta) = P(\alpha \mid \beta) P(\beta)$$

- Unconditional (prior) Probability:
  - Probability of event before evidence is presented
  - P( Jaundice ) = 0.04
     prob that someone (from this population) is jaundiced is 4 in 100
- **Evidence**: Percepts that affects degree of belief in event
- Conditional (posterior) Probability:
  - Probability of event after evidence is presented
  - N.b., posterior prob can be COMPLETELY different than prior prob!

- H Hepatitis
- J Jaundice
- B (positive) Blood test



### Inference by Enumeration

Using only joint probability distribution:

Can compute conditional probabilities:

$$P(-b \mid +j)$$
=  $P(-b \land +j)$ 

$$P(+j)$$
=  $0.01455 + 0.038$ 

$$0.01455 + 0.038 + 0.00045 + 0.722$$

| J | В | Н | P( j,b,h ) |  |  |
|---|---|---|------------|--|--|
| 0 | 0 | 0 | 0.03395    |  |  |
| 0 | 0 | 1 | 0.0095     |  |  |
| 0 | 1 | 0 | 0.0003     |  |  |
| A | 1 | 1 | 0.1805     |  |  |
| 1 | 0 | 0 | 0.01455    |  |  |
| 1 | 0 | 1 | 0.038      |  |  |
| 1 | 1 | 0 | 0.00045    |  |  |
| 1 | 1 | 1 | 0.722      |  |  |
| V |   |   |            |  |  |



### Useful Rule #1: The chain rule

 $P(\alpha, \beta) = P(\alpha) P(\beta | \alpha)$ 



More generally:

$$P(\alpha_1, \dots, \alpha_k) = P(\alpha_1) P(\alpha_2 | \alpha_1) \cdots P(\alpha_k | \alpha_1, \dots, \alpha_{k-1})$$

• ... any order ...  $P(\alpha_1, ..., \alpha_k) = P(\alpha_3) P(\alpha_7 | \alpha_3) P(\alpha_{14} | \alpha_3, \alpha_7) \cdots$ 



### Useful Rule #2: Bayes rule

$$P(\alpha \mid \beta) = \frac{P(\beta \mid \alpha)P(\alpha)}{P(\beta)}$$

More generally, external event γ:

$$P(\alpha \mid \beta \cap \gamma) = \frac{P(\beta \mid \alpha \cap \gamma)P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}$$

### **Bayes' Rule and its Use**

- Diagnosis typically involves computing P( Hypothesis | Symptoms ) What is P( Meningitis | StiffNeck ) ?
  - ≡ prob that patient A has meningitis, given that A has stiff neck?
- Typically have . . .
  - Prior prob of meningitis P(+m) = 1/50,000
  - Prior prob of having a stiff neck P(+s) = 1/20
  - Prob that meningitis causes a stiff neck  $P(+s \mid +m) = 1/2$
- Bayes' Rule:

$$P(M \mid SN) = \frac{P(SN \mid M) P(M)}{P(SN)}$$

- Eg:  $P(+m \mid +s) = P(+s \mid +m) P(+m) / P(+s) = 0.5 \times 0.00002 / 0.05 = 0.0002$
- Only 1 in 5000 stiff necks have meningitis...
   even though SN is major symptom of M...

# Factoids



$$P(+c) = \sum_{a} P(+c, A = a)$$

# 4

# Important concept: (a) Independence

- Coin tosses:
  - H<sub>1</sub>: the first toss is a head;
     T<sub>2</sub>: the second toss is a tail
  - $P(T_2 | H_1) = P(T_2)$
- $\alpha$  and  $\beta$  *independent* iff  $P(\beta|\alpha) = P(\beta)$ 
  - In distribution  $P_{\gamma} \propto \text{indep of } \beta$
- **Proposition:**  $\alpha$  and  $\beta$  *independent* if and only if  $P(\alpha, \beta) = P(\alpha) P(\beta)$

# 4

### Independence

- Events α and β are independent iff
  - $P(\alpha, \beta) = P(\alpha) P(\beta)$
  - $P(\alpha \mid \beta) = P(\alpha)$
  - $P(\alpha \vee \beta) = 1 (1 P(\alpha)) (1 P(\beta))$
- Variables independent
  - ⇔ independent for all values

$$\forall a, b \ P(A = a, B = b) = P(A = a) \ P(B = b)$$



### Conditional Independence

- ReadingAbility and ShoeSize are dependent,
   P(ReadAbility | ShoeSize ) ≠ P(ReadAbility )
- •but become independent, given Age
  P(ReadAbility | ShoeSize, Age ) = P(ReadAbility | Age)





### Conditional Independence

 Events A and B are conditionally independent given E iff

$$P(A \mid E, B) = P(A \mid E)$$

- Given E, knowing B does not change the probability of A
- Equivalent formulations:

$$P(A,B | E) = P(A | E) P(B | E)$$
  
 $P(B | E,A) = P(B | E)$ 



### **Probability Theory**



Axioms:

$$0 \le P(A) \le 1$$
  
P(True) = 1, P(False) = 0  
P(A v B) = P(A) + P(B) - P(A & B)  
P(A) + P(¬A) = 1

- Not arbitrary:
  - If Agent1 use probabilities that violate axioms, then
    - ∃ betting strategy s.t.
      Agent1 guaranteed to lose \$
  - "Dutch book"



### The Three-Card Problem

- Three cards
  - RR = red on both sides
  - WW = white on both sides
  - RW = red on one side, white on the other
- Draw single card randomly and toss it into the air.
- What is the probability ...
  - a. ... of drawing red-red? P(D\_RR)
  - b. ... that the drawn cards lands white side up? P(W\_up)
  - c. ... that the red-red card was not drawn, assuming that the drawn card lands red side up. P( not-D\_RR | R\_up)



### Fair Bets

#### B believes

- $P(D_RR) = 1/3$
- P( W\_up ) = 1/2
- 1/2
- P( not-D\_RR | R\_up ) =
- A bet is fair to an individual B if,
  - according to B's probability assessment,
  - the bet will break even in the long run.
- B thinks these 3 bets are fair :

Bet (a): Win \$4.20 if D\_RR;

lose \$2.10 otherwise. [B believes P(D\_RR)=1/3]

Bet **(b)**: Win \$2.00 if W\_up;

lose \$2.00 otherwise. [B believes  $P(W_up)=1/2$ ]

Bet (c): Win \$4.00 if R\_up and not D\_RR;

lose \$4.00 if R\_up and D\_RR;

win \$0 if not-R\_up.

[B believes P( not-D\_RR | R\_up )=1/2]

### Possible Outcomes



### **Possible Outcomes**





### The Dutch Book Theorem

- Spse B accepts any bet it thinks is fair. Then...
- a Dutch book can be made against B

iff

B's assessment of probability violates Bayesian axiomatization.



### Outline



- Bayes Theorem
- (Conditional) Independence
- Dutch Book Theorem
- Moments: Mean, Variance
- Estimation
  - MLE (Binomial)
  - Bayesian model
- Gaussian (Normal)





### **Expected Value**

#### Discrete

- $\bullet E(X) = \sum_{x} x P(x)$
- ≈ "average", "mean", arithmetic mean
- P(X=1) = 1/6, P(X=2)=1/6, ..., P(X=6) = 1/6  $E[X] = (1\times1/6) + (2\times1/6) + ... + (6\times1/6)$ = 21/6 = 3.5

### Continuous

$$\mathbf{E}(X) = \int_{X} x P(x) dx$$

## 4

### Properties of Expectation

$$E(f(X)) = \sum_{x} f(x) P(x)$$

$$E(aX) = a E(X)$$

$$E(aX+b) = a E(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$E(X Y) = ???$$
If X\(\perp Y\), then E(X) E(Y)

## Variance

■ \* "How much to *trust* the mean"
… hard to define in words…

$$Var(X) = E[X - E(X))^{2}]$$
  
=  $E(X^{2}) - E(X)^{2}$ 



# 4

### Properties of Variance

Var( aX ) = 
$$a^2$$
 Var(X )  
Var(aX+b) =  $a^2$  Var(X)  
Var(X + Y) =  
Var(X) + Var(Y) + 2 E[ (X-E(X)) (Y-E(Y) ]  
If X\perp Y, then ... = Var(X) + Var(Y)

 $Var(f(X)) = E[X - E(X))^2]$ 

### CoVariance

$$\overline{\text{Var}(X + Y)} = \text{Var}(X) + \text{Var}(Y) + 2 E[X-E(X)) (Y-E(Y)]$$

CoVariance captures the "leftover"

$$Cov(X,Y) = E[X-E(X)) (Y-E(Y)]$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y)$$

■ If  $X\bot Y$ , then Cov(X, Y) = 0



### Standard Deviation

$$SD(X) = \sqrt{Var(X)}$$

- Sometimes more natural than variance:
  - SD(a X) = a SD(X)
- Sometimes, not:
  - $X \perp Y$ , then SD(X + Y) =

$$SD(X+Y) = \sqrt{SD(X)^2 + SD(Y)^2}$$