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Machine Perception
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Pattern Recognition Systems
The Design Cycle
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Questions

� What is learning ?

� Is learning really possible?
Can an algorithm really predict the future?

� Why learn?

� Is learning ⊂? statistics ?



3

What is Machine Learning?

� “Machine learning is programming computers to 
optimize a performance criterion using example data 
or past experience.”
� Alpaydin

� “The field of machine learning is concerned with the 
question of how to construct computer programs 
that automatically improve with experience.”
� Mitchell

� “…the subfield of AI concerned with programs that 
learn from experience.”
� Russell & Norvig
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What else is Machine Learning?

� Data Mining
� “The nontrivial extraction of implicit, previously 

unknown, and potentially useful information from 
data.”
� W. Frawley, G. Piatetsky-Shapiro, C. Matheus

� “..the science of extracting useful information from 
large data sets or databases.”
� D. Hand, H. Mannila, P. Smyth

� “Data-driven discovery of models and patterns 
from massive observational data sets.”
� P. Smyth
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What is learning ?
� A1: Improved performance ?

Performance System solves "Performance Task"
(Eg, Medical dx; Control plant; Retrieve webDocs; ...)

Learner makes Performance System "better“
More accurate; Faster; More complete; ...

(Eg, learn Dx/classification function, parameter setting, ...)
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What is learning ? … con’t
� A1: Improved performance ?
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� A2: Improved performance ?
based on some “experience”
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What is learning ? … con’t
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� A2: Improved performance ?
based on some “experience”

but … simple memo-izing
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What is learning ? … con’t

"#���$������%&'��������

�������

�����������
������

���������
��������� 


�������
����!����� 

� A3: Improved performance 
based on partial “experience”

� Generalization (aka Guessing)
deal with situations BEYOND training data
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Learning Associations

� What things go together?
� ?? Chips and beer?

� What is  P( chips | beer ) ? 
“The probability a particular customer will buy chips, 
given that s/he has bought beer.”

� Estimate from data:
� P( chips | beer)  � #(chips & beer) / #beer
� Just count the people who bought beer and chips,

and divide by the number of people who bought beer

� Not glamorous but… counting / dividing is learning!

� Is that all???
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Learning to Perceive

Build a system that can recognize patterns:
� Speech recognition
� Fingerprint identification
� OCR (Optical Character Recognition)
� DNA sequence identification 
� Fish identification
� …
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Fish Classifier

Sort Fish 

into Species

using optical sensing
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Problem Analysis
� Extract features from sample images:

� Length
� Width 
� Average pixel brightness
� Number and shape of fins
� Position of mouth
� …

[L=50, W=10, PB=2.8, #fins=4, MP=(5,53), …]

type
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� Use segmentation to isolate 
� fish from background
� fish from one another

� Send info about each single fish to 
feature extractor, 

… compresses data,
into small set of features

� Classifier sees these features

Preprocessing

Length Wtdth Pixel 
Bright … Light

50 10 2.8 … Pale
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Use “Length”?

� Problematic… many incorrect classifications
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Use “Lightness”?

� Better… fewer incorrect classifications
� Still not perfect
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� Salmon Region intersects SeaBass Region
� So no “boundary” is perfect
� Smaller boundary � fewer SeaBass classified as Salmon
� Larger boundary � fewer Salmon classified as SeaBass

� Which is best… depends on misclassification costs

Where to place boundary? 
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� Use lightness and width of fish

Lightness Width

Why not 2 features?
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Use Simple Line ?

� Much better…
very few incorrect classifications !

sea bass
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� Perhaps add other features?
� Best: not correlated with current features
� Warning: “noisy features” will reduce performance

� Best decision boundary ≡
one that provides optimal performance
� Not necessarily LINE
� For example …

How to produce Better Classifier?
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Simple (non-line) Boundary 
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“Optimal Performance” ??
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Comparison… wrt NOVEL Fish
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� Goal:
� Optimal performance on NOVEL data
� Performance on TRAINING DATA 

�
Performance on NOVEL data  

Objective:  Handle Novel Data

1��������!�����2�3�����4
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Pattern Recognition Systems

� Sensing
� Using transducer (camera, microphone, …)

� PR system depends of the bandwidth
� the resolution sensitivity distortion of the transducer

� Segmentation and grouping
� Patterns should be well separated

(should not overlap)
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� Feature extraction
� Discriminative features
� Want useful features

� Here: INVARIANT wrt translation, rotation, scale

� Classification
� Using feature vector (provided by feature extractor)

to assign given object to a category

� Post Processing
� Exploit context (information not  in the target pattern itself)

to improve performance

Machine Learning Steps
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Training a Classifier
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The Design Cycle

� Data collection
� Feature Choice
� Model Choice
� Training
� Evaluation

Computational Complexity
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The Design Cycle

Computational Complexity
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� Need set of examples 
for training and testing the 
system

� How much data?
� sufficiently large # of instances
� representative

Data Collection
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� Depends on characteristics 
of problem domain

� Ideally…
� Simple to extract
� Invariant to irrelevant 

transformation 
� Insensitive to noise

Which Features?
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� Try one from simple class
� Degree1 Poly
� Gaussian
� Conjunctions (1-DNF)

� If not good…
try one from      more complex 
class of models
� Degree2 Poly
� Mixture of 2 Gaussians
� 2-DNF

Which Model?

yet
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Which Model??

Constant (0)

Cubic (3) 9th degree

Linear (1)
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� Use data to obtain good 
classifier
� identify best model
� determine appropriate 

parameters

� Many procedures for
training classifiers 
(and choosing models)

Training
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� Measure error rate 

≈ performance
� May suggest switching 

� from one set of features to 
another one

� from one model to another

Evaluation
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� Trade-off between computational ease and 
performance?

� How algorithm scales as function of
� number of features, patterns or categories?

Computational Complexity
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Learning and Adaptation

� Supervised learning
� A teacher provides a category label for each 

pattern in the training set

� Unsupervised learning
� System forms clusters or “natural groupings” of 

input patterns
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Questions

� What is learning ?

� Is learning really possible?
Can an algorithm really predict the future?

� Why learn?

� Is learning ⊂? statistics ?
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2: Is Learning Possible?

Is learning possible? 
Can an algorithm really predict the future?

� No... 
Learning ≡ guessing;
Guessing � might be wrong

� But... 
� Can do "best possible" (Bayesian)

� Can USUALLY do CLOSE to optimally

� Empirically…
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Machine Learning studies …

Computers that use “annotated data”
to autonomously produce effective “rules”

� to diagnose diseases
� to identify relevant articles
� to assess credit risk
� …
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Successes: Mining Data Sets 
Computer learns…

� to find ideal customers
Credit Card approval (AMEX)

� Humans ≈50%; ML is >70% !
� to find best person for job

Telephone Technician Dispatch [Danyluk/Provost/Carr 02]

� BellAtlantic used ML to learn rules to decide which 
technician to dispatch

� Saved $10+ million/year

� to predict purchasing patterns
� Victoria Secret (stocking)

� to help win games
� NBA (scouting)

� to catalogue celestial objects [Fayyad et al. 93]
� Discovered 22 new quasars
� >92% accurate, over tetrabytes
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2: Sequential Analysis

� BioInformatics 1: identifying genes
� Glimmer [Delcher et al, 95]

� identifies 97+% of genes, automatically!

� BioInformatics 2: Predicting protein function, …

� Recognizing Handwriting

� Recognizing Spoken Words
� “How to wreck a nice beach”
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3: Control
� TD-Gammon (Tesauro 1993; 1995)

� World-champion level play by learning …
� by playing millions of games against itself!

� Adaptive agents / user-interfaces

� Printing Press Control (Evans/Fisher 1992)

� Control rotogravure printer, prevent groves, ... 
specific to each plant

� More complete than human experts
� Used for 10+ years, reduced problems from 538/year to 26/year!

� Oil refinery
� Separate oil from gas

� … in 10 minutes (human experts require 1+ days)

� Manufacture nuclear fuel pellets (Leech, 86)

� Saves Westinghouse >$10M / year

� Drive autonomous vehicles
� DARPA Grand Challenge (Thrun et al 2007)
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Growth of Machine Learning

� Machine learning is preferred approach to
� Speech recognition, Natural language processing
� Computer vision
� Medical outcomes analysis
� Robot control
� …

� This trend is accelerating
� Improved machine learning algorithms 
� Improved data capture, networking, faster computers
� Software too complex to write by hand
� New sensors / IO devices
� Demand for self-customization to user, environment
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Object detection

Example training images 
for each orientation

(Prof. H. Schneiderman)
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Text classification

Company home page

vs

Personal home page

vs

Univeristy home page

vs

…
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Reading 
a noun 
(vs verb)

[Rustandi et al., 
2005]
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Modeling sensor data

� Measure temperatures at 
some locations

� Predict temperatures 
throughout the 
environment
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Learning to act

� Reinforcement learning
� An agent 

� Makes sensor 
observations

� Must select action
� Receives rewards 

� positive for “good”
states

� negative for “bad”
states

[Ng et al. ’05] 
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Questions

� What is learning ?

� Is learning really possible?
Can an algorithm really predict the future?

� Why learn?

� Is learning ⊂? statistics ?
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Why Learn?
Why not just “program it in”?

Appropriate Classifier …

� … is not known
Medical diagnosis… Credit risk… Control plant…

� … is too hard to “engineer”
Drive a car… Recognize speech…

� … changes over time
Plant evolves…

� … user specific
Adaptive user interface…
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Why Machine Learning is especially 
relevant now!

� Growing flood of online data
� customer records, telemetry from equipment, scientific journals,

…
� Recent progress in algorithms and theory

� SVM, Reinforcement Learning, Boosting, …
� PAC-analysis, SRM, …

� Computational power is available
� networks of fast machines

� Budding industry in many application areas
� market analysis, adaptive process control, decision support, …

� Alberta Ingenuity Centre for Machine Learning
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Questions

� What is learning ?

� Is learning really possible?
Can an algorithm really predict the future?

� Why learn?

� Is learning ⊂? statistics ?
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4. Is learning ⊂⊂⊂⊂? statistics?
Statistics ≡
� Use examples to identify best model
� Use model for predictions (labels of new instances, ...)
� Both 

� Deal with required # of samples, quality of output, ...
� Over discrete / continuous,

parameterized/not,
complete/partial,
frequentist/bayesian,
...

� But Machine Learning also …
� deals with COMPUTATIONAL ISSUEs
� different focus/frameworks

(on-line, reinforcement, ...)
� embraces MULTI-Variate correlations
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Training a Classifier
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Training a Regressor
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Classification
� Input: “feature list”

Output: “label”
� Features can be symbols, real numbers, …

� [ age ∈ℜ+, height ∈ℜ+, weight ∈ℜ+, gender∈{M,F}, 
hair_colour, … ]

� Labels come from a (small) discrete set
� L = { Icelander, Canadian } 

� Output: discriminant function, 
mapping feature vectors to labels.

� We can learn this from data, in many ways.
� ( [ 27, 172, 68, M, brown, … ], Canadian )
� ( [ 29, 160, 54, F, brown, … ], Icelander )
� …

� We can use it to predict the label of a new instance.
� How good are our predictions?
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Regression
� Input: “feature list”

Output: “response”
� Features can be symbols, real numbers, etc…

� [ age, height, weight, gender, hair_colour, … ]
� Response is real-valued. 

� life_span ∈ℜ+

� We need a regression function that maps feature vectors to 
responses.

� We can learn this from data, in many ways.
� ( [ 27, 172, 68, M, brown, … ], 86 )
� ( [ 29, 160, 54, F, brown, … ],  99 )
� …

� We can use it to predict the response of a new instance.
� How good are our predictions?
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Pause:
Classification vs. Regression

� Same: “Learn a function from labeled examples”

� Difference: Domain of label: small set vs ℜ
Why make the distinction?
� Historically, they have been studied separately
� The label domain can significantly impact what algorithms 

will work or not work

� Classification
� “Separate the data”

� Regression
� “Fit the data”
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Other Types of Learning
� Density Estimation

� Learning Generative Model
� Clustering

��� Learning Sequence of ActionsLearning Sequence of ActionsLearning Sequence of Actions
��� Reinforcement LearningReinforcement LearningReinforcement Learning

��� Learning nonLearning nonLearning non---IID DataIID DataIID Data
��� ImagesImagesImages
��� SequencesSequencesSequences
��� ………
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Other Types of Learning
��� Density EstimationDensity EstimationDensity Estimation

��� Learning Generative ModelLearning Generative ModelLearning Generative Model
��� ClusteringClusteringClustering

� Learning Sequence of Actions
� Reinforcement Learning

��� Learning nonLearning nonLearning non---IID DataIID DataIID Data
��� ImagesImagesImages
��� SequencesSequencesSequences
��� ………



63

Other Types of Learning
��� Density EstimationDensity EstimationDensity Estimation

��� Learning Generative ModelLearning Generative ModelLearning Generative Model
��� ClusteringClusteringClustering

��� Learning Sequence of ActionsLearning Sequence of ActionsLearning Sequence of Actions
��� Reinforcement LearningReinforcement LearningReinforcement Learning

� Learning non-IID Data
� Sequences
� Images
� …
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Other Types of Learning
� Density Estimation

� Learning Generative Model
� Clustering

� Learning Sequence of Actions
� Reinforcement Learning

� Learning non-IID Data
� Images
� Sequences
� …
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Issues wrt Learning
� What is measure of improvement/?

“accuracy/effectiveness”, “efficiency”, ...

� What is feedback ?
Supervised, Delayed Reinforcement, Unsupervised

� What is representation of to-be-improved component?
Rules, Decision Tree, Bayesian net, Neural net, ...

� What prior information is available?
“Bias”, space of hypotheses, background theory, ...

� What statistical assumptions?
� Stationarity (iid), Markovian, ...
� "Noisy" or Clean, 
� …
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Relevant Disciplines 
� Artificial intelligence
� Bayesian methods
� Computational complexity theory
� Control theory
� Information theory
� Philosophy
� Psychology and neurobiology
� Statistics
� ...
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Summary
� Machine Learning is a mature field

� solid theoretical foundation
� many effective algorithms

� ML is crucial to large number of important 
applications
� BioInformatics, WebReDesign, MarketAnalysis, 

Fraud Detection, …

� Fun: Lots of intriguing open questions!

�� Exciting time for Machine LearningExciting time for Machine Learning
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Unsupervised Learning
� Take clustering for example.
� Input: “features” Output: “label”

� Features can be symbols, real numbers, etc…
� [ age, height, weight, gender, hair_colour, … ]

� Labels are not given. 
(Sometimes |L| is known.) 

� Each label describes a subset of the data
� Clustering: group together examples that are “close”

� … need to define “close”
� Labels = “cluster centres”

� Here: cluster can be  the end result
(Not classification)
� Subjective � Evaluation is difficult
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Reinforcement Learning
� Input: “observations”, “rewards”

Output: “actions”
� Observations may be real or discrete
� Reward ∈ℜ
� Actions may be real or discrete

� Think of …
agent (“robot”) interacting with its environment

� On-going interaction
At each time, 
� agent observes “observations”
� Selects an actions 
� Receives a reward

� Agent can use Reinforcement Learning 
to improves its performance 

(ie, selecting actions that lead to better rewards)
by analyzing past experience
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Notion of an AgentNotion of an Agent
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Conclusion

� Machine Learning has many 
challenging sub-problems

� These sub-problems have be solved
for many real-world problems!

� Many fascinating unsolved problems still remain
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Pattern 
Classification

All materials in these slides were 
taken from

Pattern Classification (2nd ed) by 
R. O. Duda, P. E. Hart and D. G. 
Stork, John Wiley & Sons, 2000
with the permission of the authors 

and the publisher


