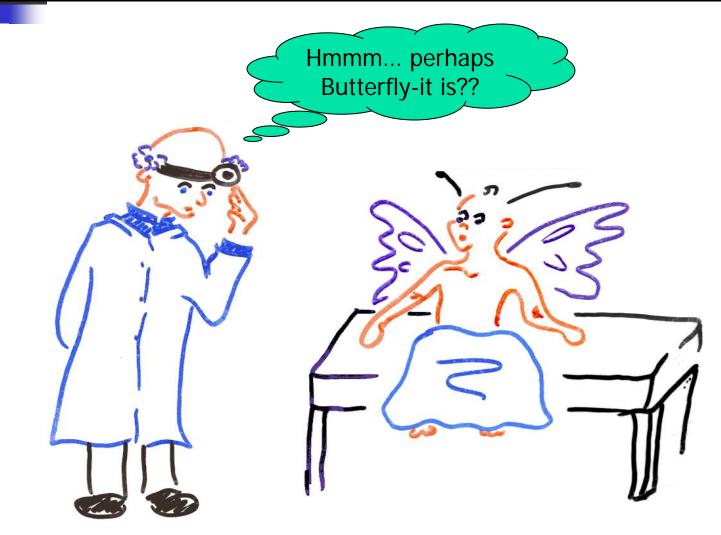


Russ Greiner

Alberta Ingenuity Centre for Machine Learning Department of Computing Science University of Alberta

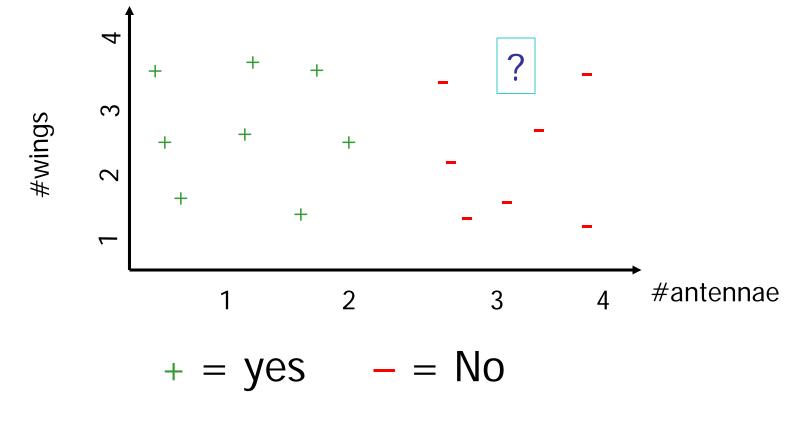
Diagnosing Butterfly-itis



Data from Previous Patients

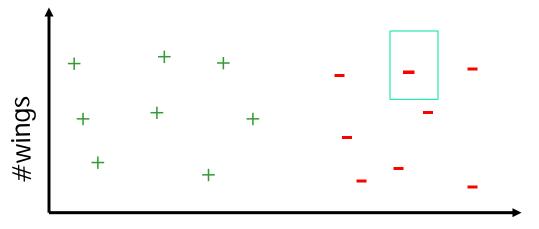
#wings	#antennae		nectar- orient.
2	1	•••	++

Visualizing Patient Data



What about this new patient ?

Given data:



#antennae

- Predicting "label" of new patient
 - Here: Negative "-" (not butterfly-it is)

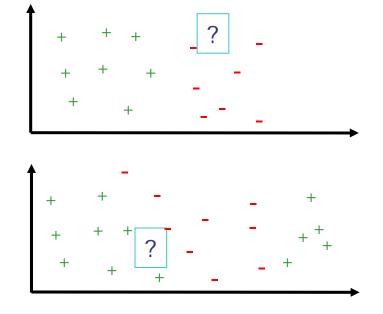
This is an EDUCATED GUESS:

- ... not based on post-mortem, definitive test, ...
- use to decide on treatment, etc.

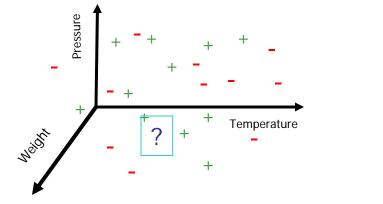
Challenges to Learning

Easy:

Harder:

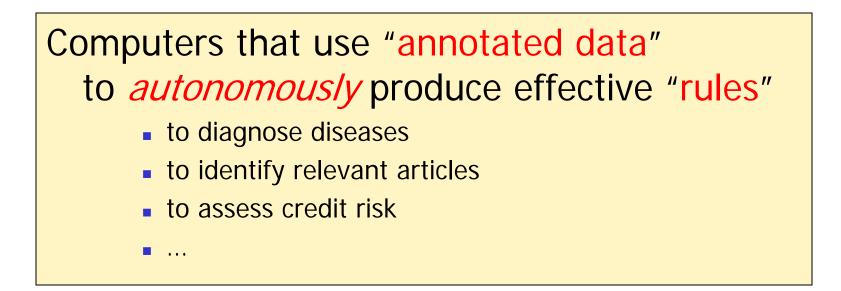


High Dimension:



Machine Learning studies ...

Computers that use "*experiences*" to improve *performance* of some system

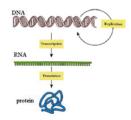


Successes: Mining Data Sets Computer learns...

- to find ideal customers
 Credit Card approval (AMEX)
 - Humans ≈50%; ML is >70% !
- to find best person for job

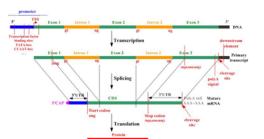
Telephone Technician Dispatch [Danyluk/Provost/Carr 02]

- BellAtlantic used ML to learn rules to decide which technician to dispatch
- Saved \$10+ million/year
- to predict purchasing patterns
 - Victoria Secret (stocking)
- to help win games
 - NBA (scouting)
 - to catalogue celestial objects [Fayyad et al. 93]
 - Discovered 22 new quasars
 - >92% accurate, over tetrabytes



2: Sequential Analysis

- BioInformatics 1: identifying genes
 - Glimmer [Delcher et al, 95]
 - identifies 97+% of genes, automatically!



- BioInformatics 2: Predicting protein function, ...
- Recognizing Handwriting

- Recognizing Spoken Words
 - "How to wreck a nice beach"

3: Control

- TD-Gammon (Tesauro 1993; 1995)
 - World-champion level play by learning ...
 - by playing millions of games against itself!
 - Drive autonomous vehicles (Thrun 2005)
 DARPA Grand Challenge
 - Printing Press Control (Evans/Fisher 1992)
 - Control rotogravure printer, prevent groves, ... specific to each plant
 - More complete than human experts
 - Used for 10+ years, reduced problems from 538/year to 26/year!

Oil refinery

- Separate oil from gas
- ... in 10 minutes (human experts require 1+ days)

Manufacture nuclear fuel pellets (Leech, 86)

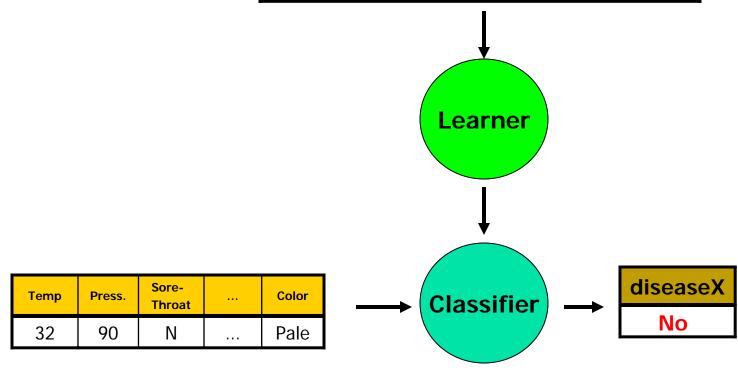
- Saves Westinghouse >\$10M / year
- Adaptive agents / user-interfaces

Outline

- Successes
- Basic ideas
 - Foundations
 - Algorithms
 - Statistical Issues

Learning is ... Training a Classifier

Temp.	Press.	Sore Throat	 Colour	diseaseX
35	95	Y	 Pale	No
22	110	N	 Clear	Yes
:	:		:	:
10	87	N	 Pale	No



Why Learn? Why not just "program it in"?

Appropriate Classifier ...

... is not known

Medical diagnosis... Credit risk... Control plant...

- ... is too hard to "engineer" Drive a car... Recognize speech...
- ... changes over time Plant evolves...
- user specific

Adaptive user interface...

Why Machine Learning is especially relevant **now!**

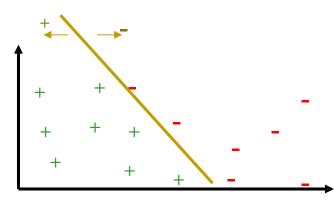
Growing flood of online data

- customer records, telemetry from equipment, scientific journals, ...
- Recent progress in algorithms and theory
 - SVM, Reinforcement Learning, Boosting, ...
 - PAC-analysis, SRM, …
- Computational power is available
 - networks of fast machines
- Budding industry in many application areas
 - market analysis, adaptive process control, decision support, ...

Alberta Ingenuity Centre for Machine Learning

Outline

- Successes
- Basic ideas
 - Foundations
 - Algorithms
 - Linear Separators
 - Artificial Neural Nets
 - Decision Trees
 - Nearest Neighbor, Naïve Bayes, Support Vector Machines, Reinforcement Learning, ...
 - Statistical Issues



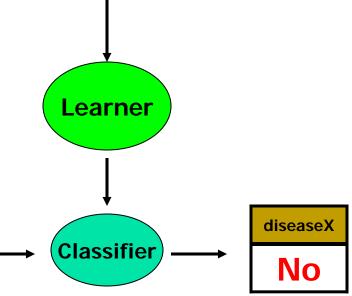
General Process

Given "labeled data"

Temp.	BP.	Sore Throat	 Colour	diseaseX
35	95	Y	 Pale	No
22	110	Ν	 Clear	Yes
:	•••		:	:
10	87	Ν	 Pale	No

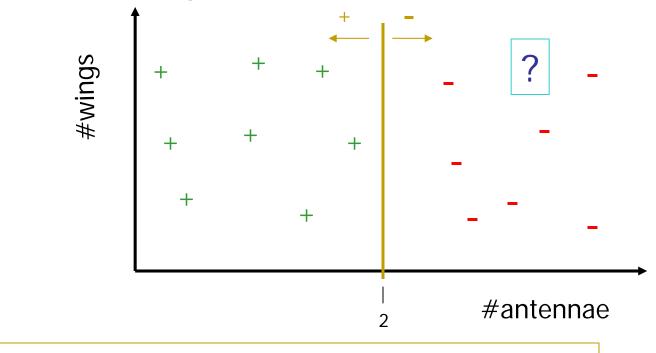
Learn CLASSIFIER, that can predict label of *NEW* instance

Temp	BP	Sore- Throat	 Color	diseaseX
32	90	Ν	 Pale	?



Alg 1: Linear Separators

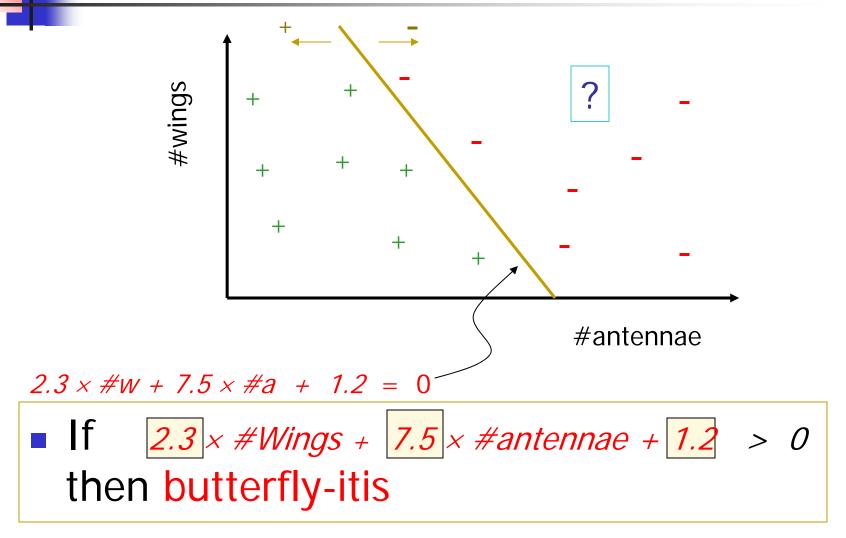
Draw "separating line"



If #antennae ≤ 2 , then butterfly-itis

So ? is Not butterfly-itis.

Can be "angled"...



Linear Separators, in General

Given data (many features)

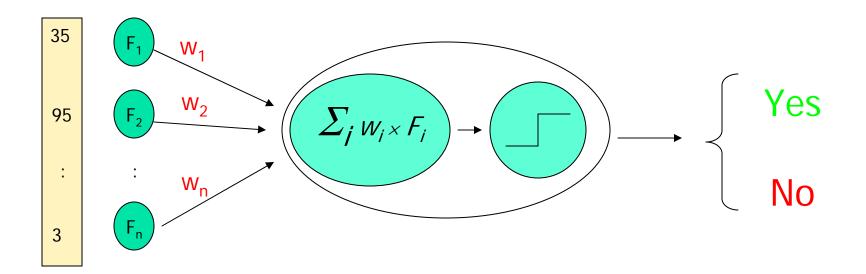
F ₁	F ₂	 F _n	Class
35	95	 3	No
22	80	 -2	Yes
:	:	:	:
10	50	 1.9	No

• find "weights" $\{W_1, W_2, ..., W_n, W_0\}$ such that

$$W_1 \times F_1 + \dots + W_n \times F_n + W_0 > 0$$

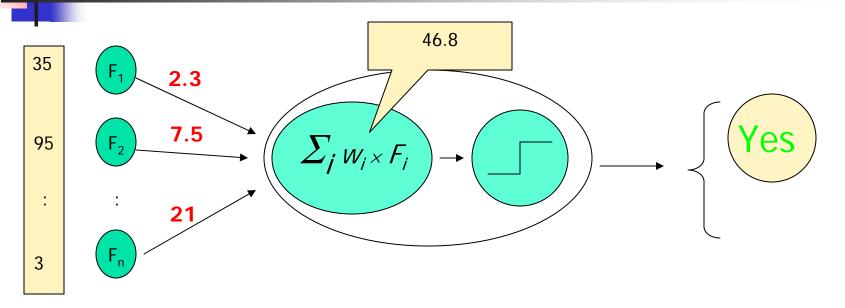
means

Linear Separator



Just view
$$F_0 = 0$$
, so $w_0 \dots$

Linear Separator

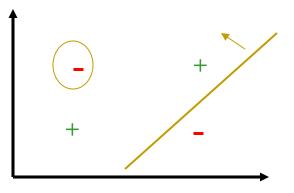


• Challenge:

- Given labeled data, find "correct" {w_i}
- "Perceptron"

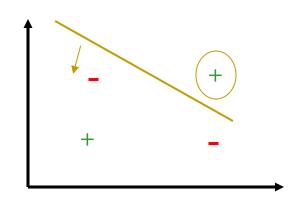
Linear Separators – Facts

- GOOD NEWS:
 - If data is linearly separated,
 - Then FAST ALGORITHM finds correct {w_i} !
- But...



Linear Separators – Facts

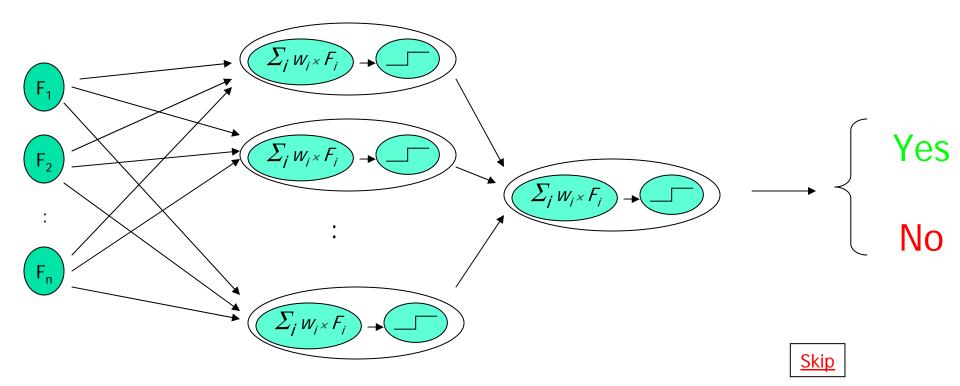
- GOOD NEWS:
 - If data is linearly separated,
 - Then FAST ALGORITHM finds correct {w_i} !
- But...



Some "data sets" are NOT linearly separatable!

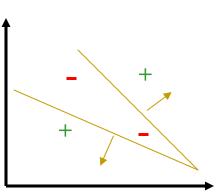
Alg 2: Artificial Neural Nets

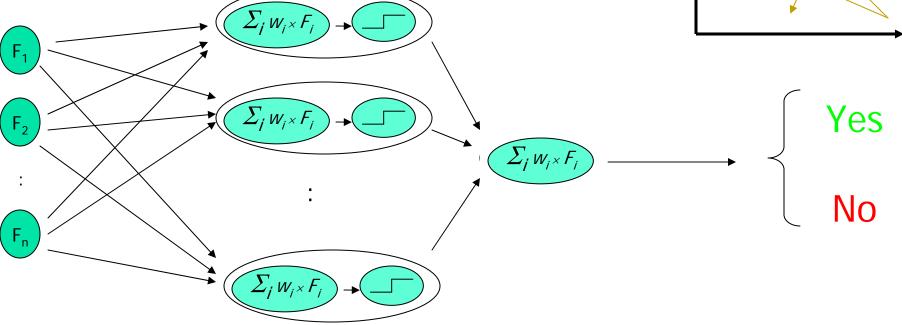
Why not use SET of connected Linear Separators?



Artificial Neural Nets

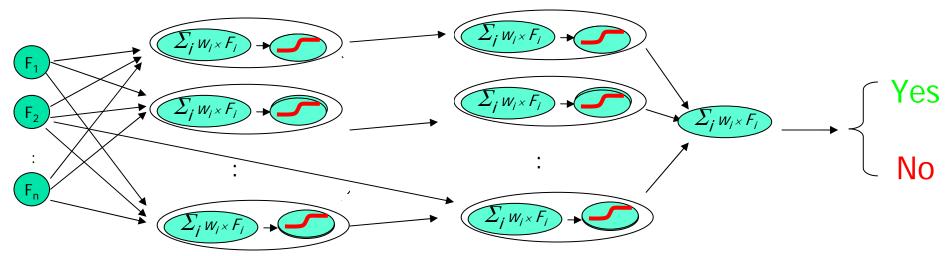
- Can Represent ANY classifier!
 - w/just 1 "hidden" layer...
 - in fact...





ANNs: Architecture

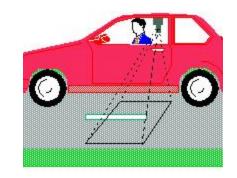
- Different # of layers
- Different structures
 - what's connected to what..
- Different "squashing function"



Uses of Artificial Neural Nets

Learning to ...

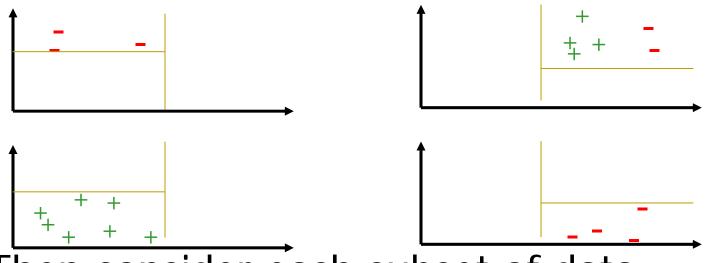
- drive a car
- assess credit risk



- pronouncing words (NETtalk)
- recognize handwritten characters
- control plant

Algorithm 3: Decision Trees

Given data, decide on best *first* split

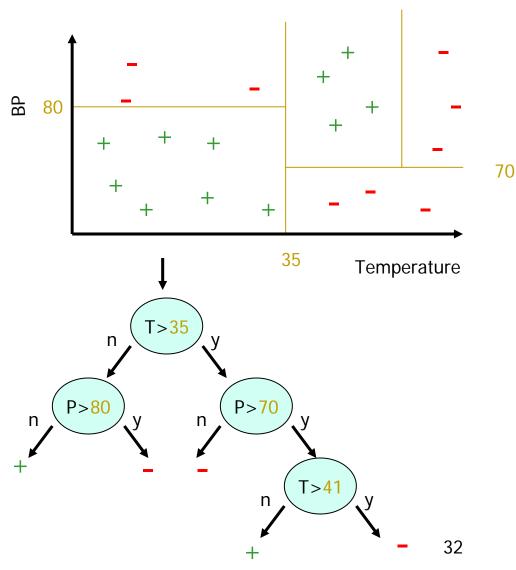


- Then consider each subset of data:
 - decide on its best split
- Recur... until "purity"

Alg 3: Decision Trees

Partitioned data:

"Hierarchical Split" Divide and conquer



41

$\mathsf{Issues} \Rightarrow \mathsf{Demo}$

Issues:

- How to split?
- When to stop?
- Avoid overfitting
- Real vs Discrete

Alxploratorium! http://www.cs.ualberta.ca/~aixplore

Other Algorithms

- Nearest Neighbor
- Support Vector Machines
 - Find BEST line between + and -'s
- Naïve Bayes
 - Probabilistic model:
 What is *chance* that datapoint is + vs ?
- Learning "Ensembles"
 - Ways to combine "ok" classifiers, to be better
 - Boosting, Bagging, Stacking, ...
- More than just + vs ...
 - {Ok, MildSick, AverageSick, VerySick}
 - Real values $\ \mathfrak{R}$

Outline

- Successes
- Basic ideas
 - Foundations
 - Algorithms
 - Statistical Issues
 - 1. Goal of learning
 - 2. Why should Learning work?
 - 3. How much data is needed?
 - 4. Overfitting
 - 5. Computational Efficiency
 - 6. Imbalanced data (fraud detection)
 - 7. Non-IID tuples (stock market, temporal)

1. Goal of Learning?

	F ₁	F ₂	 F _n	Class
a =	35	95	 3	No
b =	22	80	 -2	Yes
d =	10	50	 1.9	No

If goal of learning is just score well on *training data ... Trivial:* just memorize data!

- { a is No b is Yes d is No }
- Instead: want to do well on
 - NEW UNSEEN data

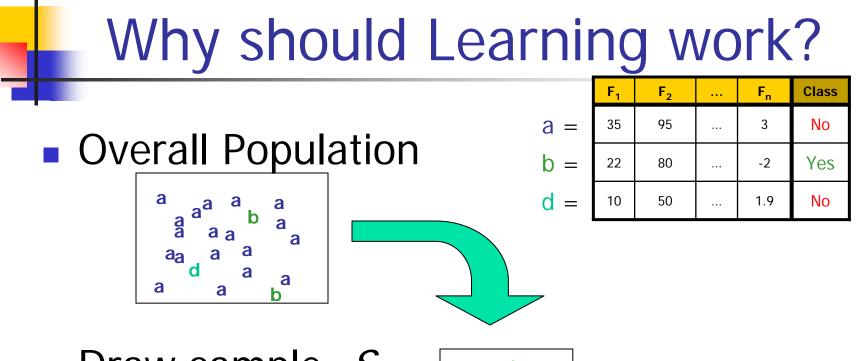
How can learning possibly succeed?

2. Why should Learning work?

Rare is rare

- If patient type is *common*, then it is in sample
 - If in sample, classifier "gets" it
- If patient type NOT common, then ... so what?
 - Classifier will be wrong, but penalty is small
- Overfitting can be prevented
- More data is better

Skip details



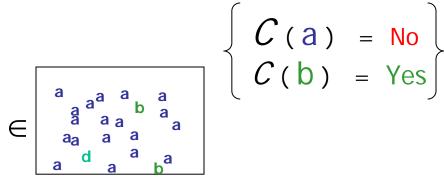
- Draw sample S = aaabaa
- Learn classifier C that does well on S:
 - As *S* includes a b,

$$\begin{cases} \mathcal{C}(a) = No \\ \mathcal{C}(b) = Yes \end{cases}$$

Notice d not is S

How good is Classifier C?

- To evaluate C
 - **Draw new patient**, $X \in \begin{bmatrix} a & a^{a} & a \\ a & a & a \\ a_{a} & a & a \\ a_{a}$
 - Compute C(x)
 - Correct?
- Given true distribution,
 - $expect x = a \dots or x = b$
 - Here: C(x) is correct!
 - Otherwise, C(x) may be wrong.
 - But this is rare!



Why should Learning work?

Consider a new patient, x ...

- 1. If x occurs a LOT P(x) >> 0
 - x probably appears in S
 - As C does well on S,
 C gives correct answer on x
- 2. If *x* occurs rarely $P(x) \approx 0$
 - doesn't matter if C is wrong!

a a	aa aa	a a a
aa a	a a	a

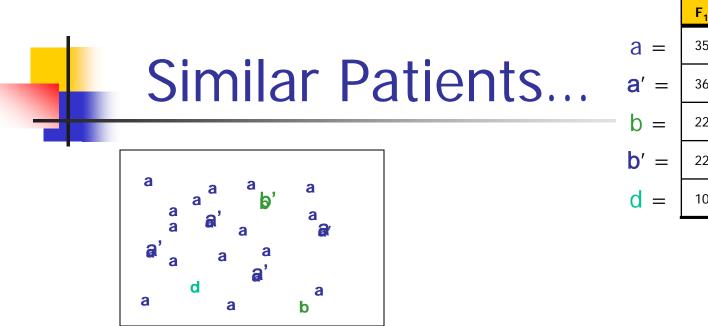
aaabaa

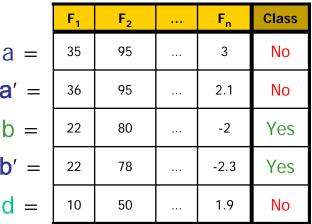
Even good classifiers are wrong occasionally...

Populations

- Train a "Feline classifier" FC using
 - Pets in my neighborhood,
- FC should do well on
 - household cats +
 - household dogs -

- *FC* will probably be WRONG wrt
 Tigers
- Not surprising: FC was NOT trained on them!



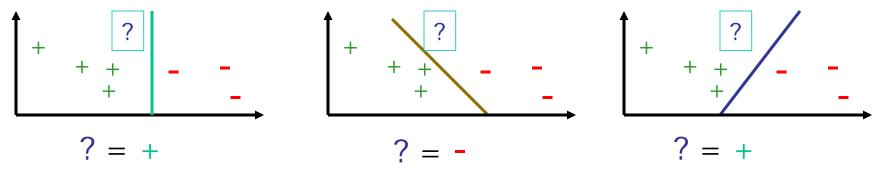


So far: assume many IDENTICAL patients

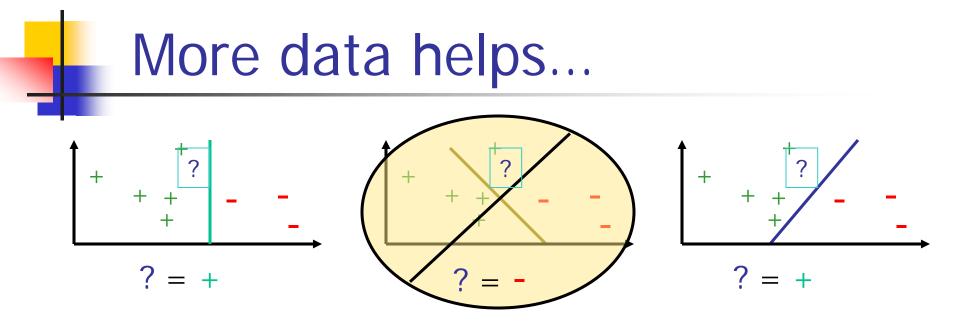
- Same values for each feature
- More realistic: Similar patients...
- Same idea:
 - if need to classify x_i , and $x \sim u$ where $u \in S_i$
 - then $C(u) \approx C(x)$ and probably correct ...

3. How much training data?

What is best linear separator for...



- Makes a difference: what is "?" ?
- Learning gets easier with more training data...



- Suppose next training point is...
- Eliminates 2nd option...
 - Leaving only ? = +

Learnability Theory

Can **QUANTIFY** how many training instances

are needed, as function of

- Hypothesis space
 - Linear Separators, Decision Trees, ...
- Accuracy required
- Chance of being completely wrong
- (Think of Hypothesis Testing...)

4. "Overfitting"

Spse we used the WRONG features:

- whether birthday was odd/even,
- whether SSN was odd/even
- whether car license odd/even

•••

- Here: NO correlation between
 - butterfly-itis and
 - any (combination) of feature
- Best classifier:
 - Ignore features; just use majority class

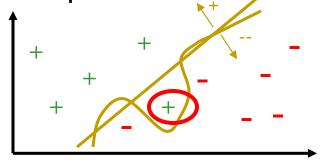
Example – continued

- 25% have butterfly-itis
- $\frac{1}{2}$ of patients have $F_1 = 1$
 - Eg: "odd birthday"
- $\frac{1}{2}$ of patients have $F_2 = 1$
 - Eg: "even SSN"
- In for 10 features
- Decision Tree results
 - over 1000 patients (using these silly features) ...

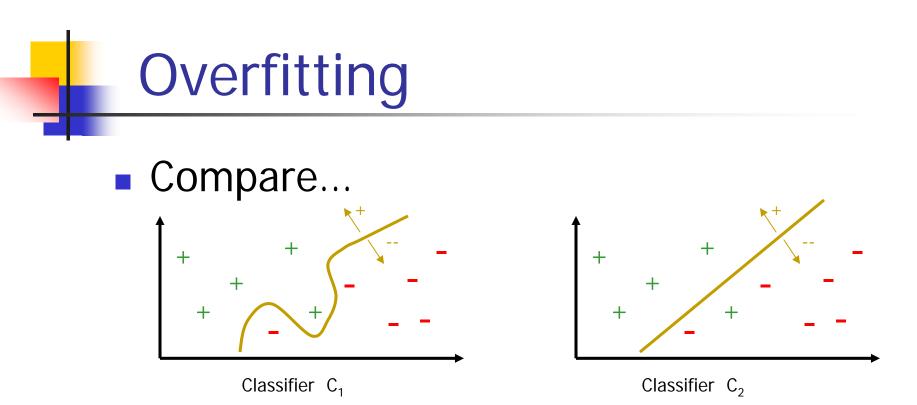
Decision Tree Results Standard decision tree • Optimal decision tree: learner: **Error Rate:** Error Rate: • Train data: 0% Train data: 25% New data: (37%) New data:

Overfitting

- Some features are not helpful
- Data often noisy
 - typos in recording, error in equipment, human error...
- What is best separator for...



- Sometimes: Appropriate to IGNORE details of training data
 - Here: one training data point is mislabeled !
- Simpler hypothesis often better classifier!
 - eg, LINEAR Separator

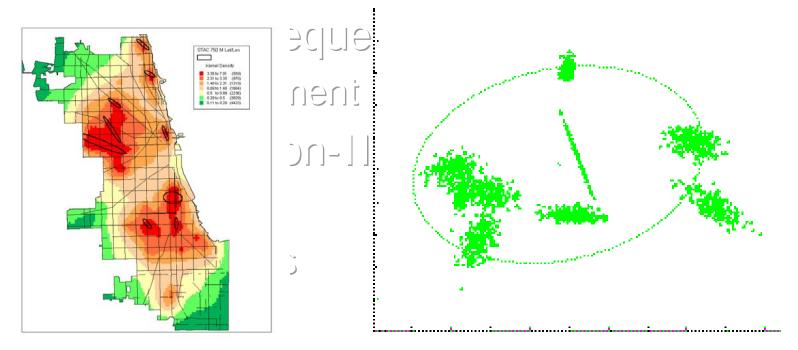


- C₁ appears better (on training data) than C₂, but C₂ is actually better
- Overfitting !

Outline

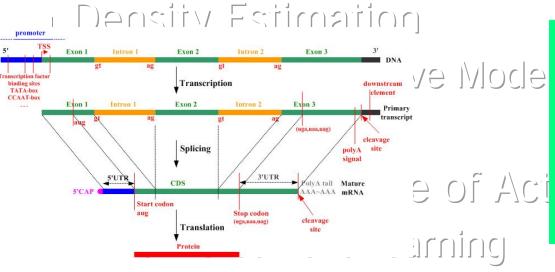
- Successes
- Basic ideas
 - Foundations
 - Algorithms
 - Statistical Issues
 - 1. Goal of Learning
 - 2. Why should Learning work?
 - 3. How much data is needed?
 - 4. Overfitting
 - 5. Computational Efficiency
 - 6. Imbalanced data (fraud detection)
 - 7. Non-IID tuples (stock market, temporal)

- Density Estimation
 - Learning Generative Model
 - Clustering



Density Estimation
 Learning Generative Model
 Clustering
 Learning Sequence of Actions

Reinforcement Learning



- Learning non-IID Data
 - Sequences
 - Images

- Density Estimation
 - Learning Generative Model
 - Clustering
- Learning Sequence of Actions
 - Reinforcement Learning
- Learning non-IID Data
 - Images

. . .

Sequences

- Machine Learning is a mature field
 - solid theoretical foundation
 - many effective algorithms

- ML is *crucial* to large number of important applications
 - BioInformatics, WebReDesign, MarketAnalysis, Fraud Detection, ...
- Fun: Lots of intriguing open questions!
 Exciting time for Machine Learning

