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My Projects Using Game TheoryMy Projects Using Game Theory

Robert Holte



PokerPoker
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The ChallengesThe Challenges
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• Large game tree
• Stochastic element
• Imperfect information (during hand, and 

after)
• Variable number of players (2–10)
• Aim is not just to win, but to maximize 

winnings
• Need to exploit opponent weaknesses



22--playerplayer, , limitlimit, Texas , Texas HoldHold’’emem

2 private cards to each player

3 community cards 

1 community card 

1 community card 

Bet 
Sequence

Initial

Flop

Bet 
Sequence

Turn

Bet 
Sequence

River

1,624,350

9 of 19

9 of 19

45

9 of 19

44

17,296

19 Bet 
Sequence

O(1018)
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GameGame--Theoretic ApproachTheoretic Approach



Linear ProgrammingLinear Programming
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• A 2-player, zero-sum game with chance 
events, mixed strategies, and imperfect 
information can be formulated as a linear 
program (LP).

• The LP can be solved in polynomial time to 
produce Nash strategies for P1 and P2.

• Guaranteed to minimize losses against the 
strongest possible opponent.

• “Sequence form” – the LP is linear in the 
size of the game tree

(Koller, Megiddo, and von Stengel) 



Linear ProgrammingLinear Programming
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• A 2-player, zero-sum game with chance 
events, mixed strategies, and imperfect 
information can be formulated as a linear 
program (LP).

• The LP can be solved in polynomial time to 
produce Nash strategies for P1 and P2.

• Guaranteed to minimize losses against the 
strongest possible opponent.

• “Sequence form” – the LP is linear in the
size of the game treesize of the game tree.

1018 !!!



PsOptiPsOpti ((SparbotSparbot)  )  –– IJCAIIJCAI’’0303
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• Abstract game tree of size 107

• Bluffing, slow play, etc. fall out from the 
mathematics.

• Best 2-player program to date
• Has held its own against 2 world-class 

humans
• Won the AAAI’06 poker-bot competitions



PsOpti2 vs. PsOpti2 vs. ““theCounttheCount””
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PsOptiPsOpti’’ss WeaknessesWeaknesses
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• The equilibrium strategy for the highly abstract 
game is far from perfect.

• No opponent modelling.
• Nash equilibrium not the best strategy:

• Non-adaptive
• Defensive

• Even the best humans have weaknesses that 
should be exploited



http://www.poker-academy.com
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Network Routing when Traffic Network Routing when Traffic 
Demands are UncertainDemands are Uncertain

Recent Ph.D. thesis by Yuxi Li



ExampleExample
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• A routing is a set of fractions for all meaningful 
combinations of H, O, D, N in:
At node H, fH,O,D,N of the packets going from 
node O to node D should be sent next to node N

A

C

B
100

100

100

To
From

A B C

A 0 80 20
B 80 0 10
C 20 10 0

TRAFFIC DEMAND



Treat this as a 2Treat this as a 2--player gameplayer game
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• Objective function:
• lifetime of an energy-constrained network    (e.g. 

sensor network)
• Player 1 (max): choose a routing
• Player 2 (min): choose a traffic demand matrix

• The Nash equilibrium of this game is a routing 
that is resistant to adversarial attacks



BehaviourBehaviour under Attackunder Attack
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Combinatorial AuctionsCombinatorial Auctions



Rodent auction

Flopsy



Rodent auction

Flopsy
Mopsy



Rodent auction

Flopsy
Mopsy

Jack



Rodent auction

Flopsy
Mopsy

Jack
C1: will pay $5 for any one
C3: will pay $12 for all three
C2: will pay $9 for a breeding pair

(Flopsy and one of the others)



Combinatorial AuctionsCombinatorial Auctions
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• Single Unit C.A. – one copy of each item
• Auction all items simultaneously
• Bid specifies a price and a set of items   

(“all or nothing”)
• Exclusive-OR can be achieved by having a 

“dummy item” representing the bidder
• Multi-round or single-round 



$12 for all three
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$12 for all three

$12

F M J



$9 for a breeding pair
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$9 for a breeding pair

$9 $9

F M J



$5 for any one
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$5 for any one

$5 $5 $5

F M J C1



ApplicationsApplications
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• FCC spectrum auctions
• Goods distribution routes
• Airport gates, parcels of land
• eBay



Example ApplicationExample Application
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SPOT: earth observation satellite
Requests are made for photographs.
Each photograph can be taken at several 

times by several different 
instruments/settings, but quality (profit) 
may vary.

Using one instrument/setting at a given time 
may prevent the use of another at the 
same or adjacent times.



ExampleExample
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Photograph 1
• $4 if taken on instrument A at time T1
• $3 if taken in instrument A at time T2
• $12 is taken on instrument B at time T2

Photograph 2
• $7 if taken on instrument B at time T2

If B is being used, A cannot used at the 
same time.



Formulation as a C.A.Formulation as a C.A.
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Each instrument/setting/time is a separate 
item for auction.

Each photograph is a bidder, with XOR bids 
for each of the different ways of achieving 
the photograph.

If “items” A and B are mutually exclusive, any 
bid for A also includes B.
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Example as a C.A.Example as a C.A.

$7 $12 $3 $4

B2 A2 A1 P1



Winner DeterminationWinner Determination
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Problem: how to determine who wins ?

Choose a set of bids that are feasible 
(disjoint) and maximize the auctioneer’s 
profit.

NP-complete (set packing problem) 



MultiMulti--unit Combinatorial Auctionsunit Combinatorial Auctions

CMPUT 366, November, 2006© 2006 R. C. Holte, AICML 31

• There are bi copies of item i

• A bid specifies a quantity for each item    
(is a vector length m if there are m items)

• A set of bids is feasible if its total 
demand for each item does not exceed 
the number of available copies of the 
item



Manufacturing Application 1Manufacturing Application 1
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• Inventory consists of m types of parts, with bi
instances of type i.

• A customer order requests a certain quantity of 
each part, and offers a price.

Determine which orders to fill to maximize profit.



Auctions and KnapsacksAuctions and Knapsacks
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Winner determination in a multi-unit combinatorial 
auction with a single item is the classic NP-
complete Knapsack problem.

With more than one item, it is the 
multidimensional Knapsack problem (MDKP) –
much less studied.



The Knapsack ProblemThe Knapsack Problem
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• An “easy” NP-complete problem
• Garey & Johnson: knapsack is considered 

“solved” by many (by branch-and-bound)
• n (#bids) can be reduced by decomposition and 

preprocessing
• Solvable in pseudo-polynomial time by dynamic 

programming
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Knapsack AlgorithmsKnapsack Algorithms

• Dave Pisinger’s PhD (1995) - publicly 
available, very fast code (d.p.) 

• There is a very simple greedy algorithm 
guaranteed to be ½ optimal or better
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The Multidimensional Knapsack The Multidimensional Knapsack 
Problem (MDKP)Problem (MDKP)

• An hard NP-complete problem
• Not solvable in pseudo-polynomial time.
• No greedy (polynomial) algorithm can guarantee 

an approximation that is better than OPT/k½ where 
k is the sum of the bi.



Why Try HillWhy Try Hill--climbing ?climbing ?
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• It is part of branch&bound search and some 
heuristic search algorithms

• Try simple, generic search algorithms before 
complex ones and problem-specific variants 



Deterministic HillDeterministic Hill--ClimbingClimbing
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Start with the empty bid-set
REPEAT:
• Consider adding one bid to the current bid-set
• Prune bid-sets that are infeasible 

• Add the bid with the highest “score”
UNTIL pruning eliminates all alternatives

Report the highest price seen during search, not the price of 
the final local “score” maximum



Deterministic HillDeterministic Hill--ClimbingClimbing
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Start with the empty bid-set
REPEAT:
• Consider adding one bid to the current bid-set
• Prune bid-sets that are infeasible or cannot  be 

extended to improve the best price seen so far
• Add the bid with the highest “score”
UNTIL pruning eliminates all alternatives

Report the highest price seen during search, not the price of 
the final local “score” maximum



Scoring functionsScoring functions
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• Price
• N2norm = Price/size

• Single-unit, size = (# items in the bid)½

• Multi-unit, size = (∑f(i)2)½
f(i) is the fraction of the remaining quantity of  item i 
required by the bid

• KO = Price/(price of contending bids KO’d by the bid)



Randomized HillRandomized Hill--climbingclimbing
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Instead of adding the bid with the best score, choose 
among the alternative bids (after pruning) randomly, 
with probability proportional to score.

Restart (with the empty bid-set) several times on a given 
problem and report best price seen on any restart.



SingleSingle--Unit Test ProblemsUnit Test Problems
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CATS test suite from Stanford
• new
• Problem generators for 5 different scenarios

e.g. airport  takeoff and landing time-slots

• Realistic (e.g. airports are Chicago, LaGuardia, etc.)

• Numerous Parameters – defaults used except
• 3 variations on “regions” (default + 2 others)
• scaled down “paths” and “scheduling”



Experimental SetupExperimental Setup
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• For each problem type randomly generate 
100 different problems

• On each problem run 
• the 3 deterministic hill-climbers 

“Best DHC” = best of these prices
• the 3 randomized hill-climbers (20 restarts each)

“Best RHC” = best of these prices



Average Solution QualityAverage Solution Quality
(% of optimal)(% of optimal)
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problem  type best DHC best RHC

path 98 98

match 99 99

sched 96 98

r75P 83 92

r90P 90 96

r90N 89 96

arb 87 95



ObservationsObservations
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• Randomized (20 restarts) better than deterministic
• Randomized finds very good solutions            

(always > 80%, average > 92%)

• Problem ratings:
easy: path, match, sched
harder: r90P, r90N, arb
hardest: r75P

• On the easy problems, deterministic finds very 
good solutions (almost as good as randomized)



Which Scoring Function ?Which Scoring Function ?
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N2norm and KO about the same, better than Price.



Which Scoring Function ?Which Scoring Function ?
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N2norm and KO about the same, better than Price.

But are they better than chance ?



Blind HillBlind Hill--climbingclimbing
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Choose bid randomly with uniform probability
• still prunes
• still reports best price seen throughout search

Repeat 200 times on each problem to measure its 
solution quality distribution
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Percentage of Blind HC solutionsPercentage of Blind HC solutions
worse than Deterministic solutionsworse than Deterministic solutions

problem type N2norm KO

path 100 100

match 100 100

sched 99 99

r75P 76 63

r90P 16 7

r90N 23 6

arb 40 20



SingleSingle--unit CA unit CA –– ConclusionsConclusions
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• hard for Blind HC, easy for DHC and RHC
• problems of this type are solved well by HC
• success is due to the scoring functions
• not good testbeds for comparative experiments allowing 

suboptimal solutions

• easy for Blind HC, hard for DHC
• scoring functions alone no better than chance
• numerous good solutions throughout the search space
• good testbeds as long as the Blind HC baseline is taken into 

account
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Multidimensional Knapsack Multidimensional Knapsack 
Test ProblemsTest Problems

ORLIB test suite from J. Beasley
• mknap1, mknap2

• real-world, optimal values known
• widely used
• now considered “too easy”

• artificial, larger, harder problems
• only the smallest is solvable by CPLEX
• best known solutions very close to LP-optimal



Average Solution QualityAverage Solution Quality
(% of optimal or of best known)(% of optimal or of best known)
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test set Price N2norm KO

90 83

79

85

85

85

85

94

89

89

89

93

Blind

mknap1 98.99 84

mknap2 99.00 58

mknapcb1 98.94 82

mknapcb2 99.03 83

mknapcb3 99.21 83

mknapcb7    98.35 81



Conclusion Conclusion –– MDKPMDKP
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• deterministic hill-climbing with N2norm 
competitive with all previous work, and much 
better than previous greedy approaches

• other scoring functions relatively poor

• randomized hill-climbing only better on the 
easy problems


	My Projects Using Game Theory
	Poker
	The Challenges
	Game-Theoretic Approach
	Linear Programming
	Linear Programming
	PsOpti (Sparbot)  –  IJCAI’03
	PsOpti2 vs. “theCount”
	PsOpti’s Weaknesses
	Network Routing when Traffic Demands are Uncertain
	Example
	Treat this as a 2-player game
	Behaviour under Attack
	Combinatorial Auctions
	Rodent auction
	Rodent auction
	Rodent auction
	Rodent auction
	Combinatorial Auctions
	$12 for all three
	$9 for a breeding pair
	$5 for any one
	Applications
	Example Application
	Example
	Formulation as a C.A.
	Example as a C.A.
	Winner Determination
	Multi-unit Combinatorial Auctions
	Manufacturing Application 1
	Auctions and Knapsacks
	The Knapsack Problem
	Knapsack Algorithms
	The Multidimensional Knapsack Problem (MDKP)
	Why Try Hill-climbing ?
	Deterministic Hill-Climbing
	Deterministic Hill-Climbing
	Scoring functions
	Randomized Hill-climbing
	Single-Unit Test Problems
	Experimental Setup
	Average Solution Quality(% of optimal)
	Observations
	Which Scoring Function ?
	Which Scoring Function ?
	Blind Hill-climbing
	Percentage of Blind HC solutionsworse than Deterministic solutions
	Single-unit CA – Conclusions
	Multidimensional Knapsack Test Problems
	Average Solution Quality(% of optimal or of best known)
	Conclusion – MDKP

