My Projects Using Game Theory

Robert Holte

1

© 2006 R. C. Holte, AICML

CMPUT 366, November, 2006

The Challenges

- Large game tree
- Stochastic element
- Imperfect information (during hand, and after)
- Variable number of players (2–10)
- Aim is not just to win, but to maximize winnings
 - Need to exploit opponent weaknesses

<u>2-player</u>, <u>limit</u>, Texas Hold'em

Game-Theoretic Approach

© 2006 R. C. Holte, AICML

CMPUT 366, November, 2006

Linear Programming

ayer, zero-sum game with chance mixed strategies, and imperfect tion can be formulated as a linear n (LP).

can be solved in polynomial time to auce Nash strategies for P1 and P2.

- Guaranteed to minimize losses against the strongest possible opponent.
- "Sequence form" the LP is linear in the size of the game tree

(Koller, Megiddo, and von Stengel)

Linear Programming

- A 2-player, zero-sum game with chance events, mixed strategies, and imperfect information can be formulated and the program (LP).
- The LP can be solved in produce Nash strategies for P1 and
- Guaranteed to minimize losses against the strongest possible opponent.
- "Sequence form" the LP is line;
 <u>size of the game tree</u>.

le to

PsOpti (Sparbot) – IJCAľ'03

- Abstract game tree of size 10⁷
- Bluffing, slow play, etc. fall out from the mathematics.
- Best 2-player program to date
- Has held its own against 2 world-class humans
- Won the AAAI'06 poker-bot competitions

PsOpti2 vs. "theCount"

© 2006 R. C. Holte, AICML

CMPUT 366, November, 2006

PsOpti's Weaknesses

- The equilibrium strategy for the highly abstract game is far from perfect.
- No opponent modelling.
 - Nash equilibrium not the best strategy:
 - Non-adaptive
 - Defensive
 - Even the best humans have weaknesses that should be exploited

http://www.poker-academy.com

Network Routing when Traffic Demands are Uncertain

Recent Ph.D. thesis by Yuxi Li

Example

 A routing is a set of fractions for all meaningful combinations of H, O, D, N in:

At node H, $f_{H,O,D,N}$ of the packets going from node O to node D should be sent next to node N

Treat this as a 2-player game

- Objective function:
 - lifetime of an energy-constrained network (e.g. sensor network)
- Player 1 (max): choose a routing
- Player 2 (min): choose a traffic demand matrix
- The Nash equilibrium of this game is a routing that is resistant to adversarial attacks

Behaviour under Attack

Combinatorial Auctions

Flopsy

Flopsy Mopsy

Flopsy Mopsy

Jack

Flopsy Mopsy

Jack

C1: will pay \$5 for any oneC3: will pay \$12 for all threeC2: will pay \$9 for a breeding pair(Flopsy and one of the others)

Combinatorial Auctions

- Single Unit C.A. one copy of each item
- Auction all items simultaneously
- Bid specifies a price and a set of items ("all or nothing")
- Exclusive-OR can be achieved by having a "dummy item" representing the bidder
- Multi-round or single-round

\$12 for all three

CMPUT 366, November, 2006

\$9 for a breeding pair

CMPUT 366, November, 2006

\$5 for any one

Applications

- FCC spectrum auctions
- Goods distribution routes
- Airport gates, parcels of land
- eBay

Example Application

SPOT: earth observation satellite

Requests are made for photographs.

Each photograph can be taken at several times by several different instruments/settings, but quality (profit) may vary.

Using one instrument/setting at a given time may prevent the use of another at the same or adjacent times.

Example

Photograph 1

- \$4 if taken on instrument A at time T1
- \$3 if taken in instrument A at time T2
- \$12 is taken on instrument B at time T2

Photograph 2

• \$7 if taken on instrument B at time T2

If B is being used, A cannot used at the same time.

Formulation as a C.A.

Each instrument/setting/time is a separate item for auction.

Each photograph is a bidder, with XOR bids for each of the different ways of achieving the photograph.

If "items" A and B are mutually exclusive, any bid for A also includes B.

Example as a C.A.

Winner Determination

Problem: how to determine who wins ?

Choose a set of bids that are feasible (disjoint) and maximize the auctioneer's profit.

NP-complete (set packing problem)

Multi-unit Combinatorial Auctions

- There are b_i copies of item i
- A bid specifies a quantity for each item (is a vector length *m* if there are *m* items)
- A set of bids is feasible if its total demand for each item does not exceed the number of available copies of the item

Manufacturing Application 1

- Inventory consists of *m* types of parts, with b_i instances of type *i*.
- A customer order requests a certain quantity of each part, and offers a price.

Determine which orders to fill to maximize profit.

Auctions and Knapsacks

Winner determination in a multi-unit combinatorial auction with a single item is the classic NP-complete Knapsack problem.

With more than one item, it is the **multidimensional Knapsack** problem (MDKP) – much less studied.

The Knapsack Problem

- An "easy" NP-complete problem
- Garey & Johnson: knapsack is considered "solved" by many (by branch-and-bound)
- n (#bids) can be reduced by decomposition and preprocessing
- Solvable in pseudo-polynomial time by dynamic programming

Knapsack Algorithms

- Dave Pisinger's PhD (1995) publicly available, very fast code (d.p.)
- There is a very simple greedy algorithm guaranteed to be ½ optimal or better

The Multidimensional Knapsack Problem (MDKP)

- An hard NP-complete problem
- Not solvable in pseudo-polynomial time.
- No greedy (polynomial) algorithm can guarantee an approximation that is better than OPT/k^{1/2} where k is the sum of the b_i.

Why Try Hill-climbing ?

- It is part of branch&bound search and some heuristic search algorithms
- Try simple, generic search algorithms before complex ones and problem-specific variants

Deterministic Hill-Climbing

Start with the empty bid-set

REPEAT:

- Consider adding one bid to the current bid-set
- Prune bid-sets that are infeasible
- Add the bid with the highest "score"

UNTIL pruning eliminates all alternatives

Report the highest price seen during search, not the price of the final local "score" maximum

Deterministic Hill-Climbing

Start with the empty bid-set

REPEAT:

- Consider adding one bid to the current bid-set
- Prune bid-sets that are infeasible or cannot be extended to improve the best price seen so far
- Add the bid with the highest "score"

UNTIL pruning eliminates all alternatives

Report the highest price seen during search, not the price of the final local "score" maximum

Scoring functions

Price

- N2norm = Price/size
 - Single-unit, size = (# items in the bid) $\frac{1}{2}$
 - Multi-unit, size = $(\sum f(i)^2)^{\frac{1}{2}}$

f(i) is the fraction of the remaining quantity of item i required by the bid

• KO = Price/(price of contending bids KO'd by the bid)

Randomized Hill-climbing

Instead of adding the bid with the best score, choose among the alternative bids (after pruning) randomly, with probability proportional to score.

Restart (with the empty bid-set) several times on a given problem and report best price seen on any restart.

Single-Unit Test Problems

CATS test suite from Stanford

- new
- Problem generators for 5 different scenarios
 e.g. airport takeoff and landing time-slots
- **Realistic** (e.g. airports are Chicago, LaGuardia, etc.)
- Numerous Parameters defaults used except
 - 3 variations on "regions" (default + 2 others)
 - scaled down "paths" and "scheduling"

Experimental Setup

For each problem type randomly generate 100 different problems

- On each problem run
 - the 3 deterministic hill-climbers
 "Best DHC" = best of these prices
 - the 3 randomized hill-climbers (20 restarts each)
 "Best RHC" = best of these prices

Average Solution Quality (% of optimal)

problem type	best DHC	best RHC	
path	98	98	
match	99	99	
sched	96	98	
r75P	83	92	
r90P	90	96	
r90N	89	96	
arb	87	95	

Observations

- Randomized (20 restarts) better than deterministic
- Randomized finds very good solutions (always > 80%, average > 92%)
- Problem ratings:

easy: path, match, sched

harder: r90P, r90N, arb

hardest: r75P

On the easy problems, deterministic finds very good solutions (almost as good as randomized)

Which Scoring Function ?

N2norm and KO about the same, better than Price.

Which Scoring Function ?

N2norm and KO about the same, better than Price.

But are they better than chance ?

Blind Hill-climbing

Choose bid randomly with uniform probability

- still prunes
- still reports best price seen throughout search

Repeat 200 times on each problem to measure its solution quality distribution

Percentage of Blind HC solutions worse than Deterministic solutions

problem type	N2norm	KO
path	100	100
match	100	100
sched	99	99
r75P	76	63
r90P	16	7
r90N	23	6
arb	40	20

Single-unit CA – Conclusions

- hard for Blind HC, easy for DHC and RHC
 - problems of this type are solved well by HC
 - success is due to the scoring functions
 - not good testbeds for comparative experiments allowing suboptimal solutions
- easy for Blind HC, hard for DHC
 - scoring functions alone no better than chance
 - numerous good solutions throughout the search space
 - good testbeds as long as the Blind HC baseline is taken into account

Multidimensional Knapsack Test Problems

ORLIB test suite from J. Beasley

- mknap1, mknap2
 - real-world, optimal values known
 - widely used
 - now considered "too easy"
- artificial, larger, harder problems
 - only the smallest is solvable by CPLEX
 - best known solutions very close to LP-optimal

Average Solution Quality (% of optimal or of best known)

test set	Price	N2norm	KO	Blind
mknap1	90	98.99	83	84
mknap2	94	99.00	79	58
mknapcb1	89	98.94	85	82
mknapcb2	89	99.03	85	83
mknapcb3	89	99.21	85	83
mknapcb7	93	98.35	85	81

Conclusion – MDKP

- deterministic hill-climbing with N2norm competitive with all previous work, and much better than previous greedy approaches
- other scoring functions relatively poor
- randomized hill-climbing only better on the easy problems

