

Some material from: D Lin, J You, JC Latombe

- Problem Solving as Search
- Blind Search Techniques
 - Breadth-first (uniform cost)
 - Depth-first
 - Iterative Deepening"
 - Bi-Directional
 - Time/ Space Complexity:
 Size of search space: ≈ 10¹¹ nodes

- Heuristic Search Techniques ... using "Distance to Goal"
 - Best-First
 - A^{*}: provably optimal!
 Search space ≈ 10²⁵ nodes (IDA^{*})
 - Heuristic Functions

- Constraint Satisfaction Problems
 - Intro CSP (Def'n, Types, Examples)
 - Complexity
 - Tricks for "Grow" approach
 - (arc) consistency + probagation
 - Backward checking (DFS)
 - Forward Checking
 - Variable / Value ordering
 - Constraint *Optimization* Problems

- Iterative Algorithms
 - Framework, Examples
 - Hill-climbing / Gradient Descent
 - Problem / Issues
 - GSAT, WalkSat
 - Other approaches
 - Simulated Annealing, Tabu, Random Restarts, Genetic Algorithms

 \Rightarrow Search space $\approx 10^{100}$ to 10^{1000}

- Adversary Saerch / Game Playing
 - Minimax
 ≈ 10¹⁰ nodes, 6-7 ply in chess
 - Alpha-beta Pruning

 ≈ 10²⁰ nodes, 14 ply in chess
 provably "optimal"

Other Topics

- wrt Search
 - Iterative BROADENING
 - Memory Bounded Search SMA*
 - Beam Search
 - Island Hopping abstraction
 - ••••
- wrt CSPs
 - Backjump
 - Dynamic Orderings
 - Special cases (eg, when arc-consistency is sufficient)

Search and AI

- Q: Why such a central role?
- A: As many AI tasks are ill-specified and/or intractable, Search is ONLY approach
- Many applications of search: Learning, Reasoning, Planning, Design, GamesPlaying, NLU, Vision, ...
- Good news:

Tremendous recent progress 10³⁰ feasible; often to 10¹⁰⁰⁰

QUALITATIVE DIFFERENCE from only a few years ago!!