
1

Constraint Satisfaction Constraint Satisfaction
ProblemsProblems

RN, Chapter 5

Some material from: D Lin, J You, JC Latombe

2

Search Overview
Introduction to Search
Blind Search Techniques
Heuristic Search Techniques

Constraint Satisfaction Problems
Motivation, Examples, Def’n
Complexity
Solving:

Formulation, Propagation, Heuristics
Special Case (tree structured)
Constraint Optimization Problems
Example: Edge labeling

Local Search Algorithms
Game Playing search

3

Example: 8Example: 8--QueensQueens

Place 8 Queens on board s.t.
No two Queens attack each other

≡

Constraint Satisfaction Problem
Find assignment { Qi := ri }
satisfying
Set of given constraints

Q3 and Q7 cannot both be on column 4
Q3 and Q8 cannot both be on column 5
…

4

Naïve Algorithm

Initialize the queens: ∀i Qi := 1
While assignment is not ok:

Increment Q8 := Q8+1
If Q8=9:

Q8 := 1; Q7 := Q7 +1
If Q7=9:

Q7 :=1; Q6 := Q6 +1
If …

Return assignment

5

Problem with
Naïve Algorithm

Consider assignment
{ Q1

=5, Q2

=3, Q3

=7, Q4

=3, …}
Note queens Q2 and Q4 attack one another

… sufficient to declare this entire
assignment BAD!
So can make LOCAL decisions:

Assign queens SEQUENTIALLY
Stop as soon as find ANY violation

6

Better Approach for 8Better Approach for 8--QueensQueens

Assign queens sequentially
(from left to right)

Only assign queens to
LEGAL positions

7

What is Needed?What is Needed?

States, Actions, Goal test…
Also:

an early failure test
(based on partial assignment)
a way to propagate the constraints imposed
by one queen on the others
… using partial assignment to constrain
remaining assignments …

Explicit representation of constraints and
constraint manipulation algorithms

8

Constraint Satisfaction ProblemConstraint Satisfaction Problem

Set of variables {X1, X2, …, Xn}
Each Xi has domain Di of possible values
(Here: Di is discrete, finite)

Set of constraints {C1, C2, …, Cp}
Each Ck …

specifies allowable combinations of values of…
a subset of variables

SOLN: Assign a value to every variable,
such that all constraints are satisfied

9

Example: 8-Queens Problem
8 variables Xi, i = 1 to 8
Domain for each variable: {1,2,…,8}
Constraints of the forms:
∀i, j≠i, k Xi = k Xj ≠ k

C12 : (X1, X2) ∈ { (1,2), (1,3), …, (1,8),
(2,1), (2,3), …, (2,8), …
(8,1), …, (8,7) }

∀i, j≠i, ki, kj Xi = ki, Xj = kj |i-j| ≠ |ki - kj|
C’13: (X1, X3) ∈ { (1,1), (1,2), (1,4), … (1,8),

(2,1), (2,2), (2,3), (2,5), …, (2,8),
(3,2), (3,3), (3,4), - (3,8),

… (8,8) }

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

10

Example:
Map Coloring

Color “map” s.t.
Adjacent “regions" have different colors

≡

Constraint Satisfaction Problem
Find assignment (color to each region)
satisfying…
Set of given constraints

Region WA cannot be same color as SA
Region WA cannot be same color as NT
…WA≠NT, WA≠SA, NT≠SA NT≠Q, SA≠Q,
SA≠NSW, SA≠V, Q≠NSW, NSW≠V

11

Example:
Map Coloring

7 Variables: { V, T, WA, NT, SA, Q, NSW }
Domains: Di = { r, g, b }

(same domain for each)
Constraints: Adjacent regions must have different
colors
CWA,NT constrains values for WA and NT:
CWA,NT

: (WA,NT) ∈

{ [r,g], [r,b], [g,r], [g,b], [b,r], [b,g] }

Similarly:
CWA,NT, CWA, SA, CNT, SA, CNT,Q, CSA,Q, CSA,NSW, CSA,V,
CQ,NSW, CNSW,V

12

Example: Map-Coloring

Solutions ≡ complete and consistent assignment
e.g., WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

13

Puzzles…

Danger lies before you, while safety lies behind,
Two of us will help you, whichever you would find,
One among us seven will let you move ahead,
Another will transport the drinker back instead,
Two among our number hold only nettle wine,
Three of us are killers, waiting hidden in line.
Choose, unless you wish to stay here forevermore,
To help you in your choice, we give your these clues four:
First, however slyly the poison tries to hide
You will always find some on nettle wines left side;
Second, different are those who stand at either end,
But if you would move onwards, neither is your friend;
Third, as you see clearly, all are different size,
Neither dwarf nor giant holds death in their insides;
Fourth, the second left and the second on the right
Are twins once you taste them, though different at first sight.

Harry Potter and Sorcerer’s Stone, JK Rowling

To leave a maze, need to select/d
rink bottle

one of 7 bottles, in
 left to

 right line. . .

14

Example: Cryptarithmetic

Variables: F T U W R O X1 X2 X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints: Alldiff (F,T,U,W,R,O)

O + O = R + 10 · X1
X1 + W + W = U + 10 · X2
X2 + T + T = O + 10 · X3
X3 = F, T ≠ 0, F ≠ 0

15

Cryptoarithmetic
Map LETTER to DIGITS s.t. sum is correct.
(Each letter stands for different digit.)
Variables: { S,E, N, D, M, O, R, Y }
Domains: Di = {0, …, 9} ∀ i
Constraints Version#1:

(1000 ×

S +100 ×

E +10 ×

N +D)
+ (1000 ×

M +100 ×

O +10 ×

R +E)
= (10000 ×

M + 1000 ×

O + 100 ×

N+10 ×

E + Y)
Unique: each letter is different

S ≠

E, S ≠

N, . . .
Constraints Version#2:
D + = Y + 10 ×

c1
N + R + c1 = E + 10 ×

c2 (ci

is “carry”)
E +O + c2 = N +10 ×

c3
S +M + c3 = O +10 ×

M

+ Unique: each letter is different . . .

16

Example: Scheduling Activities

Variables: A, B, C, D, E
(starting time of activity)
Domains: Di = {1, 2, 3, 4},
for i = A, B, …, E
Constraints:
(B ≠ 3), (C ≠ 2), (A ≠ B), (B ≠ C),
(C < D), (A = D), (E < A), (E < B),
(E < C), (E < D), (B ≠ D)

“A = D”

≡

{ [1,1], [2,2], [3,3], [4,4] }
“E < A”

≡

{ [1,2], [1,3], [1,4], [2,3], [2,4], [3,4] }

17

Constraint Network

18

Examples
Assignment problems

. . . who teaches what class
Time-tabling problems

. . . which class is offered when & where?
Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Map-coloring
Crypto-arithmetic

19

Constraint GRAPH
If constraints all BINARY

(relate 2 variables)
Connect variables by an edge if in constraint

20

Varieties of constraints
Unary constraints involve a single variable,

e.g., SA ≠ green�

Binary constraints involve pairs of variables,
e.g., SA ≠ WA

Higher-order constraints involve 3 or more
variables,

e.g., cryptarithmetic column constraints

21

Complexity of CSP

Propositional Satisfiability is CSProblem
Domain of each variable: {t, f}
Each k-clause allows 2k -1 assignments, …)

⇒

Every NP-complete problem can be
formulated as CSProblem.

. . . so CSPs

are HARD to solve!

22

Approaches

Seek algs that work well on typical cases
…even though worst case may be exponential

Seek special cases w/ efficient algs
Develop efficient approximation algs
Develop parallel / distributed algorithms

23

Search Approaches to CSP
1.

“Modify/Repair"

State: complete assignment
Initial state: random(?)

Operator: Change value of some variable
2.

“Grow"

State: partial assignment
Initial state: 〈〉

Operators:
1. Assign value to any unassigned variable

Branching Factor:∑i

|Di

|
2. Assign value to k +1st

variable
(Branching Factor: maxi |Di

|

+ … in all cases:
Goal-test: all variables assigned, all constraints satisfied
PathCost: 0

Goal test is DECOMPOSED into individual constraints

If A ≠

B,

then 〈

A = 1, …, B = 1, …〉

cannot be part of solution…
⇒

can be pruned!

24

“Modify/Repair" Approach:
 Exhaustive

Initial State: all variables are assigned
Operators: re-assign new value to variable
Goal test: all constraints are satisfied
aka Generate-and-Test Algorithm
Sequentially generate entire assignment space

D = D1 × D2 × … × Dn

Eg: D = DA × DB × DC × DD × DE

= {1,2,3,4} ×

{1,2,3,4} ×

…

×

{1,2,3,4}
Test each assignment against constraints
Generate-and-test is always exponential
... but see “Local Search Algorithms” …

25

““GrowGrow”” ApproachApproach

Initial state: empty assignment { }
Successor function:

assign a value to an unassigned variable
… which does not conflict with the
currently assigned variables

Goal test: the assignment is complete
Path cost: irrelevant

ie, “0”
Every solution involves n variables, appears at depth n

use depth-first search

26

CSP as Search

Only depth-n search
(n variables)
⇒ So DFS is standard…
Branching factor:
maxi |Di|

Why not ∑i |Di| ?

28

Backtracking AlgorithmBacktracking Algorithm

CSP-BACKTRACKING(PartialAssignment

a)
If a is complete, then return a
X select an unassigned variable
D select an ordering for the domain of X
For each value v in D do

If v is consistent with a then
result CSP-BACKTRACKING(a + (X= v))
If result ≠ failure then return result

Return failure

CSP-BACKTRACKING({})

29

Improving “Grow”

Approach
1.

Formulate CSProblem

appropriately
Node = Variable, vs Node = Constraint

2.

Avoid “Inconsistent" Values
Backtracking
Forward Checking

3.

Prune domain
Arc consistency
MAC
Interleave Assign/MAC

4.

Heuristics: Best Variable/Value
Most-constrained variable first
Most-constraining variable first
Least-constraining value first

30

Trick#1: Appropriate Formulation

Crossword Puzzle:
1.

Var

= Word (in Row/Column)
 Constraint = single 〈i,j〉

entry

(eg, “3Down" and “5across" must have same 〈3,5〉
 letter:

C3D,5A

= {〈…,…〉, …

})
Only BINARY constraints

2.

Var

= Letter at 〈i,j〉
Constraint = consecutive letters in same word
(eg, L3,1

, L3,2

, L3,3

all form a single word
--

C31,32,33

∈

{ 〈d,o,g〉, 〈c,a,t〉, …

}
k-ary

constraint, for k-letter word

31

Trick#1: con't:
 n-ary

vs

2-ary constraints

Can transform
any n-ary csp
to 2-ary
Typically
requires adding
new variables…

3-ary!

Each is binary

Cross-word puzzle: letter vs word…

32

Trick#2:
Avoid “Inconsistent" Values

Backtracking
If inconsistent, undo last assignment
Reach Xi via path 〈X1=v1, ..., Xi-1 = vi-1〉
If Xi=v inconsistent,
back up… try another Xi=v’
If no value of Xi consistent,
back up to reset earlier var

…try some OTHER value for Xi-1 = v’i-1
Eg: Given constraints "A≠C","B>C", DC={1,2,3,4}

After 〈 A=1, B=2 〉, no legal values for C
⇒

BACKTRACK to B... reset B=3

…

〈

A=1, B=3 〉
⇒

…

now can use C=2

33

Backtracking

34

Trick#2:
Avoid “Inconsistent" Values

Forward Checking:
After assign Xi = v,
remove from Dj (j > i)
any no-longer-possible value
. . . make arc-consistent (wrt Xi). . .
If ∃ j s.t. Dj ↦ {}, disallow Xi = v

Eg: Spse

CA,D

≡

“A = D”; DD

=

{2,3,4}
Do NOT consider A = 1, as violates A = D
After A = 2, change DD := {2}

35

Illustrating ForwardChecking

#1

If considering X

:= v,
 consider each unassigned variable Y

 that is connected to X

by a constraint and
 delete from Y’s domain any value that is

inconsistent with v

36

Illustrating ForwardChecking

#2
+ Forward Check

37

Illustrating ForwardChecking

#3

Can be EXPONENTIAL win:
CSP on {X1, X2, …, Xn}
Each of {X1, X2, Xn} is {1, 2}
C1,2,n ≡ “x1 ≠ x2 & x1 ≠ xn & x2 ≠ xn”

38

Illustrating ForwardChecking

#4

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

39

Illustrating ForwardChecking

#4

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

T
WA

NT

SA

Q

NSW

V

40

Illustrating ForwardChecking

#4

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G R

B RGB B RGB

T
WA

NT

SA

Q

NSW

V

41

Illustrating ForwardChecking

#4

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G R

B RGB B RGB

R B G R B RGB

T
WA

NT

SA

Q

NSW

V Violation that forward checking
does not detect

So…

cannot set V=B

here!

43

Forward Checking is not
enough…

FC propagates assignment to
current-variable,
to future variables
Not sufficient!!
Extensions:

“Preprocessing step“ – ArcConsistency
More elaborate propagation “during the
computation"

44

Trick#3: Prune domain
Consistency: Prune variable's domain, before

selecting value.
Arc-consistency:
Given binary-constraint CX,Y

:
DX

, DY

are arc consistent (or 2-consistent)
if

∀x ∈

DX

∃y ∈

DY

s.t. 〈x,y〉 ∈ CX,Y
Eg: DA = {1, 2, 3, 4} and DE = {1, 2, 3, 4}
NOT arc consistent as

A = 1 is not consistent with E < A
⇒

use D’A

= { 2, 3, 4} and D’E

= {1, 2, 3 }

45Note: Already removed B = 3, C = 2

E < C

C < D

⇒ C=3

⇒ D=4

⇒ A=4

E<B

A≠B

⇒ B=2

⇒ E=1

46

Special Case:
 Tree structured CSPs

Theorem: If the constraint graph is tree-structured
(has no loops),

 Arc-Consistency is sufficient!
⇒

CSP can be solved in O(n

|D|2) time.

For general CSPs: worst-case time is O(|D|n)

Important example of relation between
syntactic restrictions and complexity of reasoning

CSP = Binary CSP

Tree CSP

47

Algorithm for Tree-Shaped CSP

1.

Order nodes breadth-first,
starting from any leaf

2.

For j = n to 1, apply AC(Vi

, Vj

)
where Vi

is parent of Vj

3.

For j = 1 to n, pick legal value for Vj

,
 given parent value

Just Arc Consistency is enough… think 2SAT!

48

Additional Propagation
More elaborate propagation,
DURING computation:

Assign
Propagate

Assign Xi := v,
then propagate effects to future variables

Whenever remove value from Xj,
consider effects wrt Xj‘s neighbors…

49

1

3

2

4

32 41

1

3

2

4

32 41

1

3

2

4

32 41
1

3

2

4

32 41

50

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

51

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=3

is not consistent with any remaining value of
X3 ∈

{2, 4} ⇒

REMOVE X2=3

!

Now run “Make Arc Consistent”

… Constraint Propagation …

??

52

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Now run “Make Arc Consistent”

… Constraint Propagation …

??

X3=2

is not consistent with any remaining value of
X4 ∈

{2, 3} ⇒

REMOVE X3=2

!

53

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Now run “Make Arc Consistent”

… Constraint Propagation …

X2=4

is not consistent with any remaining value of
X3 ∈

{4} ⇒

REMOVE X2=4

!

??

54

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Now run “Make Arc Consistent”

… Constraint Propagation …

No value for X2, so backtrack!

55

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

56

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

57

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

58

44--Queens ProblemQueens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

59

General CP for Binary Constraints
 …

MakeArcConsistent

MAC (variables, constraints): Boolean

contradiction false
Q stack of all variables
while Q is not empty and not contradiction do

X UnSTACK(Q)
For every variable Y adjacent to X do

If REMOVE-ARC-INCONSISTENCIES(X,Y) then
If Y’s domain is non-empty
Then STACK(Y, Q)
Else return false

Also called AC3

60

Complexity Analysis of MACComplexity Analysis of MAC

e = number of constraints (edges)
d = number of values per variable

Each variable is inserted in Q ≤ d times
REMOVE-ARC-INCONSISTENCY takes O(d2)
time
MAC takes O(ed3) time

61

Is MAC Alone Sufficient?

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

62

Does Assign+MAC

solve
everything?

After MAC…
domain for NT = { B }
domain for SA = { B }
… but NT ≠ SA!!

63

Trick#4: Best Variable/Value
4a. Most-constrained variable first:

Select unassigned variable with smallest domain
Dynamic: after each pruning w/forward checking, ...
Eg: If |DE| = 2 and |Di| ≥ 3 for other i, select E

4b. Most-constraining variable first:
Select unassigned variable that appears in most constraints w/
other unassigned variables
Let f(X) = | { Y : Y unassigned; ∃C…X…Y } |
Select X*

= arg

minX

{ f(X) : X unassigned }
Eg: Start with B, as f(B) = 4 ≥ f(X) ∀X, ...

4c. Least-constraining value first:
Choose value for X that leaves the most values for OTHER
unassigned variables

65

4a: Most Constrained

Variable

Most constrained variable:
choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV)
If going to fail, FAIL QUICKLY!

66

4b: Most Constraining

Variable

Most constraining variable:
choose the variable involved in largest # of
constraints on remaining variables

Tie-breaker among most constrained
variables

67

4c: Least constraining value

Given a variable, choose the least
constraining value:

the one that rules out the fewest values in
the remaining variables

68

How Effective are Heuristics?
Consider n-queens:

with ForwardChecking: n = 30
+ Most-Constrained-Variable: n = 100
+ Least-Constrained-Value: n = 1000
Dramatic recent progress in
Constraint Satisfaction
… can now handle problems

with 10,000 to 100,000 variables
with 10,000 to 100,000 variables

69

Hard CSPs
Suppose all constraints UNARY (explicit)

⇒

Trivial to solve
1,000,000,000 variable system
w/ 10,000,000,000 (such) constraints!
But. . .

Job-Shop Scheduling:
10 jobs on 10 machines
Proposed [Fisher/Tompson: 1963]
Solved [Carlier/Pinson: 1990]

Open: 15 jobs on 15 machines

70

Constraint Optimization Problem
So far... SATISFACTION.
What about OPTIMIZATION?
Want to minimize

of rooms required
chip size
time for delivery

Obvious approach:
Set try time = tmax
Set best time = “None"
Repeat

Add constraint Time < try time
to existing constraints

Try to find satisfying solution.
If satisfied,

Set best_time

= try_time
Set try_time

= try_time

-

1
Else Return(best time)

71

Very General Formalism
Multi-dimensional Selection Problems
Given set of variables

 each w/ domain (set of possible values)
assign a value to each variable that either

1. satisfiability problems: satisfies given set of “hard" constraints

or

2. optimization problems (“soft constraints”)

minimizes given cost function,
where each assignment to variables has cost

In general,
+ different domains for different var's

(discrete, or continuous X +Y > Z +3)
+ different constraints for diff var-tuples
+ constraints over k-tuples

of vars

(k > 2)

Our focus:
Any feasible solution, Hard constraints

72

Constraint Satisfaction Problems
Scheduling Courses: Assign time/prof/room to each course

“Hard Constraints" (requirements)
+ Prof can only be at one place at any time
+ Course + Lab must be at dierent

times
+ Only one course to a room, . . .

“Soft Constraints" (preferences)
+ Companion classes should be close in time
+ Avoid 8am
+ Minimize total number of rooms used. . .
+ scheduling maintenance, equipment usage, . . .

VLSI Layout: Find position for various subparts
“Hard Constraints"

+ Achieve certain functionality
+ Upper bound on clock-cycle time

“Soft Constraints"
+ Minimize region
+ Minimize wire-length
+ Minimize congestion, . . .
+ part assembly, . . .

73

Edge Labeling inEdge Labeling in
Computer VisionComputer Vision

Russell and Norvig:
Chapter 24, pages 745-749

Skip to end…

74

Edge LabelingEdge Labeling

75

Edge LabelingEdge Labeling

76

Labels of Edges

Convex edge:
two surfaces intersecting at an angle greater than 180°

Concave edge
two surfaces intersecting at an angle less than 180°

+ convex edge, both surfaces visible
− concave edge, both surfaces visible
← convex edge, only one surface is visible and it is
on the right side of ←

77

Edge LabelingEdge Labeling

78

Edge LabelingEdge Labeling

+

++

+

+

+

+

+

+
+

--

79

Junction Label SetsJunction Label Sets

+ + --

-
- - + +

++ +

+

+

-
-

-
-

-+

(Waltz, 1975; Mackworth, 1977)

80

Edge Labeling as a CSP

Variable associated with each junction
Domain of a variable =
the label set of the corresponding junction
Each constraint states

the values given to two adjacent junctions
give the same label to the joining edge

81

Edge LabelingEdge Labeling

+ -

+
-

+- -
++

82

Edge LabelingEdge Labeling
+

+

+

+-
-
-

-
- -

+

83

Edge LabelingEdge Labeling

+

+

+

++

+

-
- - + +

++

84

Edge LabelingEdge Labeling

++

+

- -
++

+ + --

85

Comments
Why not Mathematical Programming Problem?

CSP rep'n more natural/expressive
+ variables problem entities
+ constraints natural description
(not just linear inequalities)

⇒ Formulation simpler, solution easier to understand, easier to find good
heuristics
CSP algorithms often nd sol'n faster

∃ ConstraintProblemSolving tools/systems
+ CHIP (\Constraint Handling in Prolog"); PrologIII; Solver (from ILOG)

Tools use general, “weak" methods
If have background knowledge: use it!
… Symmetries
Clearly T is even in. . .

Other tricks (backjumping, dynamic . . .)
+ theoretical analyses

86

SummarySummary

Constraint Satisfaction Problems (CSP)
CSP as a search problem

Backtracking algorithm
General heuristics

Forward checking
Constraint propagation
Edge labeling in Computer Vision

	Constraint Satisfaction Problems
	Search Overview
	Example: 8-Queens
	Naïve Algorithm
	Problem with �Naïve Algorithm
	Better Approach for 8-Queens
	What is Needed?
	Constraint Satisfaction Problem
	Example: 8-Queens Problem
	Example: �Map Coloring
	Example: �Map Coloring
	Example: Map-Coloring
	Puzzles…�
	Example: Cryptarithmetic
	Cryptoarithmetic
	Example: Scheduling Activities
	Constraint Network
	Examples
	Constraint GRAPH
	Varieties of constraints
	Complexity of CSP
	Approaches
	Search Approaches to CSP
	“Modify/Repair" Approach:�Exhaustive
	“Grow” Approach
	CSP as Search
	Backtracking Algorithm
	Improving “Grow” Approach
	Trick#1: Appropriate Formulation
	Trick#1: con't:�n-ary vs 2-ary constraints
	Trick#2: �Avoid “Inconsistent" Values
	Backtracking
	Trick#2: �Avoid “Inconsistent" Values
	Illustrating ForwardChecking #1
	Illustrating ForwardChecking #2
	Illustrating ForwardChecking #3
	Illustrating ForwardChecking #4
	Illustrating ForwardChecking #4
	Illustrating ForwardChecking #4
	Illustrating ForwardChecking #4
	Forward Checking is not enough…
	Trick#3: Prune domain
	Slide Number 45
	Special Case:�Tree structured CSPs
	Algorithm for Tree-Shaped CSP
	Additional Propagation
	Slide Number 49
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	4-Queens Problem
	General CP for Binary Constraints�… MakeArcConsistent
	Complexity Analysis of MAC
	Is MAC Alone Sufficient?
	Does Assign+MAC solve everything?
	Trick#4: Best Variable/Value
	4a: Most Constrained Variable
	4b: Most Constraining Variable
	4c: Least constraining value
	How Effective are Heuristics?
	Hard CSPs
	Constraint Optimization Problem
	Very General Formalism
	Constraint Satisfaction Problems
	Edge Labeling in� Computer Vision
	Edge Labeling
	Edge Labeling
	Labels of Edges
	Edge Labeling
	Edge Labeling
	Junction Label Sets
	Edge Labeling as a CSP
	Edge Labeling
	Edge Labeling
	Edge Labeling
	Edge Labeling
	Comments
	Summary

