

Local and Stochastic Search

Some material based on D Lin, B Selman

Search Overview

- Introduction to Search
- Blind Search Techniques
- Heuristic Search Techniques
- Constraint Satisfaction Problems
- Local Search (Stochastic) Algorithms
 - Motivation
 - Hill Climbing
 - Issues
 - SAT ... Phase Transition, GSAT, ...
 - Simulated Annealing, Tabu, Genetic Algorithms
- Game Playing search

A Different Approach

- So far: systematic exploration:
 - Explore full search space (possibly) using principled pruning (A*, ...)
- Best such algorithms (IDA*) can handle
 - 10¹⁰⁰ states; ≈500 binary-valued variables (ballpark figures only!)
- but... some real-world problem have 10,000 to 100,000 variables; 10^{30,000} states
- We need a completely different approach:
 - Local Search Methods
 - Iterative Improvement Methods

Local Search Methods

- Applicable when seeking Goal State ...& don't care how to get there
- E.g.,
 - N-queens, map coloring, VLSI layout, planning, scheduling, TSP, time-tabling, ...
- Many (most?) real Operations Research problems are solved using local search!
 - E.g., schedule for Delta airlines, ...

Example#1: 4 Queen

- States: 4 queens in 4 columns (256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Example#2: Graph Coloring

1. Start with random coloring of nodes

Change color of one node to reduce #conflicts

Iteration A B C D E F # conflicts 1 b g g r b r 2 {AE, DF}

Iteration	A	В	C	D	E	F	# conflicts
1	b	g	g	r	b	r	2 {AE, DF}
2	b	g	g	В	b	r	1 { <mark>AE</mark> }

Iteration	A	В	C	D	E	F	# conflicts
1	b	g	g	r	b	r	2 {AE, DF}
2	b	g	g	b	b	r	1 {AE}
3	R	g	g	b	b	r	0 {}

"Local Search"

- Select (random) initial state (initial guess at solution)
- 2. While GoalState not found (& more time)
 - Make *local modification* to improve current state

Requirements:

- Generate a random (probably-not-optimal) guess
- Evaluate quality of guess
- Move to other states (well-defined neighborhood function)
- ... and do these operations quickly...

If Continuous

- Situation - State = $\langle v_1, \ldots, v_n \rangle \in \Re^n$
 - quality $h: \Re^n \mapsto \Re$ $h(\text{state}) \in \Re$
- To find optimum:

Guess random initial state $\vec{v}^0 \in \Re^n$ While $\exists i \left. \frac{\partial h(X)}{\partial X_i} \right|_{X=\vec{v}} \neq 0$ do For i = 1..n $\vec{v}_i := \vec{v}_i - \eta \left. \frac{\partial h}{\partial X_i} \right|_{X=\vec{v}}$ Return \vec{v}

- May have other termination conditions
- If η too small: very slow
- If η too large:
 overshoot
- May have to approximate derivatives from samples

b

G

r

q

r

2

1

b

{EF}

Problems with Hill Climbing

 Foothills / Local Optimal: No neighbor is better, but not at global optimum

- Maze: may have to move AWAY from goal to find best solution
- Plateaus: All neighbors look the same.
 - 8-puzzle: perhaps no action will change # of tiles out of place
- Ridge: going up only in a narrow direction.
 - Suppose no change going South, or going East, but big win going SE
- Ignorance of the peak: Am I done?

Issues

Goal is to find GLOBAL optimum.

- 1. How to avoid LOCAL optima?
- 2. How long to *plateau walk*?
- 3. When to stop?
- 4. Climb down hill? When?

Local Search Example: SAT

- Many real-world problems \approx propositional logic (A v B v C) & (¬B v C v D) & (A v ¬C v D)
- Solved by finding truth assignment to (A, B, C, ...) that satisfy formula
- Applications
 - planning and scheduling
 - circuit diagnosis and synthesis
 - deductive reasoning
 - software testing

Satisfiability Testing

Davis-Putnam Procedure (1960)

- Backtracking depth-first search (DFS) through space of truth assignments (+ unit-propagation)
- fastest sound + complete method
 - ... best-known systematic method ...
- ... but ...
 - ∃ classes of formulae where it scales badly...

Greedy Local Search

- Why not just HILL-CLIMB??
- Given
 - formula: φ =

 (A v C) & (¬A v C) & (B v ¬C)
 - assignment: $\sigma = \{-a, -b, +c\}$

Score(ϕ , σ) = #clauses unsatisfied ... = 0

Just flip variable that helps most!

Α	В	С	(A v C) & (¬A v C) & (B v ¬C)						
0	0	0	Х	+	+	1			
0	0	+	+	+	X	1			
0	+	+	+	+	+	0 ²			

Greedy Local Search: GSAT

- 1. Guess random truth assignment
- Flip value assigned to the variable that yields the greatest # of satisfied clauses. (Note: Flip even if no improvement)
- 3. Repeat until all clauses satisfied, or have performed "enough" flips
- 4. If no sat-assign found, repeat entire process,

starting from a new initial random assgmt

Α	В	С	(A v C) & (¬A v C) & (B v ¬C)						
0	0	0	X	+	+	1			
0	0	+	+	+	X	1			
0	+	+	+	+	+	0			

25

Does GSAT Work?

First intuition:

GSAT will get stuck in local minima, with a few unsatisfied clauses.

 Very bad...
 "almost satisfying assignments" are worthless (Eg, plan with one "magic" step is useless)
 ...ie, NOT optimization problem

 Surprise: GSAT often found global minimum! Ie, satisfying assignment! 10,000+ variables; 1,000,000+ constraints!

No good theoretical explanation yet...

GSAT vs. DP on Hard Random Instances

form.		GSAT		Davis-Putnam		
vars	m.flips	retries	time	choices	depth	time
50	250	6	0.5 <i>sec</i>	77	11	1 <i>sec</i>
70	350	11	1 <i>sec</i>	42	15	15 <i>sec</i>
100	500	42	6 <i>sec</i>	10 ³	19	3 min
120	600	82	14 <i>sec</i>	10 ⁵	22	18 <i>min</i>
140	700	53	14 <i>sec</i>	10 ⁶	27	5 hrs
150	1500	100	45 <i>sec</i>			
200	2000	248	3 min		—	
300	6000	232	12 <i>min</i>			
500	10000	996	2 hrs	10 ³⁰	> 100	10 ¹⁹ yrs

Notes: Define "Hard" later Only "satisfiable" formulae (else GSAT does not terminate)

Systematic vs. Stochastic

- Systematic search:
 - DP systematically checks all possible assignments
 - Can determine if the formula is unsatisfiable
- Stochastic search:
 - Once we find it, we're done!
 - Guided random search approach
 - Can't determine unsatisfiability

What Makes a SAT Problem Hard?

Randomly generate formula φ with
 n variables; *m* clauses with *k* variables each

#possible_clauses =

$$\binom{n}{k} \times 2^k$$

- Will φ be satisfied??
 If n << m: ??
 - If n >> m: ??

Phase Transition

For 3-SAT

- m/n < 4.2, under constrained \Rightarrow nearly all formulae sat.
- m/n > 4.3, over constrained \Rightarrow nearly all formulae unsat.
- $m/n \sim 4.26$, critically constrained \Rightarrow need to search

Phase Transition

- Under-constrained problems are easy: just guess an assignment
- Over-constrained problems are easy: just say "unsatisfiable"
 - (... often easy to verify using Davis-Putnam)
- At *m*/*n* ≈ 4.26,
 - ∃ *phase transition* between these two different types of easy problems.
 - This transition sharpens as n increases.
- For large *n*, hard problems are extremely rare (in some sense)

The 4.3 Point

Hard problems are at Phase Transition!!

Ratio of constraints to variables (Alpha)

Improvements to Basic Local Search

Issues:

- How to move more quickly to successively better plateaus?
- Avoid "getting stuck" / local minima?
- Idea: Introduce uphill moves ("noise") to escape from plateaus/local minima
- Noise strategies:
 - 1. Simulated Annealing
 - Kirkpatrick et al. 1982; Metropolis et al. 1953
 - 2. Mixed Random Walk
 - Selman and Kautz 1993

Simulated Annealing

Pick a random variable If flip improves assignment: do it. Else flip with probability $p = e^{-\delta/T}$ (go the wrong way)

- $\delta = #of$ additional clauses becoming unsatisfied
- T = "temperature"
 - Higher temperature = greater chance of wrong-way move
 - Slowly decrease T from high temperature to near 0
- Q: What is p as T tends to infinity?

... as T tends to 0?

For $\delta = 0$?

Simulated Annealing Algorithm

current, next: nodes/states

T: "temperature" controlling prob. of downward steps schedule: mapping from time to "temperature"

h: heuristic evaluation function

```
\begin{array}{l} \textit{current} \leftarrow \textit{initial state} \\ \textit{for } t \ \leftarrow \ 1..\infty \textit{ do} \\ T \leftarrow \textit{schedule[t]} \\ \textit{if } T = \textit{0} \textit{ then return } \textit{current} \\ \textit{next} \leftarrow \textit{randomly selected successor of } \textit{current} \\ \Delta E \ \leftarrow \ h(\textit{next}) - h(\textit{current}) \\ \textit{if } \Delta E > \textit{0} \textit{ then } \textit{current} \leftarrow \textit{next} \\ \textit{else } \textit{current} \leftarrow \textit{next} \textit{ only with probability } e^{\Delta E/T} \end{array}
```

Notes on SA

Noise model based on statistical mechanics

- Introduced as analogue to physical process of growing crystals
- Kirkpatrick et al. 1982; Metropolis et al. 1953
- Convergence:
 - 1. W/ exponential schedule, will converge to global optimum
 - No more-precise convergence rate (Recent work on rapidly mixing Markov chains)
- Key aspect: upwards / sideways moves
 - Expensive, but (if have enough time) can be best
- Hundreds of papers/ year;
 - Many applications: VLSI layout, factory scheduling, ...

Pure WalkSat

```
PureWalkSat( formula )

Guess initial assignment

While (unsatisfied) do

Select unsatisfied clause c = \pm X_i v \pm X_j v \pm X_k

Select variable \nu in unsatisfied clause c

Flip \nu
```


Eg: $(A \lor B)$ & $(\neg A \lor C)$ & $(\neg B \lor \neg D)$ & ...

Clause $(A \lor B)$ not satisfied. so flip either A or B... say A

 $(A \lor B)$ now satisfied. ...but $(\neg A \lor C)$ is now NOT satisfied!

Mixing Random Walk with Greedy Local Search

MixedWalkSat_p(formula) Guess initial assignment While *unsatisfied* do W/ prob p, **walk** (flip var in an unsatisfied clause) W/ prob 1 - p, **greedy** (flip var producing fewest unsatisfied clauses)

Usual issues:

- Termination conditions
- Multiple restarts
- Determine value of *p* empirically ... finding best setting for problem class

Finding the best value of p

Let

Q[p, c] be *quality* of using WalkSat[p] on problem c

Q[p, c] = Time to return answer, or = 1 if WalkSat[p] returns (correct) answer within 5mins and 0 otherwise, or

= ... perhaps some combination of both ...

•
$$QQ[p] = \sum_{c \in S} Q[p, c]$$

• Set $p^* = argmax_pQQ[p]$

Experimental Results: Hard Random 3CNF

		GS	Simul	. Ann.		
	bas	ic	wal	k		
vars	time	eff.	time	eff.	time	eff.
100	.4	.12	.2	1.0	.6	.88
200	22	.01	4	.97	21	.86
400	122	.02	7	.95	75	.93
600	1471	.01	35	1.0	427	.3
800	*	*	286	.95	*	*
1000	*	*	1095	.85	*	*
2000	*	*	3255	.95	*	*

- Time in seconds (SGI Challenge)
- Effectiveness: prob. that random initial assignment leads to a solution
- Complete methods, such as DP, up to 400 variables
- Mixed Walk ... better than Simulated Annealing
 - better than Basic GSAT
 - better than Davis-Putnam

Overcoming Local Optima and Plateaus

- Simulated annealing
- Mixed-in random walk
 - Random restarts
 - Tabu search
 - Genetic alg/programming

Random Restarts

- Restart at new random state after pre-defined # of local steps.
- Useful with "Heavy Tail" distribution
- Done by GSAT

Tabu Search

- Avoid returning quickly to same state
- Implementation:
 - Keep fixed length queue (tabu list)
 - Add most recent step to queue; drop oldest step v2
 - Never make step that's on current tabu list

Example:

- without tabu:
- with tabu (length 4):
- Tabu very powerful;
 - competitive w/ simulated annealing or random walk (depending on the domain)

v1

v4

₩2

v10

v11

v10

v3

. . .

V1

Genetic Algorithms

Class of probabilistic optimization algorithms

- A genetic algorithm maintains a population of candidate solutions for the problem at hand, and makes it evolve by iteratively applying a set of stochastic operators
- Inspired by the biological evolution process
- Uses concepts of "Natural Selection" and "Genetic Inheritance" (Darwin 1859)
- [John Holland, 1975]

Examples: Recipe

To find optimal quantity of three major ingredients (sugar, wine, sesame oil)

- Use an alphabet of 1-9 denoting ounces
- Solutions might be
 - 1-1-1
 - **2-1-4**
 - **3-3-1**

Standard Genetic Algorithm

- Randomly generate an initial population
- For i=1...N
 - Select parents and "reproduce" the next generation
 - Evaluate fitness of the new generation
 - Replace some of the old generation with the new generation

Stochastic Operators

Cross-over

- decomposes two distinct solutions
- then randomly mixes their parts to form novel solutions

Mutation

randomly perturbs a candidate solution

Genetic Algorithm Operators Mutation and Crossover

Examples

- Mutation:
 - In recipe example, 1-2-3 may be changed to
 - 1-3-3 or
 - **3-2-3**
- Parameters to adjust
 - How often?
 - How many digits change?
 - How big?

More examples:

- Crossover
 - In recipe example:
 - Parents 1-3-3 & 3-2-3
 - Crossover point after the first digit
 - Generate two offspring: 3-3-3 and 1-2-3
- Can have one or two point crossover

Local Search Summary

- Surprisingly efficient search technique
- Wide range of applications
- Formal properties elusive
- Intuitive explanation:
 - Search spaces are too large for systematic search anyway...
- Area will most likely continue to thrive