!'_ Local and Stochastic Search

Some material based on D Lin, B Selman



i Search Overview

Introduction to Search
= Blind Search Techniques
= Heuristic Search Techniques
= Constraint Satisfaction Problems

= Local Search (Stochastic) Algorithms
= Motivation
= Hill Climbing
= Issues
= SAT ... Phase Transition, GSAT, ...

=« Simulated Annealing, Tabu, Genetic Algorithms
= Game Playing search



i A Different Approach

= So far: systematic exploration:
= Explore full search space
(possibly) using principled pruning (A*, ... )
= Best such algorithms (IDA*) can handle

= 10190 states; =500 binary-valued variables
(ballpark figures only!)

= but... some real-world problem have
10,000 to 100,000 variables; 1030000 states

= We need a completely different approach:
= Local Search Methods
« Iterative Improvement Methods



i Local Search Methods

= Applicable when seeking Goal State
...& don't care how to get there
= E£.9.,

« N-gueens, map coloring, VLSI layout,
planning, scheduling, TSP, time-tabling, ...

= Many (most?) real Operations Research
problems are solved using local search!

= E.g., schedule for Delta airlines, ...



Example#1: 4 Queen

= States: 4 queens in 4 columns (256 states)
= Operators: move queen in column

= Goal test: no attacks

= Evaluation: h(n) = number of attacks




i Example#2: Graph Coloring

1. Start with random coloring of nodes

>. Change color of one node
e to reduce #conflicts




i Graph Coloring Example




i Graph Coloring Example

A

B

F

Iteration

# conflicts

1

2 {AF,

}



i Graph Coloring Example

A

B

F

Iteration |A D # conflicts
1 b r 2 {AE, DF}
2 b B 1 {AE}




i Graph Coloring Example

A

B

Iteration |A |B |C E |F |# conflicts
1 b g |g 0 |r |2 {AE, DF}
2 b g g o |r |1 {AE}

3 R g g b r |0 {3

10



“Local Search”

1. Select (random) initial state
(initial guess at solution)

2. While GoalState not found (& more time)
. Make /ocal modification to improve current state

Requirements:
= Generate a random (probably-not-optimal) guess
= Evaluate quality of guess

= Move to other states
(well-defined neighborhood function)

... and do these operations quickly... N




evaluation

i Hill-Climbing

current
Elarte

function HiLL-CLIMBING( preblem) returns a solution state
inputs: problem, a problem
static: current,a node
next, a node

current «— MAKE-NODE(INITIAL-STATE [problem])

loop do
next < a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
Current «<— next

end

12



i If Continuous ....

e Situation = May _hav_e other
— State = (v1, ..., vn) € R" termination
conditions

— quality hA: R" —» R

h(stat
(state) €R s If n too small:

very slow
e To find optimum: = If n too large:
overshoot
Guess random initial state ¢°© € R
. . Oh(X
While 3i %532|  #0 do = May have to
Fori=1..n approximate
2 .— 2 _ o Oh derivatives from
v . v; n EJX,E ¥ =i Samples
Return ¢




i But .
[teration A C # conflicts
1 r b 3 {CE, CF, EF}



i But .
- = Pure “Hill Climbing”
will not work!
= Need "“Plateau Walk”
[teration A C E - | # conflicts
1 r b b 0 |3 {CE, CF, EF}
2 r G b b |1 {EF}




i But .

Iteration A B |C E - | # conflicts
1 r |g |b b |b |3 {CE, CF, EF}
2 r g |G b b |1 {EF}
3 r lg g b |R |1 {DF}



i But .
Iteration |A (B |C E |F |# conflicts
1 r |g |b b |b |3 {CE, CF, EF}
2 r g |G b b |1 {EF}
3 r lg g b |R |1 {DF}
4 r g g b r |0 {} 7



i Problems with Hill Climbing

= Pure "“Hill Climbing” does
not always work!

= Often need “Plateau Walk”

nhje-:tivifunctinn global maximurm

—

= Sometimes:
[\ Climb DOWN-HILL!

g O fx
.s® . S
\N‘(\\\e ectite space
18




Problems with
i Hill Climbing

= Foothills / Local Optimal:
No neighbor is better, but not at global optimum

=« Maze: may have to move AWAY from goal to find best
solution

= Plateaus: All neighbors look the same.

=« 8-puzzle: perhaps no action will change
# of tiles out of place

= Ridge: going up only in a narrow direction.

= Suppose no change going South, or going East,
but big win going SE

= Ignorance of the peak: Am I done?

state space




i Issues

Goal is to find GLOBAL optimum.
1. How to avoid LOCAL optima?
2. How long to plateau walk?

3. When to stop?

4. Climb down hill? When?



i Local Search Example: SAT

= Many real-world problems ~ propositional logic
(AVvBvC) & (-BvCvD)&(Av-aCvD)

= Solved by finding truth assignment to
(A, B, C, ... ) that satisfy formula

= Applications
= planning and scheduling
= Circuit diagnosis and synthesis
= deductive reasoning
= Software testing

21



i Obvious Algorithm

(AVC)&(—IAVC)&(BV—lC)&(AV—lB)

i//\\i
A
C&(BV‘IC)&‘IB C&(BV—|C)

V\{-
B

C&-C X

X

22



i Satisfiability Testing

Davis-Putnam Procedure (1960)

= Backtracking depth-first search (DFS)
through space of truth assignments
(+ unit-propagation)

s fastest sound + complete method
= ... best-known systematic method ...

= ... but ...
7 classes of formulae where it scales badly...

23



i Greedy Local Search

= Why not just HILL-CLIMB??

s Given

« formula: o =
(AvCO) & (=AvC) & (Bv =(0)
» assignment: o ={—a, —b, +c }

Score(op, o ) = #clauses unsatisfied ... = 0
= Just flip variable that helps most!
A B C (AvC) & (—AvC(C) & (Bv-0) Score
00O X + + 1
O 0 + + + X 1
O + + + + + 0




Greedy Local Search: GSAT

1. Guess random truth assignment

2. Flip value assigned to the variable that yields
@ the greatest # of satisfied clauses.

(Note: Flip even if no improvement)

3. Repeat until all clauses satisfied,
or have performed “enough” flips

4. If no sat-assign found,
repeat entire process,
starting from a new initial random assgmt

A B C (AvC) & (mAvC) & (Bv -0 Score
O 0O X + + 1
O 0O + + + X 1
|0 + + + + + 0] 2



Does GSAT Work?

s First intuition:
GSAT will get stuck in local minima,
with a few unsatisfied clauses.

= Very bad...
“almost satisfying assignments” are worthless

(Eg, plan with one "magic" step is useless)
...ie, NOT optimization problem

= Surprise: GSAT often found global minimum!

Ie, satlsfyln? assignment!
10, 000+ variab es; 1,000,000+ constraints!

= No good theoretical explanation yet...

26



GSAT vs. DP on

Hard Random Instances

form. GSAT Davis-Putnam
vars | m.flips | retries time | choices | depth time
50 250 6 | 0.5 sec 77 11 1 sec
70 350 11 1 sec 4?2 15 15 sec
100 500 42 6 sec 103 19 3 min
120 600 82 | 14 sec 10° 22 | 18 min
140 700 53 | 14 sec 10° 27 5 hrs
150 1500 100 | 45 sec — — —
200 2000 248 3 min — — —
300 6000 232 | 12 min — — —
500 || 10000 996 2 hrs 1039 | > 100 | 101® yrs
Notes: Define “Hard"” later

Only “satisfiable” formulae
(else GSAT does not terminate)




i Systematic vs. Stochastic

= Systematic search:
= DP systematically checks all possible assignments
= Can determine if the formula is unsatisfiable
= Stochastic search:
= Once we find it, we're done!
= Guided random search approach
« Can't determine unsatisfiability

28



What Makes a SAT Problem

i Hard?

= Randomly generate formula ¢ with
= 7variables; m clauses with & variables each

N
= #possible_clauses = [k]xzk
= Will ¢ be satisfied??
 IfNn<<m: ??
s If N>>m:; 77

29



i Phase Transition

1.0 Sttt

Probability

2 3 4 g 6 7
Ratio of Clauses-to-Varables

For 3-SAT
= m/n< 4.2, under constrained = nearly all formulae sat.

= m/n> 4.3, over constrained = nearly all formulae unsat.
= mfn~ 4.26, critically constrained = need to search

30



i Phase Transition

= Under-constrained problems are easy:
just guess an assignment

= Over-constrained problems are easy:
just say “‘unsatisfiable”
(... often easy to verify using Davis-Putnam)

s At m/n=4.26,
1 phase transition between these two
different types of easy problems.
= This transition sharpens as 7 increases.

= For large n, hard problems are extremely rare
(in some sense)

31



DP Calls

=
=
=
[
0
o
| =
o

The 4.3 Point

4 5 6 7
Ratio of Clauses-to-Variables

Mitchell, Selman, and Levesgue 1991

= Hard problems
are at Phase
Transition!!

Computational
effort

MORE

A

& Solvable

& Imposable

T T 1
123455?391032

Ratio of constraints to variables (| Alpha)



Improvements to
i Basic Local Search

s Issues:

= How to move more quickly to successively
better plateaus?

= Avoid “getting stuck” / local minima?

= Idea: Introduce uphill moves (“noise”)
to escape from plateaus/local minima

= Noise strategies:

1. Simulated Annealing
= Kirkpatrick et al. 1982; Metropolis et al. 1953

2. Mixed Random Walk
« Selman and Kautz 1993

33



i Simulated Annealing

Pick a random variable
If flip improves assignment: do it.
Else flip with probability p = e®/T (go the wrong way)

= 0 = #of additional clauses becoming unsatisfied

= [ = "“temperature”
=« Higher temperature = greater chance of wrong-way move
= Slowly decrease T from high temperature to near 0

= Q: What is p as T tends to infinity?
...as T tends to 07?
For o = 07?

34



Simulated Annealing Algorithm

current, next. nodes/states
T: “temperature” controlling prob. of downward steps
schedule: mapping from time to “temperature”

h: heuristic evaluation function

current + initial state

fort + 1l..oo do
T + schedule[t]

if "= 0 then return current

next +— randomly selected successor of current
AFE + h(next) — h(current)

if AFE > 0 then current +— next

else current + next only with probability e®Z/T
35



i Notes on SA

1.

2.

Noise model based on statistical mechanics

Introduced as analogue to physical process of growing crystals

Kirkpatrick et al. 1982, Metropolis et al. 1953

Convergence:
W/ exponential schedule, will converge to global optimum

No more-precise convergence rate
(Recent work on rapidly mixing Markov chains)

Key aspect: upwards / sideways moves
Expensive, but (if have enough time) can be best

Hundreds of papers/ year;
Many applications: VLSI layout, factory scheduling, ...

36



i Pure WalkSat

PureWalkSat( formula )

Guess initial assignment

While (unsatisfied) do

Select unsatisfied clause ¢ = +£X; v £X;v £X,
Select variable v in unsatisfied clause ¢
Flip v

37



i Example:

Eg: (AVB) & (mAVC(C) & (-BV-D) & ...

A B C D
O 0 O +

Clause (AV B) not satisfied.
so flip either A or B... say A

A B C D
+ 0 0 +

(AV B) now satisfied.
...but (=AVC) is now NOT satisfied!

38




Mixing Random Walk with
Greedy Local Search

MixedWalkSat,( formula )
Guess initial assignment
While unsatisfied do
W/ prob p, walk
(flip var in an unsatisfied clause)
W/ prob 1 — p, greedy
(flip var producing fewest unsatisfied clauses)

= Usual issues:
= [ermination conditions
= Multiple restarts

= Determine value of p empirically
... finding best setting for problem class

39



i Finding the best value of p

m Let

« J/p, c/be guality of using WalkSat[p] on
problem ¢

Q/p, ¢/ = Time to return answer, or
= 1 if WalkSat[p] returns (correct) answer within 5mins
and 0 otherwise, or
= ... perhaps some combination of both ...

«QQIp] = 2. . s QP ¢/
= Set  p" = argmax,QQ/p]

40



EXper

Imental Results:

i Hard Random 3CNF

GSAT Simul. Ann.
basic walk

vars | time | eff. | time | eff. | time eff.
100 4 | 12 21 1.0 .6 .88
200 22 | .01 4 | .97 21 .86
400 122 | .02 7 | .95 75 .93
600 || 1471 | .01 35 | 1.0 427 3
800 . o 286 | .95 * *
1000 * * || 1095 | .85 * *
2000 * * || 3255 | .95 * *

= Time in seconds (SGI Challenge)

= Effectiveness: prob. that random initial assignment
leads to a solution

= Complete methods, such as DP, up to 400 variables

= Mixed Wal
= better t
= bettert

K ... better than Simulated Annealing
nan Basic GSAT

nan Davis-Putnam

42



Overcoming Local Optima
i and Plateaus

/ = Simulated annealing
v/ = Mixed-in random walk

= Random restarts
= Tabu search
= Genetic alg/programming

state space

43



i Random Restarts

= Restart at new random state
after pre-defined # of local steps.

= Useful with “"Heavy Tail” distribution

= Done by GSAT

[t
|




i Tabu Search

= Avoid returning quickly to same state

= Implementation:
= Keep fixed length queue (tabu list)
= Add most recent step to queue; drop oldest step
= Never make step that's on current tabu list

vl
V2
v4

= Example:

= without tabu:
= with tabu (length 4):

VZ

v10
vll

= Tabu very powerful;

= competitive w/ simulated annealing or random
walk (depending on the domain)

T W
ViU

v3

45



i Genetic Algorithms

= Class of probabilistic optimization algorithms

= A genetic algorithm maintains a population of
candidate solutions for the problem at hand, and

makes it evolve by iteratively applying a set of
stochastic operators

= Inspired by the biological evolution process

s Uses concepts of “Natural Selection” and
“Genetic Inheritance” (Darwin 1859)
= [John Holland, 1975]

46



i Examples: Recipe

To find optimal quantity of three major
ingredients (sugar, wine, sesame oil)
= Use an alphabet of 1-9 denoting ounces

= Solutions might be
. 1-1-1
. 2-1-4
. 3-3-1

47



i Standard Genetic Algorithm

= Randomly generate an initial population

= For i=1..N

= Select parents
and “reproduce” the next generation

= Evaluate fitness of the new generation

= Replace some of the old generation
with the new generation

48



i Stochastic Operators

s Cross-over
=« decomposes two distinct solutions

= then randomly mixes their parts to form
novel solutions

= Mutation
« randomly perturbs a candidate solution

49



Mutation and Crossover

i Genetic Algorithm Operators

Parent 1 1010111

Parent 2 1100011\‘

Child 1 1010011

Child 2 110/0110« Mutation




i Examples

= Mutation:
In recipe example, 1-2-3 may be changed to
« 1-3-3 or
x 3-2-3

= Parameters to adjust

ow often?
ow many digits change?
ow big?

51



i More examples:

s Crossover

In recipe example:

= Parents 1-3-3 & 3-2-3
Crossover point after the first digit

=« Generate two offspring: 3-3-3 and 1-2-3
Can have one or two point crossover

52



i Local Search Summary

= Surprisingly efficient search technique
= Wide range of applications
= Formal properties elusive

= Intuitive explanation:

= Search spaces are too large for systematic
search anyway. . .

= Area will most likely continue to thrive

53



	Local and Stochastic Search
	Search Overview
	A Different Approach
	Local Search Methods
	Example#1: 4 Queen
	Example#2: Graph Coloring
	Graph Coloring Example
	Graph Coloring Example
	Graph Coloring Example
	Graph Coloring Example
	“Local Search”
	Hill-Climbing
	If Continuous ….
	But …
	But …
	But …
	But …
	Problems with Hill Climbing
	Problems with �Hill Climbing
	Issues
	Local Search Example: SAT
	Obvious Algorithm
	Satisfiability Testing
	Greedy Local Search
	Greedy Local Search: GSAT
	Does GSAT Work?
	GSAT vs. DP on �Hard Random Instances
	Systematic vs. Stochastic
	What Makes a SAT Problem Hard? 
	Phase Transition
	Phase Transition
	Slide Number 32
	Improvements to �Basic Local Search
	Simulated Annealing 
	Simulated Annealing Algorithm
	Notes on SA
	Pure WalkSat
	Example:
	Mixing Random Walk with Greedy Local Search
	Finding the best value of p
	Experimental Results: �Hard Random 3CNF
	Overcoming Local Optima and Plateaus
	Random Restarts
	Tabu Search 
	Genetic Algorithms
	Examples: Recipe
	Standard Genetic Algorithm
	Stochastic Operators
	Slide Number 50
	Examples
	More examples:
	Local Search Summary

