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Local and Stochastic Search

Some material based on  D Lin, B Selman

RN, Chapter 
4.3 – 4.4; 7.6
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Search Overview
Introduction to Search
Blind Search Techniques
Heuristic Search Techniques
Constraint Satisfaction Problems

Local Search (Stochastic) Algorithms
Motivation
Hill Climbing
Issues
SAT … Phase Transition, GSAT, …
Simulated Annealing, Tabu, Genetic Algorithms

Game Playing search
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A Different Approach

So far: systematic exploration: 
Explore full search space 
(possibly) using principled pruning (A*, … ) 

Best such algorithms (IDA*) can handle 
10100 states; ≈500 binary-valued variables  
(ballpark figures only!)

but... some real-world problem have 
10,000 to 100,000 variables; 1030,000 states 
We need a completely different approach: 

Local Search Methods
Iterative Improvement Methods 
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Local Search Methods

Applicable when seeking Goal State 
…& don't care how to get there
E.g.,

N-queens, map coloring, VLSI layout, 
planning, scheduling, TSP, time-tabling, …

Many (most?) real Operations Research 
problems are solved using local search! 

E.g., schedule for Delta airlines, …
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Example#1: 4 Queen
States: 4 queens in 4 columns (256 states)

Operators: move queen in column 
Goal test: no attacks 
Evaluation: h(n) = number of attacks 



6

Example#2: Graph Coloring

1.

 

Start with random coloring of nodes 
2.

 

Change color of one node
 to reduce #conflicts
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Graph Coloring Example

DF

A  
B

E                 

C      
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Graph Coloring Example

DF

A  

Iteration A B C D E F # conflicts
1 b g g r b r 2  {AE, DF}
2 b g g B b r 1  {AE}
3 R g g b b r 0  {}

B

E                 

C      
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Graph Coloring Example
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Graph Coloring Example
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“Local Search”

1.

 

Select (random) initial state
 (initial guess at solution) 

2.

 

While GoalState
 

not found (& more time)
Make local modification to improve current state

Requirements: 
Generate a random (probably-not-optimal) guess
Evaluate quality of guess 
Move to other states 
(well-defined neighborhood function) 

…
 

and do these operations quickly…
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Hill-Climbing
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If Continuous ….
May have other 
termination 
conditions

If η too small: 
very slow
If η too large: 
overshoot

May have to 
approximate 
derivatives from 
samples
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But …

DF

A  

Iteration A B C D E F # conflicts
1 r g b r b b 3  {CE, CF, EF}
2 r g G r b b 1  {EF}
3 r g g r b R 1  {DF}

4 r g g G b r 0  {}

B

E                 

C      
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But …

DF

A  

Iteration A B C D E F # conflicts
1 r g b r b b 3  {CE, CF, EF}
2 r g G r b b 1  {EF}

3 r g g r b R 1  {DF}

4 r g g G b r 0  {}

B

E                 

C      Pure “Hill Climbing”
will not work!
Need “Plateau Walk”
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But …
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But …
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Problems with Hill Climbing

Pure “Hill Climbing” does 
not always work!
Often need “Plateau Walk”
Sometimes: 
Climb DOWN-HILL!

… trying to find the top of Mount Everest in a thick fog

while suffering from amnesia …
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Problems with 
Hill Climbing

Foothills / Local Optimal: 
No neighbor is better, but not at global optimum

Maze: may have to move AWAY from goal to find best 
solution

Plateaus: All neighbors look the same. 
8-puzzle: perhaps no action will change 
# of tiles out of place

Ridge: going up only in a narrow direction.
Suppose no change going South, or going East,
but big win going SE 

Ignorance of the peak: Am I done? 
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Issues

Goal is to find GLOBAL optimum. 
1.

 

How to avoid LOCAL optima? 
2.

 

How long to plateau walk? 
3.

 

When to stop? 
4.

 

Climb down hill? When? 
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Local Search Example: SAT
Many real-world problems ≈ propositional logic  
(A v B v C) &

 
(¬B v C v D) &

 
(A v ¬C v D)

Solved by finding truth assignment to 
(A, B, C, … ) that satisfy formula 
Applications 

planning and scheduling 
circuit diagnosis and synthesis 
deductive reasoning 
software testing 
…



22

Obvious Algorithm

(A v C) & (¬A v C) & (B v ¬C) & (A v ¬B)

A
f t

C & (B v ¬C) & ¬B C & (B v ¬C)

B
f t

C & ¬C
X

X
⋮
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Satisfiability Testing

Davis-Putnam Procedure (1960)
Backtracking depth-first search (DFS) 
through space of truth assignments 
(+ unit-propagation)

fastest sound + complete method
… best-known systematic method …

… but …
∃ classes of formulae where it scales badly…
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Greedy Local Search
Why not just HILL-CLIMB??
Given

formula:   ϕ =
(A v C) & (¬A v C) & (B v ¬C)

assignment:  σ = {–a, –b, +c }
Score(ϕ, σ

 
)

 
= #clauses unsatisfied …

 
= 0

Just flip variable that helps most!
A B C (A v C) & (¬A v C) & (B v ¬C) Score

0 0 0 x             +                + 1

0 0 + + +                 x 1

0 + + +             +                + 0
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Greedy Local Search: GSAT
1. Guess random truth assignment 
2. Flip value assigned to the variable that yields 

the greatest # of satisfied clauses. 
(Note: Flip even if no improvement)

3. Repeat until all clauses satisfied, 
or have performed “enough”

 
flips  

4. If no sat-assign found, 
repeat entire process, 
starting from a new initial random assgmt

A B C (A v C) & (¬A v C) & (B v ¬C) Score

0 0 0 x             +                + 1

0 0 + + +                 x 1

0 + + +             +                + 0
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Does GSAT Work?
First intuition:
GSAT will get stuck in local minima,
with a few unsatisfied clauses.

Very bad…
“almost satisfying assignments” are worthless
(Eg, plan with one “magic" step is useless)
...ie, NOT optimization problem

Surprise: GSAT often found global minimum!
Ie, satisfying assignment!

 10,000+ variables; 1,000,000+ constraints!

No good theoretical explanation yet…
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GSAT vs. DP on 
Hard Random Instances
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Systematic vs. Stochastic
Systematic search: 

DP systematically checks all possible assignments
Can determine if the formula is unsatisfiable

Stochastic search: 
Once we find it, we're done!
Guided random search approach
Can't determine unsatisfiability
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What Makes a SAT Problem 
Hard? 

Randomly generate formula ϕ with
n variables; m clauses with k variables each

#possible_clauses =

Will ϕ be satisfied??
If n << m: ??
If n >> m: ??

k

k
n

2×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Phase Transition

For 3-SAT
m /n < 4.2, under constrained ⇒ nearly all formulae sat. 
m /n > 4.3, over constrained ⇒ nearly all formulae unsat.
m/n ~ 4.26, critically constrained ⇒ need to search 



31

Phase Transition

Under-constrained problems are easy:
just guess an assignment

Over-constrained problems are easy:
just say “unsatisfiable”

(… often easy to verify using Davis-Putnam)

At m/n ≈ 4.26,
∃ phase transition between these two 

different types of easy problems. 
This transition sharpens as n increases. 

For large n, hard problems are extremely rare
(in some sense) 
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Hard problems 
are at Phase 
Transition!!
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Improvements to 
Basic Local Search

Issues: 
How to move more quickly to successively 
better plateaus? 
Avoid “getting stuck” / local minima? 

Idea: Introduce uphill moves (“noise”)  
to escape from plateaus/local minima 
Noise strategies: 
1. Simulated Annealing  

Kirkpatrick et al. 1982; Metropolis et al. 1953 
2. Mixed Random Walk 

Selman and Kautz 1993
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Simulated Annealing 

Pick a random variable 
If flip improves assignment: do it. 
Else flip with probability p = e-δ/T

 
(go the wrong way) 

δ = #of additional clauses becoming unsatisfied 
T = “temperature”

Higher temperature = greater chance of wrong-way move 
Slowly decrease T from high temperature to near 0

Q: What is p as T tends to infinity?
... as T

 
tends to  0? 

For δ
 

= 0? 
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Simulated Annealing Algorithm
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Notes on SA

Noise model based on statistical mechanics 
Introduced as analogue to physical process of growing crystals 
Kirkpatrick et al. 1982; Metropolis et al. 1953

Convergence: 
1.

 

W/ exponential schedule, will converge to global optimum 
2.

 

No more-precise convergence rate

 
(Recent work on rapidly mixing Markov chains) 

Key aspect: upwards / sideways moves 
Expensive, but (if have enough time) can be best 

Hundreds of papers/ year; 
Many applications: VLSI layout, factory scheduling, ... 
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Pure WalkSat

PureWalkSat( formula ) 
Guess initial assignment 
While (unsatisfied) do 

Select unsatisfied clause c = ±Xi

 

v ±Xj

 

v ±Xk

Select variable v in unsatisfied clause c
Flip v
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Example:
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Mixing Random Walk with 
Greedy Local Search

Usual issues: 
Termination conditions 
Multiple restarts 

Determine value of p empirically
… finding best setting for problem class 
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Finding the best value of p

Let 
Q[p, c] be quality of using WalkSat[p] on 
problem c
S = { c1,…, cM} be set of typical “challenge”
problems

For each p ∈ { 0.1, 0.2, …,  0.9 }:

QQ[p] = ∑c ∈ S Q[p, c]
Set   p* = argmaxpQQ[p]

Q[p, c]

 

= Time to return answer, or 
= 1  if WalkSat[p] returns (correct) answer within 5mins 

and 0 otherwise, or 
= …

 

perhaps some combination of both …
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Experimental Results: 
Hard Random 3CNF

Time in seconds (SGI Challenge)
Effectiveness: prob. that random initial assignment 
leads to a solution 
Complete methods, such as DP, up to 400 variables 
Mixed Walk … better than Simulated Annealing 

better than Basic GSAT 
better than Davis-Putnam 
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Overcoming Local Optima 
and Plateaus

Simulated annealing 
Mixed-in random walk 
Random restarts 
Tabu search 
Genetic alg/programming
…
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Random Restarts
Restart at new random state
after pre-defined # of local steps. 
Useful with “Heavy Tail” distribution
Done by GSAT
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Tabu Search 
Avoid returning quickly to same state
Implementation: 

Keep fixed length queue (tabu list) 
Add most recent step to queue; drop oldest step
Never make step that's on current tabu list

Example:
without tabu: 
with tabu (length 4): 

Tabu very powerful; 
competitive w/ simulated annealing or random 
walk (depending on the domain) 

v1
v2
v4
v2 
v10 
v11
v1
v10
v3
...
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Genetic Algorithms

Class of probabilistic optimization algorithms
A genetic algorithm maintains a population of 
candidate solutions for the problem at hand, and 
makes it evolve by iteratively applying a set of 
stochastic operators

Inspired by the biological evolution process
Uses concepts of “Natural Selection” and 
“Genetic Inheritance” (Darwin 1859)
[John Holland, 1975]
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Examples: Recipe

To find optimal quantity of three major
ingredients (sugar, wine, sesame oil)

Use an alphabet of 1-9 denoting ounces
Solutions might be 

1-1-1
2-1-4
3-3-1
…
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Standard Genetic Algorithm

Randomly generate an initial population
For i=1..N

Select parents
and “reproduce” the next generation
Evaluate fitness of the new generation
Replace some of the old generation 
with the new generation
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Stochastic Operators

Cross-over
decomposes two distinct solutions
then randomly mixes their parts to form 
novel solutions

Mutation
randomly perturbs a candidate solution
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1  0  1  0  1  1  1

1  1  0  0  0  1  1

Parent 1

Parent 2

Child 1

Child 2

Genetic Algorithm Operators
Mutation and Crossover

1 0 1 0 0 1 1

0 1 1 11 1 0 Mutation0
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Examples

Mutation:
In recipe example, 1-2-3

 
may be changed to 

1-3-3 or
3-2-3

Parameters to adjust
How often? 
How many digits change? 
How big?  
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More examples:

Crossover
In recipe example:

Parents 1-3-3 & 3-2-3
Crossover point after the first digit
Generate two offspring: 3-3-3 and 1-2-3

Can have one or two point crossover
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Local Search Summary

Surprisingly efficient search technique 
Wide range of applications
Formal properties elusive 
Intuitive explanation: 

Search spaces are too large for systematic 
search anyway. . . 

Area will most likely continue to thrive
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