
1

Heuristic SearchHeuristic Search

RN, Chapter
4.1 – 4.2

Some material from: D Lin, J You, JC Latombe

Best-First
A*

Heuristic Functions

2

Search Overview
Introduction to Search
Blind Search Techniques

Heuristic Search Techniques
Best-First
A*

Heuristic Functions
Stochastic Algorithms
Game Playing search
Constraint Satisfaction Problems

3

Heuristic Search

“Blind” methods only know Goal / NonGoal
Often ∃ other problem-specific knowledge
that can guide search:

Heuristic fn h(n): Nodes →ℜ
estimate of distance from n to a goal
Eg: straight line on map,
or “Manhattan distance”,
or …

Use: Given list of nodes to expand,
choose node n with min'l h(.)

43
2

1

3
2

0

4
34

2 1

5

4

Heuristic FunctionHeuristic Function

h(n) estimates cost of cheapest path
from node n to goal node
Example: 8-puzzle

n goal

h1(n) = number of misplaced tiles
 = 65 8

4 2 1
7 3 6

1 2 3
4 5 6
7 8

5 8
4 2 1
7 3 6

5

Heuristic FunctionHeuristic Function

h(n) estimates cost of cheapest path
from node n to goal node
Example: 8-puzzle

n goal

h1(n) = number of misplaced tiles
 = 6

h2

(n) = sum of the distances of
every tile to its goal position

= 3 + 1

5 8
4 2 1
7 3 6

1 2 3
4 5 6
7 8

12

+ 3 + 0 + 2 + 1 + 0 + 3
= 13

6

Greedy BestGreedy Best--First SearchFirst Search

BestF_Search(start, operations, is_goal): path
L := makeList(start)
loop

n := arg

minni∈L

h(ni)
;; “most promising” node in L according to h(.)
if [is_goal(n)]

return(n)
S := successors(n, operators)
L := insert(S, L)

until L is empty
return(

failure)

Idea: choose frontier node with smallest h-value

ie, “closest to goal"

Can also return “path from start to n”

. . . by identifying each node with path

7

Robot NavigationRobot Navigation

9

Robot NavigationRobot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

h(n) = Manhattan distance to the goal

7

0

Edmonton

10

Heuristic Function –

Bulgaria

hSLD

(n)

is straight-line distance from n to goal (Bucharest)

11

Best First

12

Best First

14

BestFirst

is
 SubOptimal

hSLD finds path:
Arad → Sibiu → Fagaras → Bucharest

(Cost = 140 + 99 + 211 = 450)
Not optimal!
C(Arad → Sibiu → Rimnicu → Pitesti → Bucharest)
= 140 + 80 + 97 + 101 = 418
< hSLD

's

solution!
BestFirst is greedy:

takes BIGGEST step each time…

15

BestFirst
 can Loop

Consider: Iasi → Fagaras
hSLD

suggests: Iasi →

Neamt

Worse: Unless search alg detects repeated
states, BestFirst will oscillate:

Iasi →

Neamt

→

Iasi →

Neamt

→

…

Loops are a real problem…

?

?

16

Properties of
Greedy Best-First Search

If state space is finite and
we avoid repeated states,

THEN Best-First search is complete,
but in general is not optimal

If state space is finite and
we do not avoid repeated states,

THEN Best-First search is not complete.
If the state space is infinite,
THEN Best-First search is not complete.

17

Analysis of Greedy BestFirst
Complete?

Optimal?

Time:
Space:

Worst of both worlds
≈DFS: too greedy!
≈BFS: too much space!

No
…can go down ∞-path (oscillate)

No
…

may not find shortest path

O(bm)
O(bm)
(if h(.)≡

0, could examine entire space)

18

A*

Search
Find cheapest path, quickly
Consider both:

Path from start to n:
g(n) = cost of path found to n

Path from n to goal (est.):
h(n) = estimate of cost from n to a goal

f(n) = g(n)+h(n)
est of cost of path from start to goal, via n

Start

n

Goal

g(n)

h(n)

f(n)

19

A*

Search, con’t

A* selects node with min'l f(n)
…ie, node with lowest estimated distance from
start to goal, constrained to go via that node

… mix of { } searches!
lowest-cost-first

best-first

(so far) (to go)

21

Example
 of A*

Note: Finds Optimal Path!
A* expands

Rimnicu (f = (140+80)+193 = 413)
over

Faragas (f = (140+99)+178 = 417)
Why?
Fagaras

is closer to Bucharest (than Rimnicu)

but
path taken to get to Fargaras

 is not as efficient at getting close to Bucharest
… as Rimnicu

22

Robot NavigationRobot Navigation

f(n) = g(n)+h(n), with h(n) = Manhattan distance to goal

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

8+3

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

8+3 7+47+4 6+5

5+6

6+3 5+6

2+7 3+8

4+7

5+6 4+7

3+8

4+7 3+83+8 2+92+9 3+10

2+9

3+8

2+9 1+101+10 0+11

3+8 4+9

Edmonton

23

How A*
 Searches

Contour-lines of “equal-f values”
A* expands nodes with increasing f(n)
values
If use h(.)≡ 0 (UniformCost)

get Circles
⇒

more nodes expanded (in general)!

24

Admissible heuristicAdmissible heuristic
h*(n) = cost of optimal path
from n to a goal node

Heuristic h(n) is admissible if:
0 ≤ h(n) ≤ h*(n)

Admissible heuristic is always optimistic

True for
Straight Line [map traversal]
Manhattan distances [8-puzzle]
Number of attacking queens [n-queens]
[place all queens, then move]

⇒ f(.) is under-estimate

25

Heuristics for 8Heuristics for 8--PuzzlePuzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

n goal

• h1

(n) = number of misplaced tiles …

= 6

• h2

(n) = sum of distances of each tile to goal posn

… = 13

• h3

(n) = h1

(n) + 3 x h2

(n) … = 45

• h4

(n) ≡ 0 …

= 0

• h5

(n) = min{ h1

(n) , h2

(n) } … = 6

Admissible??

+
+

–
+
+

26

f(n) is monotonic

f (n) ≤ f (n’) , as
from-S-to-E-via-n

is less constrained than
from-S-to-E-via-n-n’

S

E

n

g(n) h(n) ≤

h*(n)

n’

27

Monotonic f(.)

f(.) is “monotonic" ≡
f(Successor(n)) ≥ f(n)

Always true if
| h(n) –

h(m) | ≤

d(n,m)

 … d(n,m) is distance from
n to m

If true:
first path that A* finds to
node, is always shortest

If f (.) not monotonic,
can modify to be:

Eg, n’

∈

Successor(n)
f(n) = g(n)+h(n) = 3+4 = 7
f(n’) = g(n’)+h(n’) = 4+2 = 6
But… any path through n’ is also path
through n,
so f(n) must be ≥ 7

⇒

should reset f(n’) = 7

⇒

use
f(n’) = max{ f(n), g(n’)+h(n’) }

Called “path-max equation”
…

ignores misleading numbers in heuristic

28

A*

is OPTIMAL

Thrm: A*

always returns optimal solution if

∃ solution
h(n) is under-estimate

PROOF:
Let G be optimal goal, with f(G) = g(G) = f

G2

be suboptimal goal, with f(G2) = g(G2

) > f
If A*

returns G2

⇒

G2

is chosen over n, where n is node on optimal path to G
This only happens if f(G2

) ≤ f(n)
As f is monotonically increasing along every path,
⇒ f = f(G) ≥ f(n)

Hence, f ≥ f(G2

) … ie, if g(G) ≥ g(G2)
…

contradicting claim that G2

is suboptimal! []

29

Properties of A*

A* is Optimally Efficient
Given the information in h(.),

 no other optimal search method can expand fewer nodes.
Non-trivial and quite remarkable!

A* is Complete
…

unless there are ∞

nodes w/ f(n) < f *

A* is Complete
if branching factor is finite & arc costs bounded above zero

(∃ε > 0 s.t. c(ai)≥ε)

Time/Space Complexity:
Still exponential as ≈breadth-first.
…

unless |h(n) –

h(n*)| ≤

O(log(h(n*))

 h(n*)

= true cost of getting from n to goal

30

88--PuzzlePuzzle

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

goal

31

Robot navigationRobot navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = √2

f(n) = g(n) + h(n), with h(n) = straight-line distance from n to goal

32

A* Topics

Which heuristic?
Avoiding Loops
Iterative Deepening A*

34

Heuristics for 8Heuristics for 8--PuzzlePuzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

n goal

• h1

(n) = number of misplaced tiles …

= 6

• h2

(n) = sum of distances of each tile to goal posn

…= 13

• h3

(n) = h1 (n) + 3 x h2 (n)

… = 45

• h4

(n) == 0 … = 0

Admissible??

+
+

–
+

Many admissible heuristics …

which to use??

35

Importance of h(.)
A*(hi) expands all nodes with
f(n) = g(n)+hi

(n) < f*
… ie, with hi(n) < f* - g(n)

h1(n) < h2(n) ⇒
If A*(h2) expands n,
then A*(h1) expands n!

. . . but not vice versa

A*(h2

) might expand FEWER nodes

So LARGER hi() means fewer n's expanded!

f* - g(n)

h1

(n)

h2

(n)

n

36

Importance of h(.)
LARGER hi() means
fewer n's expanded!

As hC ≤ hM ≤ h*,
prefer hM !

Gen'l:
Want largest h() that is under-estimate

f* - g(n)

h1

(n)

h2

(n)

37

Effect of Different Heuristic
Functions

“Effective Branching Factor” b is solution to
N = 1+(b*)+(b*)2 +(b*)3 + …+(b*)d

where N is # of nodes searched
d is solution depth

38

About HeuristicsAbout Heuristics

Heuristics are intended to
orient the search along promising paths

Time spent evaluating heuristic function must
be recovered by a better search

“Perfect heuristic function” would mean NO search!
Deciding which node to expand ≡
“meta-reasoning”

Heuristics…
may not always look like numbers
may involve large amount of knowledge

39

Inventing Heuristics

Solve problem, then compute backwards...
If {h1, … hk} all underestimates,

use hmax(n) = max { hi(n) }
(Still an under-estimate, but larger …

)

Relaxation:
Consider SIMPLER version of problem.
As heuristic, use

“exact answer to approx problem"

40

5 8

4 2 1

7 3 6

Inventing Heuristics

Original:

Relaxed version#1:
Ie, can TELEPORT tile to blank

⇒

of misplaced tiles hC

Relaxed version#2:
Ie, can walk over non-blank tile

⇒

Manhattan distance hM

Can move tile from sq A to sq B if
…

A is adjacent to B and B is blank.

5 8

4 2 1

7 3 6

5 8

4 2 1

7 3 6
12

Can move tile from sq A to sq B if
…

A is adjacent to B and B is blank.

Can move tile from sq A to sq B if
…

A is adjacent to B and B is blank.

41

Other Tricks

Patterns Databases
Learning from part experiences

42

Avoiding Repeated States in A*Avoiding Repeated States in A*

If the heuristic h(.) is monotonic, then:
Let CLOSED be the list of states
associated with expanded nodes
When a new node n is generated:

If its state is in CLOSED, then discard n
If it has the same state as another node in
the fringe, then discard the node with the
largest f(.)

43

Complexity of Consistent A*Complexity of Consistent A*

s =|S|
size of the state space

r = |A|
max number of states that can be reached
by applying any operator, from any state

Assume test if state s ∈ CLOSED is O(1)

⇒

Time complexity of A*: O(s r

log

s)

44

Iterative Deepening A* Iterative Deepening A*
(IDA*)(IDA*)

Use f(n) = g(n) + h(n)
with admissible, consistent h(.)
Each iteration is depth-first with cutoff
on the value of f(n) of expanded nodes

AIxploratorium

http://www.cs.ualberta.ca/~aixplore

45

88--PuzzlePuzzle

4

6

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

Cutoff=4

46

88--PuzzlePuzzle

4

4

6

Cutoff=4

6

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

47

88--PuzzlePuzzle

4

4

6

Cutoff=4

6

5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

48

88--PuzzlePuzzle

4

4

6

Cutoff=4

6

5

5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

49

4

88--PuzzlePuzzle

4

6

Cutoff=4

6

5

56

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

No more nodes to expand with Cutoff =4
Now consider Cutoff = 5

50

88--PuzzlePuzzle

4

6

Cutoff=5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

51

88--PuzzlePuzzle

4

4

6

Cutoff=5

6

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

52

88--PuzzlePuzzle

4

4

6

Cutoff=5

6

5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

53

88--PuzzlePuzzle

4

4

6

Cutoff=5

6

5

7

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

54

88--PuzzlePuzzle

4

4

6

Cutoff=5

6

5

7

5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

55

88--PuzzlePuzzle

4

4

6

Cutoff=5

6

5

7

5 5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

56

88--PuzzlePuzzle

4

4

6

Cutoff=5

6

5

7

5 5

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

57

SummarySummary

Heuristic function
Greedy Best-first search
Admissible heuristic
A* is complete and optimal

Optimally efficient !
Consistent heuristic and repeated states
Inventing Heuristics
IDA*

	Heuristic Search
	Search Overview
	Heuristic Search
	Heuristic Function
	Heuristic Function
	Greedy Best-First Search
	Robot Navigation
	Robot Navigation
	Heuristic Function – Bulgaria
	Best First
	Best First
	BestFirst is� SubOptimal
	BestFirst � can Loop
	Properties of �Greedy Best-First Search
	Analysis of Greedy BestFirst
	A* Search
	A* Search, con’t
	Example�of A*
	Robot Navigation
	How A* �Searches
	Admissible heuristic
	Heuristics for 8-Puzzle
	f(n) is monotonic
	Monotonic f(.)
	A* is OPTIMAL
	Properties of A*
	8-Puzzle
	Robot navigation
	A* Topics
	Heuristics for 8-Puzzle
	Importance of h(.)
	Importance of h(.)
	Effect of Different Heuristic Functions
	About Heuristics
	Inventing Heuristics
	Inventing Heuristics
	Other Tricks
	Avoiding Repeated States in A*
	Complexity of Consistent A*
	Iterative Deepening A* �(IDA*)
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	Summary

