

Heuristic Search

- Best-First
- A*
- Heuristic Functions

Some material from: D Lin, J You, JC Latombe

Search Overview

- Introduction to Search
- Blind Search Techniques
- Heuristic Search Techniques
 - Best-First

A*

Heuristic Functions

- Stochastic Algorithms
- Game Playing search
- Constraint Satisfaction Problems

Heuristic Search

Blind" methods only know Goal / NonGoal

- Often ∃ other problem-specific knowledge that can guide search:
- Heuristic fn $h(n): Nodes \rightarrow \mathcal{R}$

estimate of distance from *n* to a goal

Eg: straight line on map, or "Manhattan distance",

or ...

 Use: Given list of nodes to expand, choose node *n* with min'l *h(.)*

Heuristic Function

- h(n) estimates cost of cheapest path from node n to goal node
 Example: 8 puzzle
- Example: 8-puzzle

 $h_1(n) =$ number of misplaced tiles = 6

n

Heuristic Function

 h(n) estimates cost of cheapest path from node n to goal node
 Example: 8-puzzle

n

 $h_1(n) =$ number of misplaced tiles = 6

 $h_2(n) = \text{sum of the distances of} \\ every tile to its goal position \\ = 3 + 1 + 3 + 0 + 2 + 1 + 0 + 3 \\ = 13$

Greedy Best-First Search

Robot Navigation

Robot Navigation

Edmonton

h(n) = Manhattan distance to the goal

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Heuristic Function – Bulgaria

 $h_{SLD}(n)$ is straight-line distance from *n* to goal (Bucharest)

Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest (Cost = 140 + 99 + 211 = 450)

- Not optimal! C(Arad \rightarrow Sibiu \rightarrow Rimnicu \rightarrow Pitesti \rightarrow Bucharest)
 - = 140 + 80 + 97 + 101 = 418
 - $< h_{SID}$'s solution!
- BestFirst is greedy: takes BIGGEST step each time...

Neamt

Bucharest

Giuraiu

🖿 Vaslui

Hirsova

Eforie

 h_{SLD} suggests: Iasi \rightarrow Neamt

Worse: Unless search alg detects repeated states, BestFirst will oscillate:

 $Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow ...$

Loops are a real problem...

Properties of Greedy Best-First Search

- If state space is finite and we avoid repeated states, THEN Best-First search is complete, but in general is not optimal
- If state space is finite and we do *not* avoid repeated states, THEN Best-First search is not complete.
- If the state space is infinite, THEN Best-First search is not complete.

Analysis of Greedy BestFirst

Complete? No

...can go down ∞ -path (oscillate)

Optimal? No

... may not find shortest path

- Time: O(b^m)
- Space: O(b^m) (if h(.)≡ 0, could examine entire space)
- Worst of both worlds
 - ≈DFS: too greedy!
 - ≈BFS: too much space!

A* Search

Start

П

g(n)

h(n)

f(n)

- Find cheapest path, quickly
 - Consider both:
 - Path from start to n:
 - g(n) = cost of path found to n
 - Path from *n* to goal (est.):
 - h(n) = estimate of cost from *n* to a goal
- f(n) = g(n) + h(n)
 - est of cost of path from start to goal, via n

A* Search, con't

- A* selects node with min'l f(n)
 - ...ie, node with lowest estimated distance from
 - start to goal, constrained to go via that node

over

Faragas (f = (140+99)+178 = 417)

Why?

Fagaras is closer to Bucharest (than Rimnicu) but

path taken to get to Fargaras is not as efficient at getting close to Bucharest ... as Rimnicu

Robot Navigation

Edmonton f(n) = g(n)+h(n), with h(n) = Manhattan distance to goal

8-1	3	7+4	6+3	5+6	4+7	3+8	2+9	3+10	4	5	6
7+	·2		5+6	4+7	3+8						5
6-	-1				2+9	<u>1+10</u>	0+1 1	1	2		4
7-	-0	6+1									5
8-	-1	7+2	6+3	5+4	4+5	3+6	2+7	3+8	4+9	5	6

- Contour-lines of "equal-f values"
- A* expands nodes with increasing f(n) values
- If use h(.)= 0 (UniformCost) get Circles
 - \Rightarrow more nodes expanded (in general)!

Admissible heuristic

- *h*(n)* = cost of *optimal path* from *n* to a goal node
- Heuristic h(n) is admissible if: $0 \le h(n) \le h^*(n)$
- Admissible heuristic is always *optimistic*

True for

- Straight Line [map traversal]
- Manhattan distances [8-puzzle]
- Number of attacking queens [n-queens]
 [place all queens, then move]

⇒ f(.) is under-estimate

+

- + $h_1(n)$ = number of misplaced tiles ... = 6
 - $h_2(n) = \text{sum of distances of each tile to goal posn ...} = 13$
 - $h_3(n) = h_1(n) + 3 x h_2(n) \dots = 45$
- + $h_4(n) = 0$... = 0
- + $h_5(n) = min\{h_1(n), h_2(n)\}\dots = 6_{25}$

Monotonic f(.)

- f(.) is "monotonic" = f(Successor(n)) ≥ f(n)
- Always true if

 h(n) h(m) | ≤ d(n,m)
 … d(n,m) is distance from
 n to m
- If true: first path that A* finds to node, is always shortest

- If f (.) not monotonic, can modify to be:
- Eg, n' \in Successor(n) f(n) = g(n)+h(n) = 3+4 = 7 f(n') = g(n')+h(n') = 4+2 = 6
- But... any path through n' is also path through n, so f(n) must be ≥ 7
- \Rightarrow should reset f(n') = 7
- ⇒ use f(n') = max{ f(n), g(n')+h(n') }

Called "path-max equation" ... ignores misleading numbers in heuristic

A* is OPTIMAL

G 🌔

Thrm: A* always returns optimal solution if

- ∃ solution
- *h(n)* is under-estimate

PROOF:

Let G be optimal goal, with f(G) = g(G) = f G_2 be suboptimal goal, with $f(G_2) = g(G_2) > f$ If A^{*} returns $G_2 \Rightarrow$

 G_2 is chosen over *n*, where *n* is node on optimal path to G This only happens if $f(G_2) \leq f(n)$

As *f* is monotonically increasing along every path,

 $\Rightarrow f = f(G) \ge f(n)$

Hence, $f \ge f(G_2)$... ie, if $g(G) \ge g(G_2)$

... contradicting claim that G_2 is suboptimal! []

Properties of A*

A* is Optimally Efficient

Given the information in *h(.)*, no other optimal search method can expand fewer nodes. Non-trivial and quite remarkable!

A* is Complete

... unless there are ∞ nodes w/ $f(n) < f^*$

A^{*} is Complete

 if branching factor is finite & arc costs bounded above zero
 (∃ε > 0 s.t. c(a_i)≥ε)

Time/Space Complexity:

Still exponential as \approx breadth-first.

... unless $|h(n) - h(n^*)| \le O(\log(h(n^*)))$ $h(n^*) = true cost of getting from$ *n*to goal

Robot navigation

 $\overline{f(n)} = g(n) + h(n)$, with h(n) = straight-line distance from *n* to goal

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$ A* Topics

- Which heuristic?
- Avoiding Loops
- Iterative Deepening A*

- + $h_1(n)$ = number of misplaced tiles ... = 6
 - $h_2(n) = \text{sum of distances of each tile to goal posn ...= 13}$

•
$$h_4(n) == 0 \quad \dots = 0$$

╋

Many admissible heuristics ... which to use??₃₄

 $h_1(n)$

A*(h_i) expands all nodes with
 f(n) = g(n)+h_i(n) < f*
 ... ie, with h_i(n) < f* - g(n)

• $h_1(n) < h_2(n) \Rightarrow$ If $A^*(h_2)$ expands n, then $A^*(h_1)$ expands n!... but not vice versa

 $A^*(h_2)$ might expand FEWER nodes

So LARGER h_i() means fewer n's expanded!

 Gen'l: Want largest h() that is under-estimate

Effect of Different Heuristic Functions

		Search Cost		Effective Branching Factor			
d	IDS	$A^*(h_C)$	$A^*(h_M)$	IDS	$A^*(h_C)$	$A^*(h_M)$	
2	10	6	6	2.45	1.79	1.79	
4	112	13	12	2.87	1.48	1.45	
6	680	20	18	2.73	1.34	1.30	
8	6384	39	25	2.80	1.33	1.24	
10	47127	93	39	2.79	1.38	1.22	
12	364404	227	73	2.78	1.42	1.24	
14	3473941	539	113	2.83	1.44	1.23	
16		1301	211	-	1.45	1.25	
18	-	3056	363	-	1.46	1.26	
20	-	7276	676	_	1.47	1.27	
22		18094	1219	-	1.48	1.28	
24	-	39135	1641	-	1.48	1.26	

 "Effective Branching Factor" b is solution to N = 1+(b*)+(b*)² +(b*)³ + ...+(b*)^d where N is # of nodes searched d is solution depth

About Heuristics

- Heuristics are intended to orient the search along promising paths
- Time spent evaluating heuristic function must be recovered by a better search
 - "Perfect heuristic function" would mean NO search!
- Deciding which node to expand = "meta-reasoning"
- Heuristics...
 - may not always look like numbers
 - may involve large amount of knowledge

Inventing Heuristics

Solve problem, then compute backwards...

- If {h₁, ..., h_k} all underestimates, use h_{max}(n) = max { h_i(n) }
 - (Still an under-estimate, but larger ...)
- Relaxation:

Consider SIMPLER version of problem. As heuristic, use

"exact answer to approx problem"

Inventing Heuristics

Original:

Can move tile from sq A to sq B if ... A is adjacent to B and B is blank.

Relaxed version#1:

- Ie, can TELEPORT tile to blank
- \Rightarrow # of misplaced tiles h_C
- Relaxed version#2:
 - Ie, can walk over non-blank tile
 - \Rightarrow Manhattan distance h_M

58421736

Can move tile from sq A to sq B if ... A is adjacent to B and B is blank.

Can move tile from sq A to sq B if

A is adiacent to B and B is blank.

- Patterns Databases
- Learning from part experiences

Avoiding Repeated States in A*

If the heuristic *h(.)* is monotonic, then:

- Let CLOSED be the list of states associated with expanded nodes
- When a new node n is generated:
 - If its state is in *CLOSED*, then discard *n*
 - If it has the same state as another node in the fringe, then discard the node with the largest f(.)

Complexity of Consistent A*

■ s =|S|

size of the state space

- r = |A|
 - max number of states that can be reached by applying any operator, from any state
- Assume test if state s ∈ CLOSED is O(1)

 \Rightarrow Time complexity of A*: O(srlogs)

Iterative Deepening A* (IDA*)

- Use f(n) = g(n) + h(n) with admissible, consistent h(.)
- Each iteration is depth-first with cutoff on the value of *f(n)* of expanded nodes

AIxploratorium http://www.cs.ualberta.ca/~aixplore

Summary

- Heuristic function
- Greedy Best-first search
- Admissible heuristic
- A* is complete and optimal
 - Optimally efficient !
- Consistent heuristic and repeated states
- Inventing Heuristics
- IDA*