

Heuristic Search

- Best-First
 - A^{*}

- Heuristic Functions

Search Overview

- Introduction to Search
- Blind Search Techniques

Heuristic Search Techniques

- Best-First
- A*

- Heuristic Functions

- Stochastic Algorithms
- Game Playing search
- Constraint Satisfaction Problems

Heuristic Search

- "Blind" methods only know Goal / NonGoal
- Often \exists other problem-specific knowledge that can guide search:
- Heuristic fn $\quad h(n):$ Nodes $\rightarrow R$ estimate of distance from n to a goal
Eg: straight line on map, or "Manhattan distance", or ...
- Use: Given list of nodes to expand,

5	4	3	4
4	3	2	3
			2
2	1	0	1

Heuristic Function

- $h(n)$ estimates cost of cheapest path from node n to goal node
- Example: 8-puzzle

5		8				
4	2	1				
7	3	6	\quad	1	2	3
:---	:---	:---				
4	5	6				
7	8					

$h_{1}(n)=$ number of misplaced tiles

$$
=6
$$

Heuristic Function

- $h(n)$ estimates cost of cheapest path from node n to goal node
- Example: 8-puzzle

5		8				
4	2	1				
7	3	6	\quad	1	2	3
:---	:---	:---	:---			
4	5	6				
7	8					

$$
\begin{aligned}
& h_{1}(n)=\text { number of misplaced tiles } \\
& =6 \\
& h_{2}(n)=\text { sum of the distances of } \\
& \text { every tile to its goal position } \\
& =3+1+3+0+2+1+0+3 \\
& =13
\end{aligned}
$$

Greedy Best-First Search

BestF_Search(start, operations, is_goal): path
L:= makeList(start)
loop

$$
n:=\arg \min _{\mathrm{n} i \in \mathrm{~L}} h\left(n_{i}\right)
$$

;" "most promising" node in L according to $h($. $)$
if [is_goal(n)] return(n)
$S:=$ successors (n, operatnrc)
Idea: choose frontier node with smallest h-value ie, "closest to goal"
Can also return "path from start to n " ... by identifying each node with path

Robot Navigation

Robot Navigation

Edmonton
$h(n)=$ Manhattan distance to the goal

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Heuristic Function - Bulgaria

Straight-line distance
16 Eucharest
Arad
Bucharest 0
Craiova 160
Dubreta 242
Eforie 161
Fagaras 175
Giurgiu 77
Hirsova 151
Iasi 226
Lugri 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti
95
Rimnicu Vilcea 199
Sibiu 259
Timivara 329
Uruiceni 80
Vanlui 19
Zerind 374
$\mathrm{h}_{\text {SLD }}(n)$ is straight-line distance from n to goal (Bucharest)

Best First

Best First

BestFirst is SubOptimal

- $h_{\text {SLD }}$ finds path:

Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest

(Cost $=140+99+211=450)$

- Not optimal!

C(Arad \rightarrow Sibiu \rightarrow Rimnicu \rightarrow Pitesti \rightarrow Bucharest)
$=140+80+97+101=418$
$<\mathrm{h}_{\text {SLD }}$'s solution!

- BestFirst is greedy: takes BIGGEST step each time...

BestFirst can Loop

- Consider: Iasi \rightarrow Fagaras
$\mathrm{h}_{\text {SLD }}$ suggests: Iasi \rightarrow Neamt
- Worse: Unless search alg detects repeated states, BestFirst will oscillate:

Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow...

- Loops are a real problem...

Properties of
 Greedy Best-First Search

- If state space is finite and we avoid repeated states, THEN Best-First search is complete, but in general is not optimal
- If state space is finite and we do not avoid repeated states, THEN Best-First search is not complete.
- If the state space is infinite, THEN Best-First search is not complete.

Analysis of Greedy BestFirst

- Complete? No
...can go down ∞-path (oscillate)
- Optimal? No
... may not find shortest path
. Time:
$O\left(b^{m}\right)$
- Space: $O\left(b^{m}\right)$
(if $\mathrm{h}(.) \equiv 0$, could examine entire space)
- Worst of both worlds
- \approx DFS: too greedy!
- \approx BFS: too much space!

A* Search

- Find cheapest path, quickly

Consider both:

- Path from start to n :
$g(n)=$ cost of path found to n
- Path from n to goal (est.):
$h(n)=$ estimate of cost from n to a goal
- $f(n)=g(n)+h(n)$
- est of cost of path from start to goal, via n

A* Search, con't

- A^{*} selects node with min'l $f(n)$
- ...ie, node with lowest estimated distance from
- start to goal, constrained to go via that node
- ... mix of $\left\{\begin{array}{c}\text { lowest-cost-first } \\ \text { best-first }\end{array}\right\}$ searches!

Example

of A^{*}

Note: Finds Optimal Path!

- A* expands
- Rimnicu $(\mathrm{f}=(140+80)+193=413)$

over
- Faragas $(\mathrm{f}=(140+99)+178=417)$
- Why?

Fagaras is closer to Bucharest (than Rimnicu) but
path taken to get to Fargaras
is not as efficient at getting close to Bucharest
... as Rimnicu

Robot Navigation

Edmonton

$f(n)=g(n)+h(n)$, with $h(n)=$ Manhattan distance to goal

$8+3$	$7+4$	$6+3$	$5+6$	$4+7$	$3+8$	$2+9$	$3+10$	4	5	6
$7+2$		$5+6$	$4+7$	$3+8$						5
$6+1$				$2+9$	$1+10$	$0+11$	1	2		4
$7+0$	$6+1$									5
$8+1$	$7+2$	$6+3$	$5+4$	$4+5$	$3+6$	$2+7$	$3+8$	$4+9$	5	6

How A* Searches

- Contour-lines of "equal-f values"
- A^{*} expands nodes with increasing $f(n)$ values
- If use $h(.) \equiv O$ (UniformCost)
get Circles
\Rightarrow more nodes expanded (in general)!

Admissible heuristic

- $h^{*}(n)=$ cost of optimal path from n to a goal node
- Heuristic $h(n)$ is admissible if:

$$
0 \leq h(n) \leq h^{*}(n)
$$

- Admissible heuristic is always optimistic
- True for
- Straight Line [map traversal]
- Manhattan distances [8-puzzle]
- Number of attacking queens [n-queens]
[place all queens, then move]
$\Rightarrow f($.$) is under-estimate$

Heuristics for 8-Puzzle

Admissible??

5		8
4	2	1
7	3	6
n		

1	2	3
4	5	6
7	8	
goal		

$+\quad h_{1}(n)=$ number of misplaced tiles \ldots
$=6$
$+\quad h_{2}(n)=$ sum of distances of each tile to goal porn ... $=13$

- $\cdot h_{3}(n)=h_{1}(n)+3 \times h_{2}(n) \ldots$
$=45$
$+\quad h_{4}(n) \equiv 0$
$=0$
$+\quad h_{5}(n)=\min \left\{h_{1}(n), h_{2}(n)\right\} \ldots$
$=6_{25}$

$f(n)$ is monotonic

- $f(n) \leq f\left(n^{\prime}\right)$, as
from-S-to-E-via-n
is less constrained than
from-S-to-E-via-n-n'

Monotonic $f($. $)$

- $f($.$) is "monotonic" =$ $\mathrm{f}($ Successor(n$)) \geq \mathrm{f}(\mathrm{n})$
- Always true if
$|\mathrm{h}(\mathrm{n})-\mathrm{h}(\mathrm{m})| \leq \mathrm{d}(\mathrm{n}, \mathrm{m})$
... $d(n, m)$ is distance from n to m
- If true:
first path that A^{*} finds to node, is always shortest
- If f(.) not monotonic, can modify to be:

Eg, $n^{\prime} \in$ Successor(n)

$$
\begin{aligned}
& f(n)=g(n)+h(n)=3+4=7 \\
& f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=4+2=6
\end{aligned}
$$

- But... any path through n^{\prime} is also path through n, so $f(n)$ must be ≥ 7
\Rightarrow should reset $\mathrm{f}\left(\mathrm{n}^{\prime}\right)=7$
\Rightarrow use

$$
f\left(n^{\prime}\right)=\max \left\{f(n), g\left(n^{\prime}\right)+h\left(n^{\prime}\right)\right\}
$$

Called "path-max equation"
... ignores misleading numbers in heuristic

A^{*} is OPTIMAL

Thrm: A^{*} always returns optimal solution if

- \exists solution
- $h(n)$ is under-estimate

PROOF:
Let G be optimal goal, \quad with $f(G)=g(G)=f$
G_{2} be suboptimal goal, with $f\left(G_{2}\right)=g\left(G_{2}\right)>f$
If A^{*} returns $G_{2} \Rightarrow$
G_{2} is chosen over n, where n is node on optimal path to G
This only happens if $f\left(G_{2}\right) \leq f(n)$
As f is monotonically increasing along every path,
$\Rightarrow f=f(G) \geq f(n)$
Hence, $f \geq f\left(G_{2}\right)$... ie, if $g(G) \geq g\left(G_{2}\right)$
... contradicting claim that G_{2} is suboptimal! []

Properties of A^{*}

- \mathbf{A}^{*} is Optimally Efficient

Given the information in $h($.$) ,$
no other optimal search method can expand fewer nodes.
Non-trivial and quite remarkable!

- \mathbf{A}^{*} is Complete
... unless there are ∞ nodes w/f(n) < f^{*}
- A* is Complete
if branching factor is finite \& arc costs bounded above zero ($\exists \varepsilon>0$ s.t. $\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right) \geq \varepsilon$)
- Time/ Space Complexity:

Still exponential as \approx breadth-first.
... unless $\left|h(n)-h\left(n^{*}\right)\right| \leq O\left(\log \left(h\left(n^{*}\right)\right)\right.$
$h\left(\mathrm{n}^{*}\right)=$ true cost of getting from n to goal

8-Puzzle $f(n)=g(n)+h(n)$
 $$
f(n)=g(n)+h(n)
$$

with $h(n)=$ number of misplaced tiles

Robot navigation

$f(n)=g(n)+h(n)$, with $h(n)=$ straight-line distance from n to goal

Cost of one horizontal/vertical step $=1$
Cost of one diagonal step $=\sqrt{ } 2$

A*Topics

- Which heuristic?
- Avoiding Loops
- Iterative Deepening A*

Heuristics for 8-Puzzle

5		8
4	2	1
7	3	6
n		

1	2	3
4	5	6
7	8	
goal		

$+\quad h_{1}(n)=$ number of misplaced tiles $\ldots=6$
$+\quad \cdot h_{2}(n)=$ sum of distances of each tile to goal posn $\ldots=13$

- $13(n)-h 1(n)+3 x-n 2(n)-\cdots 5$
$+\quad h_{4}(n)==0 \quad \ldots=0$
Many admissible heuristics ... which to use? $?_{34}$

Importance of $h($.

- $A^{*}\left(h_{i}\right)$ expands all nodes with

$f(n)=g(n)+h_{i}(n)<f^{*}$
\ldots ie, with $h_{i}(n)<f^{*}-g(n)$
- $h_{1}(n)<h_{2}(n) \Rightarrow$ If $A^{*}\left(h_{2}\right)$ expands n, then $A^{*}\left(h_{1}\right)$ expands $n!$

. . . but not vice versa
$A^{*}\left(h_{2}\right)$ might expand FEWER nodes
- So LARGER $h_{i}()$ means fewer n 's expanded!

Importance of $h($.

- LARGER $h_{i}()$ means fewer n 's expanded!
- As $h_{C} \leq h_{M} \leq h^{*}$, prefer h_{M} !

- Gen'l:

Want largest $h()$ that is under-estimate

Effect of Different Heuristic Functions

	Search Cost			Effective Branching Factor		
d	IDS	$\mathrm{A}^{*}\left(h_{\mathrm{C}}\right)$	$\mathrm{A}^{*}\left(h_{\mathrm{M}}\right.$	IDS	$\mathrm{A}^{*}\left(h_{\mathrm{C}}\right)$	$\mathrm{A}^{*}\left(h_{\mathrm{M}}\right)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	1219	-	1.47	1.27
22	-	18094	-	1.48	1.28	
24	-	39135	-	1.48	1.26	

- "Effective Branching Factor" b is solution to

$$
N=1+\left(b^{*}\right)+\left(b^{*}\right)^{2}+\left(b^{*}\right) 3+\ldots+\left(b^{*}\right) d
$$

where N is \# of nodes searched d is solution depth

About Heuristics

- Heuristics are intended to orient the search along promising paths
Time spent evaluating heuristic function must be recovered by a better search
- "Perfect heuristic function" would mean NO search!
- Deciding which node to expand \equiv
"meta-reasoning"
- Heuristics...
- may not always look like numbers
- may involve large amount of knowledge

Inventing Heuristics

- Solve problem, then compute backwards...
- If $\left\{h_{1,}, \ldots h_{k}\right\}$ all underestimates, use $h_{\max }(n)=\max \left\{h_{i}(n)\right\}$
(Still an under-estimate, but larger ...)
- Relaxation:

Consider SIMPLER version of problem. As heuristic, use

- "exact answer to approx problem"

Inventing Heuristics

Original:
Can move tile from sq A to sq B if ... A is adjacent to B and B is blank.

Can move tile from sq A to $s q B$ if

- Relaxed version\#1: ... A is adjacent to B and B is blank.
- Ie, can TELEPORT tile to blank
\Rightarrow \# of misplaced tiles h_{C}

5		8
4	2	1
7	3	6

- Relaxed version\#2:

Can move tile from sq A to sq B if ... A is adjacent to B and_B is blann.

- Ie, can walk over non-blank tile
\Rightarrow Manhattan distance h_{M}

5	
4	2
7	1
7	3

Other Tricks

- Patterns Databases
- Learning from part experiences

Avoiding Repeated States in A*

If the heuristic $h($.$) is monotonic, then:$

- Let CLOSED be the list of states associated with expanded nodes
- When a new node n is generated:
- If its state is in CLOSED, then discard n
- If it has the same state as another node in the fringe, then discard the node with the largest $f($.)

Complexity of Consistent A*

- $\mathrm{s}=|\mathrm{S}|$
- size of the state space
- $r=|A|$
- max number of states that can be reached by applying any operator, from any state
- Assume test if state $s \in$ CLOSED is $\mathrm{O}(1)$
\Rightarrow Time complexity of A*: O(srlogs)

Iterative Deepening A* (IDA*)

- Use $f(n)=g(n)+h(n)$ with admissible, consistent $h($.
- Each iteration is depth-first with cutoff on the value of $f(n)$ of expanded nodes

AIxploratorium http://www.cs.ualberta.ca/~aixplore

8-Puzzle

$f(n)=g(n)+h(n)$

with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$
 with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$ with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$ with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$

 with $h(n)=$ number of misplaced tiles

8-Puzzle

$f(n)=g(n)+h(n)$

with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$
 with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$ with $h(n)=$ number of misplaced tiles

8-Puzzle $f(n)=g(n)+h(n)$ with $h(n)=$ number of misplaced tiles

8-Puzzle

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& \text { with } h(n)=\text { number of misplaced tiles }
\end{aligned}
$$

8-Puzzle

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& \text { with } h(n)=\text { number of misplaced tiles }
\end{aligned}
$$

8-Puzzle

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& \text { with } h(n)=\text { number of misplaced tiles }
\end{aligned}
$$

Summary

Heuristic function
Greedy Best-first search

- Admissible heuristic
- A* is complete and optimal
- Optimally efficient !
- Consistent heuristic and repeated states
- Inventing Heuristics
- IDA*

