!'_ Heuristic Search

n Best-First
s A
= Heuristic Functions

Some material from: D Lin, J You, JC Latombe

i Search Overview

= Introduction to Search
\. Blind Search Techniques
= Heuristic Search Technigues
= Best-First
= A

= Heuristic Functions
= Stochastic Algorithms
= Game Playing search
= Constraint Satisfaction Problems

i Heuristic Search

= “Blind” methods only know Goal / NonGoal

= Often 3 other problem-specific knowledge
that can guide search:

= Heuristic fn h(n): Nodes — ¢
estimate of distance from nto a goal

Eg: straight line on map,
or “Manhattan distance”,

or ...

= Use: Given list of nodes to expand,
choose node 7 with min'l /(.)

Heuristic Function

= ((n) estimates cost of cheapest path
from node n to goal node

= Example: 8-puzzle

hy(n) = number of misplaced tiles

11213 =6
21| [4]5]6
36| (718

Heuristic Function

= ((n) estimates cost of cheapest path
from node n to goal node

= Example: 8-puzzle

h{(n) = number of misplaced tiles

=6

N
(WY
AN
@)
(@)

h,(n) = sum of the distances of

316 718 every tile to its goal position

=34+1 +3+0+2+1+0+3
n goal - 13

Greedy Best-First Search

BestF_Search(start, operations, is_goal): path
L := makelist(start)
loop

n:=qrg min, . A(n)

,, 'most promising” node in L according to h(.)

if [is_.goak n)]
return(1)

S := successors(n, o
' (de with smallest h-value
‘ I

ﬁ Robot Navigation

Robot Navigation

Edmonton

h(n) =W distance to the goal

i Heuristic Function — Bulgaria

Zerind
75

Arad []
Q2

Siblu Fagaras

U8 L] Vaslui

80

Rimnicu Vilcea

Timisoara
142
Pitesti

98 ra
[| Hirsova

[] Mehadia Urziceni

75 86

Bucharest
Dobreta L}
&

o Eforie
[] Giurgiu

Srraighi-line dizane

ici Brochiare st
Arad

Bucharest
Craiova
Dobreta
Eforie
Fagaras
Cinrgio
Hirsova
lasi

Lugnj
Mehadia
MNe ami
Orades
Pitesti
Rimnicn Viloea
Sibiu
Timisoara
Urziceni
Vashu
Ferind

1446
0
140
242
141
173
151
pas
24l
241
134
JB0
a3
1493
253
ix9
B0
1949
4

he p(77) is straight-line distance from 77 to goal (Bucharest)

Oradea

est First .

L] Vaslui

Pitesti

98
] Hirsova

] Mehadia Urziceni

86
73 Bucharest

Dobreta [

Eforie
[] Giurgiu

Sibiu Lerind
h=251 =320 bh=174

11

‘L Best First LN

[] Giurgiu

] Hirsova

Arad

Timisoara

Ay ad

B=253 b=

12

BestFirst Is
iSubOptimaI

Arad — Sibiu — Fagaras — Bucharest

(Cost = 140 + 99 + 211 = 450)

= Not optimal!
C(Arad — Sibiu — Rimnicu — Pitesti — Bucharest)

= 140 + 80 + 97 + 101 = 418
< hgp's solution!

= BestFirst is greedy:
takes BIGGEST step each time...

14

BestFirst

L1 Oradea
71
e "
erin
75 151
Ca LOO T =
I I ibi
[
118
p Timisoara
111
u

= Consider: Iasi — Fagaras
he p suggests: Iasi — Neamt

= Worse: Unless search alg detects repeated
states, BestFirst will oscillate:

Iasi > Neamt — Iasi > Neamt — ...
= Loops are a real problem...

rziceni

raiova

15

Properties of
i Greedy Best-First Search

= If state space is finite and
we avoid repeated states,
THEN Best-First search is complete,
but in general is not optimal

= If state space is finite and
we do not avoid repeated states,
THEN Best-First search is not complete.

= If the state space is infinite,
THEN Best-First search is not complete.

16

i Analysis of Greedy BestFirst

Complete? No
...can go down oco-path (oscillate)

Optimal? NoO
... may not find shortest path
Time: O@®™)

Space: O(bpm)
(if h(.)= 0, could examine entire space)

Worst of both worlds
« ~DFS: too greedy!
» ~BFS: too much space!

17

A* Search

t

= Find cheapest path, quickly

= Consider both:
« Path from start to
g(n) = cost of path found to n
= Path from nto goal (est.):
h(n) = estimate of cost from 7 to a goal
m f(n) =g(n)+hin)

= est of cost of path from start to goal, via 7

actual estimate
start —— n ~T—— goal

o h

g(n) h(n)
f(n)

-

18

i A* Search, con't

(so far) (to go)

actual estimate
start —— n ~T—— goal

o h

g(n) h(n)
f(n)

-

= A" selects node with min'l f{n)
= ...Ie, node with lowest estimated distance from
= start to goal, constrained to go via that node

] lowest-cost-first
= ... mixof best-first searches!

19

Example
of A”

Zarind

= T3+374
=g

Note: Finds Optimal Path!

u A* expands = = Craiﬁ;-:lég . Sibiu
= Rimnicu (f = (140+80)+193 = 413) = w
over
=« Faragas (f = (140+99)+178 = 417)

Fagaras is closer to Bucharest (than Rimnicu)
but

path taken to get to Fargaras
is not as efficient at getting close to Bucharest

... a@s Rimnicu

21

i Robot Navigation

8

742

611

740

6+1

811

/+2

6+3

5+6

5+4

4+7

8

445

3+8

3+6

2+9

2+7

3+8

Edmonton
f(n) = g(n)+h(n), with A(n) = Mantiattan distance to goal

(@) I I O 2 [S S BN O Y B @)

22

= Contour-lines of “equal-f values”

= A" expands nodes with increasing /(1)
values

= If use A(.)= 0 (UniformCost)
get Circles

— more nodes expanded (in general)!

23

i Admissible heuristic

h*(n) = cost of optimal path
from /7 to a goal node

= Heuristic /(1) is admissible if:
0 < h(n) < h*(n)

= Admissible heuristic is always optimistic

= [rue for
= Straight Line [map traversal]
= Manhattan distances [8-puzzle]
= Number of attacking queens [n-queens]
[place all queens, then move]

= f(.) is under-estimate

24

i Heuristics for 8-Puzzle

5 8 1| 2| 3

41 2|1 4| 5|6

/71 3| 6 /7| 8 \

Admissible?? P goal

+ ¢ h,(n)= number of misplaced tiles ... = 6
+ . ,(1) = sum of distances of each tile to goal posn ... =13
— e hyn)=h,n)+ 3xhyn).. = 45
t ehn)=0 .. =0

* e hin) =min{ h(n), h(n)} .. =6,

i f(n) is monotonic

g(n) h(n) < h*(n)
T e N

= f(n) <f(n'), as
from-S-to-E-via-n
IS less constrained than
from-S-to-E-via-n-n’

26

i Monotonic 7(.)

f(Successor(n)) > f(n) ~€@n modify to be:

Eg, n" € Successor(n)
. i f(n) = g(n)+h(n) =3+4 =7
Always true if) = QYRR = 442 = 6
| h(n) —h(m) | < d(n,m) . But..any path through " is also path

‘e A through 7,
... d(n,m)is distance from S0 () must be > 7

nto m — should reset f(n') = 7
— use
= If true: f(n’) = max{ f(n), g(n)+h(n’) }

first path that A™ finds to

node, is always shortest Called “path-max equation”
... ignores misleading numbers in heuristic

27

ki

A" is OPTIMAL
= N

Thrm: A® always returns optimal solution if
= 7 solution
= /1(n)is under-estimate

PROOF:
Let G be optimal goal, with AG) = g(G) =F
G, be suboptimal goal, with f(G,) = g(G,) > F
If A" returns G, =
G, is chosen over 1, where nis node on optimal path to G

This only happens if #G,) < f(n)
As 7 is monotonically increasing along every path,
= F=/G)>Ff(n)
Hence, 7> A(G,) ... ie, if g(G) > g(G,)
... contradicting claim that G, is suboptimal! []
28

Properties of A"

= A" is Optimally Efficient
Given the information in A(.),

no other optimal search method can expand fewer nodes.

Non-trivial and quite remarkable!

= A" is Complete

... unless there are o nodes w/ f(n) < f*

= A" is Complete
if branching factor is finite & arc costs bounded above zero
(de > 0 s.t. c(a))>¢)

= TiIme/Space Complexity:
Still exponential as ~breadth-first.

... unless |h(n) — h(n®)| < O(log(h(n®))
h(n™) = true cost of getting from 77 to goal

29

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

ﬁ 8-Puzzle

O
1+5

oal
J 1+3

+ L[]

1+5

EEN
2+3

2+3

2+4

3+3

3+4

5+2

3+2

3+4

4+1

5+0

30

ﬁ Robot navigation

f(n) = g(n) + h(n), with A(n) = straight-line distance from nto goal

A

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

31

A* Topics

= Which heuristic?
= Avoiding Loops
= Iterative Deepening A"

32

i Heuristics for 8-Puzzle

5 8 1| 2| 3
41 21 4|1 5| 6
/| 3| 6 /| 8 J
Admissible?? 7 goal
+ o A, (n) = number of misplaced tiles ... = 6
+

e f1,(n) = sum of distances of each tile to goal posn ...= 13

S5
+ epm)==0 ..=0

Many admissible heuristics ... which to use??,

=y

mo
N D
|
Vi T~ =
F(At ~~ "'""-._‘_ :
AN SN
N~ -,
m—— = o v
~o 400 \\
TO \\\ RO Ay
~ hY
' 4 ~u \
oL ~ = N
Y
A [t J
ol -~ U
-~ B
420 T~ /
DO -
tic H
O

s A°(h;) expands all nodes with

f(n) = g(n)+h(n) < F t
.. ie, with A(n) < F - g(n) hz(")‘))
oo
f
= hy(n) <h,(n) = .
If ,4)(/72) expands 7, ny(n)

then A”(h,) expands 7!
. . . but not vice versa

A”(h,) might expand FEWER nodes

= S0 LARGER /() means fewer /7s expanded!

35

Importance of A(.) *

s LARGER /() means

fewer /7s expanded! () |

g [

« As he <hy<h’, S
prefer h,, |

= Gen'l:
Want largest /() that is under-estimate

36

Effect of Different Heuristic

i Functions

Search Cost Effective Branching Factor
d [0S A*(hc) A*¥ (g ID5 A*(hc) A* (g
2 10 6 6 2.45 1.79 1.79
4 112 13 12 287 148 145
6 680 20 15 273 1.34 1.30
g 6384 3 25 2.80 1.33 1.24
10 47127 93 19 279 1.38 1.22
12 3o 27 73 278 1.42 1.24
14 MH73e4 539 113 283 144 1.23
16 - 1301 211 - .45 .25
1B - 3056 363 - 146 1.26
20 - 1276 676 - 1.47 1.27
22 - 1 80094 1219 - 1.48 1.28
24 - 30135 L1641 - 148 1.26

= Effective Branching Factor” b is solution to

N=1+(b")+b'F +(b°F + ...+(b°)1
where Nis # of nodes searched
d is solution depth

37

i About Heuristics

Heuristics are intended to
orient the search along promising paths

Time spent evaluating heuristic function must
be recovered by a better search

“Perfect heuristic function” would mean NO search!
Deciding which node to expand =

“meta-reasoning”

Heuristics...

may not always look like numbers

may involve large amount of knowledge

38

Inventing Heuristics

= Solve problem, then compute backwards...

s If {hy, ... h } all underestimates,
use hpa(n) = max { hin) }

(Still an under-estimate, but larger ...)

= Relaxation:
Consider SIMPLER version of problem.
As heuristic, use

= 'exact answer to approx problem"

39

i Inventing Heuristics

Can move tile from sq A to sq B if

= Orlgmal] ... A'is adjacent to B and B is blank.

Can move tile from sq A to sq B if

= Relaxed version#1: | - Aisadjacentte-B-and B is blank.

= Ie, can TELEPORT tile to blank
— # of misplaced tiles h.

5

8

2|1

713

6

Can move tile from sq A to sq B if

= Relaxed version#2: ... A'is adjacent to B and-B-s-blanie.

= Ie, can walk over non-blank tile
— Manhattan distance hy

5

8

4

2

1

7

3|6

40

Other Tricks

= Patterns Databases
= Learning from part experiences

41

Avoliding Repeated States in A*

If the heuristic A(.)is monotonic, then:

s Let CLOSED be the list of states
associated with expanded nodes

= When a new node 77 is generated:
« If its state is in CLOSED, then discard n

= If it has the same state as another node in
the fringe, then discard the node with the
largest 1(.)

42

i Complexity of Consistent A*

= S =|[5]
= Size of the state space
m[= ‘A‘

= max number of states that can be reached
by applying any operator, from any state

= Assume test if state is O(1)

— Time complexity of A*: O(srlogs)

43

Iterative Deepening A*
(IDAY)

m Use f(n) =g(n) + h(n)
with admissible, consistent /(.)

= Each iteration is depth-first with cutoff
on the value of 7(n) of expanded nodes

44

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=4 ﬂ

45

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

* 8-Puzzle

4
Cutoff=4

46

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=4

47

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=4

48

with h(n) = number of misplaced tiles

i 8-Puzzle)=o)+ hin)

5

No more nodes to expand with Cutoff =4
Now consider Cutoff = 5

T s |

4
Cutoff=4

49

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=5 ﬂ

50

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=5

51

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=5

52

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=5

53

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

ﬁ 8-Puzzle

4
Cutoff=5

54

) f(n) = g(n) + h(n)
ﬁ 8-Puzzle with h(n) = number of misplaced tiles

4
Cutoff=5

55

f(n) = g(n) + h(n)
with h(n) = number of misplaced tiles

ﬁ 8-Puzzle

4
Cutoff=5

i5:\i::

56

i Summary

Heuristic function

Greedy Best-first search

Admissible heuristic

A* is complete and optimal

= Optimally efficient !

Consistent heuristic and repeated states
Inventing Heuristics

IDA*

57

	Heuristic Search
	Search Overview
	Heuristic Search
	Heuristic Function
	Heuristic Function
	Greedy Best-First Search
	Robot Navigation
	Robot Navigation
	Heuristic Function – Bulgaria
	Best First
	Best First
	BestFirst is� SubOptimal
	BestFirst � can Loop
	Properties of �Greedy Best-First Search
	Analysis of Greedy BestFirst
	A* Search
	A* Search, con’t
	Example�of A*
	Robot Navigation
	How A* �Searches
	Admissible heuristic
	Heuristics for 8-Puzzle
	f(n) is monotonic
	Monotonic f(.)
	A* is OPTIMAL
	Properties of A*
	8-Puzzle
	Robot navigation
	A* Topics
	Heuristics for 8-Puzzle
	Importance of h(.)
	Importance of h(.)
	Effect of Different Heuristic Functions
	About Heuristics
	Inventing Heuristics
	Inventing Heuristics
	Other Tricks
	Avoiding Repeated States in A*
	Complexity of Consistent A*
	Iterative Deepening A* �(IDA*)
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	Summary

