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Blind SearchBlind Search

RN, Chapter 
3.4 – 3.6

Some material from: D Lin, J You,  JC Latombe



2

Search Overview
Introduction to Search

Blind Search Techniques
aka “Uninformed Search” (Goal vs NonGoal)

Breadth-First (Uniform Cost)
Depth-First
“Iterative Deepening"
Bi-Directional

Heuristic Search Techniques
Stochastic Algorithms
Game Playing search
Constraint Satisfaction Problems
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Generic Search Algorithm
Searchinsert ( start, operations, isGoal ): path

L = make-queue( start )
loop

n := pop( L )
if [ isGoal(

 
n )]

return( n )
S := successors( n, operators )
L := insert( S, L )

until L is empty
return( failure )

insert could be queue, stack, . . .
defines strategy!
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Blind Search

Blind Search
Depth-first search
Breadth-first search
Iterative deepening
…

Not “guided” by goal
No matter where the goal is, 
these algorithms will do the 
same thing.
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Performance Measures of Performance Measures of 
Search AlgorithmsSearch Algorithms

Completeness
Does algorithm always find a sol’n (if ∃)?

Optimality
Does it always find least cost sol’n?

Time complexity
How long does it take to find sol’n?

Space complexity
How much memory is required to find a sol’n?
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Parameters

To measure Time and Space complexity:

b: maximum branching factor of 
the search tree

Max number of operations at any state

d: depth of the least-cost solution
depth of shallowest goal node in search tree 

m: maximum depth of the state space 
(may be ∞)

…
b

…

⋮

d
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Breadth-first search

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, 
… new successors go at end
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Breadth-First Search



9

Properties of Breadth-First search

Complete?
Optimal?
Time?

Space?

Space is the bigger problem (more than time)

Yes  (if b is finite)
Yes    (if cost = 1 per step)

O(bd)
1 + b + b2 + … + bd/2 = O(bd)

O(bd)
keeps every intermediate node in memory
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Time and Memory RequirementsTime and Memory Requirements

d #Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tb

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node
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Uniform Cost SearchUniform Cost Search
BreadthFirst returns SHALLOW-est Goal
… not necessarily best. . .
Uniform Cost Search:

Expand LEAST Cost node
If COST ≡ Depth, then UC = BF

Complete
Optimal*

Time: O(bd)
Space: O(bd)

*: If g( Successor(n) ) ≥ g(n)
Eg, if   g(n) = ∑i

 

c(ai

 

)

 
is SUM of arc-costs
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To insure optimalityTo insure optimality……
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To guarantee OPTIMAL path, 
need to maintain queue, 
sorted in increasing order:
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Uniform-cost search
Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete?

Optimal?

Time?

Space?

Yes, if step cost ≥
 

ε
 (in trouble if cost = 0)

Yes
 …as nodes expanded in increasing order of cost

O(b⌈C*/ ε⌉)
 where C*

 

= cost of optimal solution

O(b⌈C*/ ε⌉)
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Depth-first search
Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front
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Depth-first Search
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Properties of Depth-First Search

Complete?

Optimal?

Time?

Space?

⋮20

No: fails in infinite-depth spaces, or if loops
Modify to avoid repeated states along path

complete in finite spaces

No 
…

 
first found ≠?

 
best

O(bm):
terrible if m is much larger than d
but if solutions are dense, may be much faster than BF

(b m)
d=12 ⇒ 12 kb, not 111 terabytes!
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BFS/UC vs. DFS

Time:
m=d   DFS typically wins
m>d   BFS might win
m = ∞ BFS probably better

Space
DFS almost always beats BFS

Complete? Optimal? Time Space

BFS/UC YES YES bd bd

DFS finite depth NO bm b m

Challenge:

How to get BFS’s guarantees,

using only DFS’s memory??
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Which Strategy to Use?
Depends on problem.
If there are infinite paths
⇒

 
depth-first is bad

If goal is at known depth
⇒

 
depth-first is good

If ∃ large (possibly ∞) branching factor
⇒

 
breadth-first is bad

(Could try nondeterministic search:
Expand an open node at random.)



21

DepthDepth--Limited StrategyLimited Strategy

Depth-first with depth cut-off k
(do NOT expand nodes below depth k)

Three possible outcomes:
Solution
Failure (no solution)
Cutoff (no solution within cutoff)
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Depth-Limited Depth-First-Search

Depth cut-off:  k=3

Complete: No unless soln @ depth ≤ k
Optimal:    No
Time:        O(bk)
Space:       O(b k)



23

Iterative Deepening StrategyIterative Deepening Strategy

Use an artificial depth cutoff, k.

For k = 1…
Use Depth-limited Depth-First Search(k)
If succeeds: DONE.
If not: increase k by 1
(Regenerate nodes, as necessary)



24

Iterative Deepening Search k=0
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Iterative Deepening Search: k=1
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Iterative Deepening Search: k =2
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Iterative Deepening Search k=3
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Iterative Deepening: Analysis
Time:  ≈ BFS !

… even though it regenerates intermediate nodes !
Why? Almost all work ON FINAL LEVEL anyway!
Eg: b = 10, d = 5:

BFS expands 1 + 10 + 100 + … + 100,000 = 111,111

IDS expands
bottom level:        1 time
second to bottom: 2 times
…
toplevel:               d+1 times

total: (d+1)b0

 

+ d b1

 

+ (d-1)b2

 

+ …

 

+ 3bd-2

 

+2bd-1

 

+ 1bd

 
…

 

100,000 + 20,000 + …+  50 + 6  = 123,456

Ratio of IDS to BFS: ≈ [b / (b-1)]2

Cost of repeating work at shallow depths:  MINOR!
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Properties of 
Iterative Deepening Search

Complete?
Optimal?
Time?

Space?

IDS does not get stuck on infinite path
Space: Same as DFS – but with d, not m
(as each search is DFS)

Yes

Yes, if step cost = 1

(d+1)b0

 
+ d b1

 
+ (d-1)b2

 
+ …

 
+ bd

 
= O(bd)

O(b d)
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BiDirectional 
Search

Simultaneously:
Search “forward" from start
Search “backward" from goal

Stop when two searches meet in middle
If  branching factor = b in each direction & solution at depth d
⇒

 

need only O(2bd/2) = O(bd/2) steps

Eg: b = 10, d = 6:
BFS expands 1,111,111 nodes

 
BiDirectional: 2,222 !

Issues: 
How to “search backwards from goal"?
What if > 1 goals (chess)?
How to check if paths meet? constant time?
What type of search done in each half? (BFS)
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Comparing “Blind" Search 
Strategies
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Comparison of StrategiesComparison of Strategies

Breadth-first is complete and optimal, 
but has high space complexity

Bad when branching factor is high

Depth-first is space efficient, 
but not complete nor optimal

Bad when search depth is infinite

Iterative deepening is asymptotically 
optimal !
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Avoiding Repeated States

May reach same state thru multiple paths

... if operations are REVERSIBLE (∞)
⇒ “Obvious" algorithms may

be inefficient (exponentially worse)
loop forever!



38

Repeated StatesRepeated States

8-queens

No

assembly 
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finite search tree is infinite
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Approaches to Deal 
w/Repeated State

Don't return to parent state
Don't generate   successor ≡ node's parent

Don't allow cycles
Don't generate   successor ≡ node's ancestor

Don't ever revisit state
Keep every visited state in memory! O(bd)
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Summary of Blind Search

Search strategies: 
breadth-first, depth-first, iterative deepening, …

Evaluation of strategies: 
completeness, optimality, time and space 
complexity

Iterative deepening search 
uses only linear space 
≈ same time as other blind-searchers

Avoid repeated states
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