
1

Blind SearchBlind Search

RN, Chapter
3.4 – 3.6

Some material from: D Lin, J You, JC Latombe

2

Search Overview
Introduction to Search

Blind Search Techniques
aka “Uninformed Search” (Goal vs NonGoal)

Breadth-First (Uniform Cost)
Depth-First
“Iterative Deepening"
Bi-Directional

Heuristic Search Techniques
Stochastic Algorithms
Game Playing search
Constraint Satisfaction Problems

3

Generic Search Algorithm
Searchinsert (start, operations, isGoal): path

L = make-queue(start)
loop

n := pop(L)
if [isGoal(

n)]

return(n)
S := successors(n, operators)
L := insert(S, L)

until L is empty
return(failure)

insert could be queue, stack, . . .
defines strategy!

4

Blind Search

Blind Search
Depth-first search
Breadth-first search
Iterative deepening
…

Not “guided” by goal
No matter where the goal is,
these algorithms will do the
same thing.

5

Performance Measures of Performance Measures of
Search AlgorithmsSearch Algorithms

Completeness
Does algorithm always find a sol’n (if ∃)?

Optimality
Does it always find least cost sol’n?

Time complexity
How long does it take to find sol’n?

Space complexity
How much memory is required to find a sol’n?

6

Parameters

To measure Time and Space complexity:

b: maximum branching factor of
the search tree

Max number of operations at any state

d: depth of the least-cost solution
depth of shallowest goal node in search tree

m: maximum depth of the state space
(may be ∞)

…
b

…

⋮

d

7

Breadth-first search

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue,
… new successors go at end

8

Breadth-First Search

9

Properties of Breadth-First search

Complete?
Optimal?
Time?

Space?

Space is the bigger problem (more than time)

Yes (if b is finite)
Yes (if cost = 1 per step)

O(bd)
1 + b + b2 + … + bd/2 = O(bd)

O(bd)
keeps every intermediate node in memory

11

Time and Memory RequirementsTime and Memory Requirements

d #Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tb

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

12

Uniform Cost SearchUniform Cost Search
BreadthFirst returns SHALLOW-est Goal
… not necessarily best. . .
Uniform Cost Search:

Expand LEAST Cost node
If COST ≡ Depth, then UC = BF

Complete
Optimal*

Time: O(bd)
Space: O(bd)

*: If g(Successor(n)) ≥ g(n)
Eg, if g(n) = ∑i

c(ai

)

is SUM of arc-costs

13

To insure optimalityTo insure optimality……

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

To guarantee OPTIMAL path,
need to maintain queue,
sorted in increasing order:

15

Uniform-cost search
Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete?

Optimal?

Time?

Space?

Yes, if step cost ≥

ε
 (in trouble if cost = 0)

Yes
 …as nodes expanded in increasing order of cost

O(b⌈C*/ ε⌉)
 where C*

= cost of optimal solution

O(b⌈C*/ ε⌉)

16

Depth-first search
Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front

17

Depth-first Search

18

Properties of Depth-First Search

Complete?

Optimal?

Time?

Space?

⋮20

No: fails in infinite-depth spaces, or if loops
Modify to avoid repeated states along path

complete in finite spaces

No
…

first found ≠?

best

O(bm):
terrible if m is much larger than d
but if solutions are dense, may be much faster than BF

(b m)
d=12 ⇒ 12 kb, not 111 terabytes!

19

BFS/UC vs. DFS

Time:
m=d DFS typically wins
m>d BFS might win
m = ∞ BFS probably better

Space
DFS almost always beats BFS

Complete? Optimal? Time Space

BFS/UC YES YES bd bd

DFS finite depth NO bm b m

Challenge:

How to get BFS’s guarantees,

using only DFS’s memory??

20

Which Strategy to Use?
Depends on problem.
If there are infinite paths
⇒

depth-first is bad

If goal is at known depth
⇒

depth-first is good

If ∃ large (possibly ∞) branching factor
⇒

breadth-first is bad

(Could try nondeterministic search:
Expand an open node at random.)

21

DepthDepth--Limited StrategyLimited Strategy

Depth-first with depth cut-off k
(do NOT expand nodes below depth k)

Three possible outcomes:
Solution
Failure (no solution)
Cutoff (no solution within cutoff)

22

Depth-Limited Depth-First-Search

Depth cut-off: k=3

Complete: No unless soln @ depth ≤ k
Optimal: No
Time: O(bk)
Space: O(b k)

23

Iterative Deepening StrategyIterative Deepening Strategy

Use an artificial depth cutoff, k.

For k = 1…
Use Depth-limited Depth-First Search(k)
If succeeds: DONE.
If not: increase k by 1
(Regenerate nodes, as necessary)

24

Iterative Deepening Search k=0

25

Iterative Deepening Search: k=1

26

Iterative Deepening Search: k =2

27

Iterative Deepening Search k=3

28

29

Iterative Deepening: Analysis
Time: ≈ BFS !

… even though it regenerates intermediate nodes !
Why? Almost all work ON FINAL LEVEL anyway!
Eg: b = 10, d = 5:

BFS expands 1 + 10 + 100 + … + 100,000 = 111,111

IDS expands
bottom level: 1 time
second to bottom: 2 times
…
toplevel: d+1 times

total: (d+1)b0

+ d b1

+ (d-1)b2

+ …

+ 3bd-2

+2bd-1

+ 1bd

…

100,000 + 20,000 + …+ 50 + 6 = 123,456

Ratio of IDS to BFS: ≈ [b / (b-1)]2

Cost of repeating work at shallow depths: MINOR!

32

Properties of
Iterative Deepening Search

Complete?
Optimal?
Time?

Space?

IDS does not get stuck on infinite path
Space: Same as DFS – but with d, not m
(as each search is DFS)

Yes

Yes, if step cost = 1

(d+1)b0

+ d b1

+ (d-1)b2

+ …

+ bd

= O(bd)

O(b d)

33

BiDirectional
Search

Simultaneously:
Search “forward" from start
Search “backward" from goal

Stop when two searches meet in middle
If branching factor = b in each direction & solution at depth d
⇒

need only O(2bd/2) = O(bd/2) steps

Eg: b = 10, d = 6:
BFS expands 1,111,111 nodes

BiDirectional: 2,222 !

Issues:
How to “search backwards from goal"?
What if > 1 goals (chess)?
How to check if paths meet? constant time?
What type of search done in each half? (BFS)

34

35

Comparing “Blind" Search
Strategies

36

Comparison of StrategiesComparison of Strategies

Breadth-first is complete and optimal,
but has high space complexity

Bad when branching factor is high

Depth-first is space efficient,
but not complete nor optimal

Bad when search depth is infinite

Iterative deepening is asymptotically
optimal !

37

Avoiding Repeated States

May reach same state thru multiple paths

... if operations are REVERSIBLE (∞)
⇒ “Obvious" algorithms may

be inefficient (exponentially worse)
loop forever!

38

Repeated StatesRepeated States

8-queens

No

assembly
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finite search tree is infinite

39

Approaches to Deal
w/Repeated State

Don't return to parent state
Don't generate successor ≡ node's parent

Don't allow cycles
Don't generate successor ≡ node's ancestor

Don't ever revisit state
Keep every visited state in memory! O(bd)

40

Summary of Blind Search

Search strategies:
breadth-first, depth-first, iterative deepening, …

Evaluation of strategies:
completeness, optimality, time and space
complexity

Iterative deepening search
uses only linear space
≈ same time as other blind-searchers

Avoid repeated states

41

	Blind Search
	Search Overview
	Generic Search Algorithm
	Blind Search	
	Performance Measures of Search Algorithms
	Parameters
	Breadth-first search
	Breadth-First Search
	Properties of Breadth-First search
	Time and Memory Requirements
	Uniform Cost Search
	To insure optimality…
	Uniform-cost search
	Depth-first search
	Depth-first Search
	Properties of Depth-First Search
	BFS/UC vs. DFS
	Which Strategy to Use?
	Depth-Limited Strategy
	Depth-Limited Depth-First-Search
	Iterative Deepening Strategy
	Iterative Deepening Search k=0
	Iterative Deepening Search: k=1
	Iterative Deepening Search: k =2
	Iterative Deepening Search k=3
	Slide Number 28
	Iterative Deepening: Analysis
	Properties of �Iterative Deepening Search
	BiDirectional �Search
	Slide Number 34
	Comparing “Blind" Search Strategies
	Comparison of Strategies
	Avoiding Repeated States
	Repeated States
	Approaches to Deal �w/Repeated State
	Summary of Blind Search
	Slide Number 41

