
1

Search ProblemsSearch Problems

RN, Chapter
3.1 – 3.3

Some material from: D Lin, J You, JC Latombe

2

Search Overview

Introduction to Search
Why search?
Search Problem
Representation
Examples

Blind Search Techniques
Heuristic Search Techniques
Stochastic Algorithms
Game Playing search
Constraint Satisfaction Problems

4

Travel Task

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

You are in Arad
must get to Bucharest by tomorrow
+ enjoy view (if possible)
+ avoid speeding ticket (if possible)

???

5

Clean House
Task

Want to clean “house”
⇒

be in State#7 or State#8
Initial world: State#4
Actions: { Left, Right, Suck }

6

Vacuum Cleaner Space

8

Why Search?

Typical tasks:
Get to location r ; Clean rooms;
Lay out chip; Solve puzzle, …

NOT given algorithm,
just know: what is a (good) solution

Search is a general problem solving
technique for such situations

Goal + preferences

9

General Search TaskGeneral Search Task

Given
Initial State
“State#4” or “Arad”

Set of actions (“Operators”)
{Left, Right, Suck} or
Travel-along-Road

Goal test
“Is house clean” or “Bucharest”

Path cost function
Cost of path

(aka “sequence of operators")
…typically sum of operator-costs…

{0.1 for Left/Right, 1 for suck} or
“Distance"

Produce
Solution ≡ Optimal Path:
Sequence of operations
from

initial state,
to

state satisfying goal test
… with minimal path-cost…

10

Vacuum Cleaner Environment

State:
[dirt in roomA and/or roomB;
vc in roomA xor roomB]

Operators: { Left, Right, Suck }
Goal test: { State#7, State#8 }
Path Cost:
c(Left) = c(Right) = 0.2
c(Suck) = 1

0.2

1

12

Search Graph

State → Node; Action → Arc
⇒

(implicit) Graph G = 〈N,A〉

 … called state space
Path is sequence of nodes
π = 〈n0, a01, n1, a12, … ak-1,k, nk 〉

s.t. ai,i+1 = 〈ni, ni+1〉 ∈ A
Label each path π with g(π) ∈ ℜ≥0

Often g(π) = ∑i c(ni, ai,i+1 , ni+1)

13

Optimal Solution

Given state space G = 〈N,A〉, cost-fn g(.)
start node s ∈ N, goal nodes T ⊂ N,
SOLUTION π is path from s to goal t ∈ T

OPTIMAL SOLUTION π* is
solution w/ min'm cost g(π*) ≤ g(π)

14

states?

actions?

goal test?

path cost?

Example: The 8-puzzle

[Note: optimal solution of n-Puzzle family is NP-hard]

states? locations of tiles

actions? move blank: left, right, up, down

goal test? = goal state

path cost? 1 per move

So want
SHORTEST soln

15

Example: 8Example: 8--queensqueens

Place 8 queens in a chessboard so that
no two queens are in the same row, column, or diagonal

A solution Not a solution

16

Example: 8Example: 8--queensqueens
Formulation #1Formulation #1

648 = 2.81*1014 states with 8 queens

states? any arrangement of 0 to 8
queens on the board

actions? add a queen to any
square
(that is not attacked)

goal test? 8 queens on the board,
none attacked

path cost? 0

Path irrelevant;
just want

SOLUTION!

17

Example: 8Example: 8--queensqueens
Formulation #2Formulation #2

states? any arrangement of
k = 0 to 8 queens in the
k leftmost columns

actions? add a queen to any
square in the
leftmost empty column
(that is not attacked)

goal test? 8 queens on the board,
none attacked

path cost? 0

88 ≈

16M states
8! ≈ 40K states
2,067 states

18

Example: robotic assembly

states? real-valued coordinates of robot joint
angles parts of the object to be
assembled

actions? continuous motions of robot joints

goal test? complete assembly

path cost? time to execute

19

Example: Assembly PlanningExample: Assembly Planning

Initial state

Goal state

Operator:
• Merge two subassemblies

Complex function:
it must find if a collision-free
merging motion exists

20

Example: Assembly PlanningExample: Assembly Planning

21

Example: Assembly PlanningExample: Assembly Planning

22

Solving a Search Problem

Solve problem by searching over state space
… build a search tree over search space

Root = the initial state
Successor = from state s to s’, based on some operator
Leaf = state with no successors in (current) tree
(none exists; or node not yet expanded)
Search strategy = algorithm for deciding
which leaf node to expand next

Search proceeds by expanding frontier into
unexplored nodes,

until encountering goal node

23

Problem Solving
by Graph Searching

25

Generic Search Algorithm

Searchinsert (start, operations, isGoal): path
L = make-queue(start)
loop

n := pop(L)
if [isGoal(n)]
return(n)

S := successors(n, operators)
L := insert(S, L)

until L is empty
return(failure)

insert could be queue, stack, . . .
defines strategy!

26

Tree search example

28

Environment…

This type of search works best when
environment is…
Observable: Can just “see" the state
Deterministic: Action have well-defined
known effects
Static: Environment does NOT change while
thinking
Discrete: Only finite number of actions, . . .

29

Search Problem VariantsSearch Problem Variants

One or several initial states
One or several goal states
The solution ≡ path vs goal node

8-puzzle problem: the path to a goal node
8-queen problem: a goal node

Any, or the best, or all solutions

30

Problem Types
Deterministic, fully observable

single-state problem
Agent knows exactly which state it will be in;
solution is a sequence

Non-observable
sensorless problem (conformant problem)

Agent may have no idea where it is; solution is a sequence
[Left, Suck, Right, Suck] works!
Later: represent set of states IMPLICITLY: logic, probabilities

Nondeterministic and/or partially observable
contingency problem

Spse: SUCK drops dirt, iff no dirt there
Agent must sense state WHILE executing, to decide how to act
(percepts provide new information about current state)
Soln = tree, policy … interleaving: search, execution

Unknown state space
exploration problem

31

What if no sensors?… and don't know initial state?
⇒

Each node is Set Of States

32

Non-Observable (vacuum world)

Sensorless, start in
{1,2,3,4,5,6,7,8 }

Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

Contingency
Nondeterministic: Suck may
make dirty a clean carpet
Partially observable: location, dirt at current
location.
Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

36

(Real World) State vs
(Search) Node

A state corresponds to real world
… represents a physical conguration
A node is a data structure
… part of a search tree
Node x has parent, children, depth, path cost g(x)
A state does not!
Many nodes can correspond to same state

37

ApplicationsApplications

Route finding: airline travel,
telephone/computer networks
Pipe routing, VLSI routing
Pharmaceutical drug design
Robot motion planning
Video games

38

SummarySummary

Problem-solving agent
State space, successor function, search
Examples:

Travel Task
House cleaning
8-queens
Assembly planning

Assumptions of basic search

	Search Problems
	Search Overview
	Travel Task
	Clean House� Task
	Vacuum Cleaner Space
	Why Search?
	General Search Task
	Vacuum Cleaner Environment
	Search Graph
	Optimal Solution
	Example: The 8-puzzle
	Example: 8-queens
	Example: 8-queens�Formulation #1
	Example: 8-queens�Formulation #2
	Example: robotic assembly
	Example: Assembly Planning
	Example: Assembly Planning
	Example: Assembly Planning
	Solving a Search Problem
	Problem Solving�by Graph Searching
	Generic Search Algorithm
	Tree search example
	Environment…
	Search Problem Variants
	Problem Types
	Slide Number 31
	Non-Observable (vacuum world)
	(Real World) State vs �(Search) Node
	Applications
	Summary

