!'_ Search Problems

Some material from: D Lin, J You, JC Latombe



Search Overview

= Introduction to Search
= Why search?
= Search Problem
= Representation
= Examples

= Blind Search Techniques

= Heuristic Search Techniques

= Stochastic Algorithms

= Game Playing search

= Constraint Satisfaction Problems



You are in ArzD

must get to Bucharest by tomorrow
+ enjoy view \if possible)
+ avoid speeding ticket (if possible)

Travel Task
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Clean House

= Want to clean “house”
= be in State#7 or State#8
= Initial world: State#4 \
ck }

= Actions: { Left, Right, Su
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‘L Vacuum Cleaner Space




i Why Search?

= Typical tasks:
Get to location r ;[ Clean rooms;
Lay out chip; Solve puzzle, ...

= NOT given algorithm,
just know: what is a (good) solution

Goal + preferences

m Search 1s a general problem solving
technigue for such situations



iGeneral Search Task

Given Produce | |

« Initial State = Solution = Optimal Path:
“State#4” or “Arad” Sequence of operations

= Set of actions (“Operators”) from
{Left, Right, Suck} or Initial state,
Travel-along-Road to

= Goal test state satisfying goal test

“Is house clean” or “Bucharest”

= Path cost function ... with minimal path-cost...

Cost of path
(aka “sequence of operators")

...typically sum of operator-costs...
{0.1 for Left/Right, 1 for suck} or
“Distance"



i Vacuum Cleaner Environment

s State:

[dirt in roomA and/or roomB;

VC In roomA xor roomB

s Path Cost:

]
= Operators: { Left, Right, Suck }

= Goal test: { State#7/, State#8 }

c(Left) = c(Right) = 0.2

c(Suck) =1
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‘_h Search Graph
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= State —» Node; Action — Arc
= (Implicit) Graph G = (N,A)
... called state space

= Path Is sequence of nodes

=Ny 8pgs Ny Q120 v Bpgpo M)

s.t. &, = (N, Ny € A

= Label each path = with g(z) € 9
Often g(ﬂ') :2; C‘(/?,-, a/',/'+1 , /7/-_,_1)
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‘_h Optimal Solution

(=1

Qn

-,

= Glven state space G = (N, A), cost-tn g(.)
start node s € N, goal nodes 7 < N,

s SOLUTION ris path fromstogoal f e 7

m OPTIMAL SOLUTION 7" is

solution w/ min'm cost g( " ) <g( )

= R
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‘_h Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
states? locations of tiles

actions? move blank: Ieftm
So want

goal test? = goal state QORTEST SD/
/ >
path cost? L per move 5

[Note: optimal solution of 77-Puzzle family is NP-hard] 14




i Example: 8-queens

Place 8 queens in a chessboard so that
no two queens are in the same row, column, or diagonal

A solution Not a solution
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Example: 8-queens
i Formulation #1

states? any arrangement of O to 8
gueens on the board

actions? add a gueen to any

sguare
I Path irrelevant;
(that is not attacked AT
goal test? |8 queens on the boarus. SOLUTION:

none attacked

(-

path cost?

> 648 = 2.81*10** states with 8 queens
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Example: 8-queens
i Formulation #2

states? any arrangement of
k = 0 to 8 queens In the

& leftmost columns D

actions? |add a queen to any
square Iin the

deftmost empty columm
(that is not attacked)

goal test? |8 queens on the boarr
N none attacked 88 ~ 16M states

path cost? | O - 8! =~ 40K states

- 2,067 states



Example: robotic assembly
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states? real-valued coordinates of robot joint
angles parts of the object to be
assembled

actions? continuous motions of robot joints

goal test? complete assembly

path cost?

time to execute

I8




i Example: Assembly Planning

Initial state

Complex function:
It must find if a collision-free
merging motion exists

—
{Operator: §

e Merge two subassemblies

%

Goal state
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i Example: Assembly Planning

20



i Example: Assembly Planning
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‘_L Solving a Search Problem

= Solve problem by searching over state space

= ... build a search tree over search space
= Root = the initial state

= Successor = from state s to s’, based on some operator

= Leaf = state with no successors in (current) tree
(none exists; or node not yet expanded)

Search strategy = algorithm for deciding
which leaf node to expand next

= Search proceeds by expanding frontier into
unexplored nodes,

until encountering goal node

22



Problem Solving
i by Graph Searching
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‘_h Generic Search Algorithm

Search,...«( Start, operations, isGoal): path

L = make-queue( start)
loop

n:=pop( L)

if [ isGoal n)]

return( n)
= successors( n, operators)

L inserd 5. 1)
until L is empty
return( failure )

Insert could be queue, stack, . ..
defines strategy!
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Tree search example
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‘_L Environment...

This type of search works best when
environment is...

= Observable: Can just “see" the state

s Deterministic: Action have well-defined
known effects

= Static: Environment does NOT change while
thinking

= Discrete: Only finite number of actions, . . .
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‘_h Search Problem Variants

= One or several Initial states
= One or several goal states

= The solution = path vs goal node
= 8-puzzle problem: the path to a goal node
= 8-queen problem: a goal node

= Any, or the best, or all solutions

29



Problem Types
\ s Deterministic, fully observable -

single-state problem

= Agent knows exactly which state it will be in;
solution is a sequence

= Non-observable -
sensorless problem (conformant problem)
= Agent may have no idea where it is; solution is a sequence
= [Left, Suck, Right, Suck] works!
= Later: represent set of states IMPLICITLY: logic, probabilities
= Nondeterministic and/or partially observable -
contingency problem
= Spse: SUCK drops dirt, iff no dirt there

= Agent must sense state WHILE executing, to decide how to act
(percepts provide new information about current state)

= Soln = tree, policy ... interleaving: search, execution

= Unknown state space -
exploration problem

30



= What If no sensors?... and don't know Initial state?
— Each node is Set Of States

31



Non-Observable (vacuum world)

+

start in

© (12345678}

Right goes to {2,4,6,5}
Solution?

[Right, Suck, Left,Suck]

Nondeterministic: Suck may

make dirty a clean carpet

Partially observable: location, dirt at current

location.

Percept: /L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

=]

A (2] [ &) [#4
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(Real World) State vs
(Search) Node

= A state corresponds to real world
... represents a physical conguration

= A node is a data structure
... part of a search tree

= Node x has parent, children, depith, path cost g(x)
A state does not!

= Many nodes can correspond to same state

parent, action

State || 5 ||| 4 Node depth =6

g==6
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i Applications

= Route finding: airline travel,

telephone/com
= Pipe routing, V
= Pharmaceutica

outer networks
_SI routing

drug design

= Robot motion planning

= Video games
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i Summary

Problem-solving agent

State space, successor function, search

Examples:

= Travel Task

= House cleaning

= 8-gqueens

= Assembly planning

Assumptions of basic search
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