!'_ Search Problems

Some material from: D Lin, J You, JC Latombe

Search Overview

= Introduction to Search
= Why search?
= Search Problem
= Representation
= Examples

= Blind Search Techniques

= Heuristic Search Techniques

= Stochastic Algorithms

= Game Playing search

= Constraint Satisfaction Problems

You are in ArzD

must get to Bucharest by tomorrow
+ enjoy view \if possible)
+ avoid speeding ticket (if possible)

Travel Task

] Oradea
[|
. [] lasi
Arad (I}
Sibiu Fagaras
[| Vaslui
Timisoara . Rimnicu Vilcea
) Pitesti
[] Lugoj
7 F
_ / \ Hirsova
[] Mehadia 2\ Urziceni
’ &lv
Bucharest
Dobreta |9
)))
Craiova Eforie

[] Giurgiu 4

Clean House

= Want to clean “house”
= be in State#7 or State#8
= Initial world: State#4 \
ck }

= Actions: { Left, Right, Su

ol
&LUL&L

:

‘L Vacuum Cleaner Space

i Why Search?

= Typical tasks:
Get to location r ;[Clean rooms;
Lay out chip; Solve puzzle, ...

= NOT given algorithm,
just know: what is a (good) solution

Goal + preferences

m Search 1s a general problem solving
technigue for such situations

iGeneral Search Task

Given Produce | |

« Initial State = Solution = Optimal Path:
“State#4” or “Arad” Sequence of operations

= Set of actions (“Operators”) from
{Left, Right, Suck} or Initial state,
Travel-along-Road to

= Goal test state satisfying goal test

“Is house clean” or “Bucharest”

= Path cost function ... with minimal path-cost...

Cost of path
(aka “sequence of operators")

...typically sum of operator-costs...
{0.1 for Left/Right, 1 for suck} or
“Distance"

i Vacuum Cleaner Environment

s State:

[dirt in roomA and/or roomB;

VC In roomA xor roomB

s Path Cost:

]
= Operators: { Left, Right, Suck }

= Goal test: { State#7/, State#8 }

c(Left) = c(Right) = 0.2

c(Suck) =1

0

0.2
LC‘&Q# |
] TF
O :

m&L %

1

L TED C

WILIN

‘_h Search Graph

O
FECTHD

= State —» Node; Action — Arc
= (Implicit) Graph G = (N,A)
... called state space

= Path Is sequence of nodes

=Ny 8pgs Ny Q120 v Bpgpo M)

s.t. &, = (N, Ny € A

= Label each path = with g(z) € 9
Often g(ﬂ') :2; C‘(/?,-, a/',/'+1 , /7/-_,_1)

Wik §

0

E‘ﬂ#
>

1

i

m&L

‘_h Optimal Solution

(=1

Qn

-,

= Glven state space G = (N, A), cost-tn g(.)
start node s € N, goal nodes 7 < N,

s SOLUTION ris path fromstogoal f e 7

m OPTIMAL SOLUTION 7" is

solution w/ min'm cost g(") <g()

= R

13

‘_h Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
states? locations of tiles

actions? move blank: Ieftm
So want

goal test? = goal state QORTEST SD/
/ >
path cost? L per move 5

[Note: optimal solution of 77-Puzzle family is NP-hard] 14

i Example: 8-queens

Place 8 queens in a chessboard so that
no two queens are in the same row, column, or diagonal

A solution Not a solution

15

Example: 8-queens
i Formulation #1

states? any arrangement of O to 8
gueens on the board

actions? add a gueen to any

sguare
I Path irrelevant;
(that is not attacked AT
goal test? |8 queens on the boarus. SOLUTION:

none attacked

(-

path cost?

> 648 = 2.81*10** states with 8 queens

16

Example: 8-queens
i Formulation #2

states? any arrangement of
k = 0 to 8 queens In the

& leftmost columns D

actions? |add a queen to any
square Iin the

deftmost empty columm
(that is not attacked)

goal test? |8 queens on the boarr
N none attacked 88 ~ 16M states

path cost? | O - 8! =~ 40K states

- 2,067 states

Example: robotic assembly

+

P

-l

(

(,

states? real-valued coordinates of robot joint
angles parts of the object to be
assembled

actions? continuous motions of robot joints

goal test? complete assembly

path cost?

time to execute

I8

i Example: Assembly Planning

Initial state

Complex function:
It must find if a collision-free
merging motion exists

—
{Operator: §

e Merge two subassemblies

%

Goal state

19

i Example: Assembly Planning

20

i Example: Assembly Planning

T U T U il

LI
} Uit
/

‘_L Solving a Search Problem

= Solve problem by searching over state space

= ... build a search tree over search space
= Root = the initial state

= Successor = from state s to s’, based on some operator

= Leaf = state with no successors in (current) tree
(none exists; or node not yet expanded)

Search strategy = algorithm for deciding
which leaf node to expand next

= Search proceeds by expanding frontier into
unexplored nodes,

until encountering goal node

22

Problem Solving
i by Graph Searching

23

‘_h Generic Search Algorithm

Search,...«(Start, operations, isGoal): path

L = make-queue(start)
loop

n:=pop(L)

if [isGoal n)]

return(n)
= successors(n, operators)

L inserd 5. 1)
until L is empty
return(failure)

Insert could be queue, stack, . ..
defines strategy!

25

Tree search example

26

‘_L Environment...

This type of search works best when
environment is...

= Observable: Can just “see" the state

s Deterministic: Action have well-defined
known effects

= Static: Environment does NOT change while
thinking

= Discrete: Only finite number of actions, . . .

28

‘_h Search Problem Variants

= One or several Initial states
= One or several goal states

= The solution = path vs goal node
= 8-puzzle problem: the path to a goal node
= 8-queen problem: a goal node

= Any, or the best, or all solutions

29

Problem Types
\ s Deterministic, fully observable -

single-state problem

= Agent knows exactly which state it will be in;
solution is a sequence

= Non-observable -
sensorless problem (conformant problem)
= Agent may have no idea where it is; solution is a sequence
= [Left, Suck, Right, Suck] works!
= Later: represent set of states IMPLICITLY: logic, probabilities
= Nondeterministic and/or partially observable -
contingency problem
= Spse: SUCK drops dirt, iff no dirt there

= Agent must sense state WHILE executing, to decide how to act
(percepts provide new information about current state)

= Soln = tree, policy ... interleaving: search, execution

= Unknown state space -
exploration problem

30

= What If no sensors?... and don't know Initial state?
— Each node is Set Of States

31

Non-Observable (vacuum world)

+

start in

© (12345678}

Right goes to {2,4,6,5}
Solution?

[Right, Suck, Left,Suck]

Nondeterministic: Suck may

make dirty a clean carpet

Partially observable: location, dirt at current

location.

Percept: /L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

=]

A (2] [&) [#4

32

(Real World) State vs
(Search) Node

= A state corresponds to real world
... represents a physical conguration

= A node is a data structure
... part of a search tree

= Node x has parent, children, depith, path cost g(x)
A state does not!

= Many nodes can correspond to same state

parent, action

State || 5 ||| 4 Node depth =6

g==6

36

i Applications

= Route finding: airline travel,

telephone/com
= Pipe routing, V
= Pharmaceutica

outer networks
_SI routing

drug design

= Robot motion planning

= Video games

37

i Summary

Problem-solving agent

State space, successor function, search

Examples:

= Travel Task

= House cleaning

= 8-gqueens

= Assembly planning

Assumptions of basic search

38

	Search Problems
	Search Overview
	Travel Task
	Clean House� Task
	Vacuum Cleaner Space
	Why Search?
	General Search Task
	Vacuum Cleaner Environment
	Search Graph
	Optimal Solution
	Example: The 8-puzzle
	Example: 8-queens
	Example: 8-queens�Formulation #1
	Example: 8-queens�Formulation #2
	Example: robotic assembly
	Example: Assembly Planning
	Example: Assembly Planning
	Example: Assembly Planning
	Solving a Search Problem
	Problem Solving�by Graph Searching
	Generic Search Algorithm
	Tree search example
	Environment…
	Search Problem Variants
	Problem Types
	Slide Number 31
	Non-Observable (vacuum world)
	(Real World) State vs �(Search) Node
	Applications
	Summary

