Decisions with Multiple Agents: Game Theory & Mechanism Design

RN, Chapter 17.6_77.7

Thanks to R Holte

Decision Theoretic Agents

- Introduction to Probability [Ch13]
- Belief networks [Ch14]
- Dynamic Belief Networks [Ch15]
- Single Decision [Ch16]
- Sequential Decisions [Ch17]
- Game Theory + Mechanism Design [Ch17.6 – 17.7]

Outline

Game Theory

- Motivation: Multiple agents
- Dominant Action
- Strategy
- Prisoner's Dilemma
 - Domain Strategy Equilibrium; Paretto Optimum; Nash Equilibrium
- Mixed Strategy (Mixed Nash Equilibrium)
- Iterated Games
- Mechanism Design
 - Tragedy of the Commons
 - Auctions
 - Price of Anarchy
 - Combinatorial Auctions

Framework

- Make decisions in Uncertain Environments
 So far: due to "random" (benign) events
- What if due to OTHER AGENTS ?
- Alternating move, complete information, . . .

 \Rightarrow 2-player games

- (use minimax, alpha-beta, ... to find optimal moves)
- But
 - simultaneous moves
 - partial information
 - stochastic outcomes
- Relates to
 - auctions (frequency spectrum, . . .)
 - product development / pricing decisions
 - national defense

Billions of \$\$s, 100,000's of lives, . . .

- Buyer: yes is better (3 vs 0)
- If *Seller*.fullPrice, then *Buyer*:yes is better (1 vs 0)
 So clearly *Buyer* should play yes ! For *Buyer*, yes dominates no

Simple Situation, con't

What should *Seller* do?
As *Buyer* will play yes, either *Seller*:discount ⇒ 0.6 *Seller*:fullPrice ⇒ 2.5
So *Seller* should play fullPrice

Note: If *Buyer*:no, then *Seller* should play discount : 0.1 vs 0.0 ... so what... NOT going to happen!

- Not "zero-sum" game
- Usually not so easy ...

Two-Finger Morra • Two players: O, E • *O* plays 1 or 2 E plays 1 or 2 simultaneously Let f = O + E be TOTAL # • If f is $\begin{cases} \text{odd} \\ \text{even} \end{cases}$, then $\begin{cases} O \\ E \end{cases}$ collects *\$f* from other aka Inspection Game; Matching Pennies; . . . Payoff matrix: O: one O: two *E:* one E=2; O=-2 E=-3; O=3 *E:* two E=-3; O=3 E=4; O=-4

What should *E* do? ... *O* do?
 No fixed single-action works ...

Player Strategy

	<i>O:</i> one	<i>O:</i> two
E: one	E=2; O=-2	E=-3; O=3
<i>E:</i> two	E=-3; O=3	E=4; O=-4

- Pure Strategy \Rightarrow deterministic action
 - Eg, O plays two
- Mixed Strategy
 - Eg, [0.3 : one; 0.7 : two]
- Strategy Profile \equiv strategy of EACH player
 - Eg, $\begin{pmatrix} O & [0.3: one; 0.7: two] \\ E & [0.9: one; 0.1: two] \end{pmatrix}$
- O-sum game:
 - Player#1's gain = Player#2's loss
 - Not always true... *Buyer/Seller*!
 Sometimes. . .
 - single action-pair can BENEFIT BOTH, or
 - single action-pair can HURT BOTH !

	Buyer: yes	Buyer: no
Seller: discount	B=3; S=0.6	B=0; S=0.1
Seller: fullprice	B=1; S=2.5	B=0; S=0.0

Notes on Framework

In Seller/Buyer.

	Buyer: yes	<i>Buyer:</i> no
Seller: discount	B=3; S=0.6	B=0; S=0.1
Seller: fullprice	B=1; S=2.5	B=0; S=0.0

FIXED STRATEGY is optimal: $\begin{cases} Buyer & [1.0: yes; 0.0: no] \\ Seller & [0.0: discount; 1.0: full Price] \end{cases}$

- Can eliminate any row that is DOMINATED by another, for each player
- No FIXED STRATEGY is optimal for Morra:

- Can have >2 options for each player
- Different action sets, for different players

O: two

E=2; O=-2 E=-3; O=3 E=-3; O=3 E=4; O=-4

O: one

E: one

E: two

Prisoner's Dilemma

- Alice, Bob arrested for burglary ... interrogated separately
 - If BOTH testify:
 A, B each get -5 (5 years)
 - If BOTH refuse: *A, B* each get -1
 - If A testifies but B refuses: A gets 0, B gets -10
 - If B testifies but A refuses: B gets 0, A gets -10

	A: testify	A: refuse
B: testify	A= -5; B= -5	<i>A</i> = -10; <i>B</i> = 0
<i>B:</i> refuse	<i>A</i> = 0; B= -10	<i>A</i> = -1; <i>B</i> = -1

Price of oil in Oil Cartel
 Disarming around the world

. . .

Prisoner's Dilemma, con't

What should A do?
B is either testify or refuse
If B:testify, then

A:testify is better (-5 vs -10)

If B:refuse, then

A:testify is better (0 vs -1)

So clearly A should play testify !

testify is DOMINANT strategy (for A)

What about B ?

Prisoner's Dilemma, III

Clearly B show testify also (same argument)

- So (A : testify; B : testify) is Dominant Strategy Equilibrium w/payoff: A = -5, B = -5
- ... but consider $\langle A : \text{refuse}; B : \text{refuse} \rangle$ Payoff A = -1, B = -1 is better for BOTH!
 - jointly preferred outcome occurs when each chooses individually worse strategy

Why not $\langle A:refuse, B:refuse \rangle$?

〈 A:refuse, B:refuse 〉 is not "equilibrium": if A knows that B:refuse, then A:testify ! (payoff ⟨0, -10 〉, not ⟨-5, -5 〉) le, player A has incentive to change!
Strategy profile S is Nash equilibrium iff ∀ player P, P would do worse if deviated from S[P], when all other players follow S

Thrm: Every game has ≥ 1 Nash Equilibrium !

Every dominant strategy equilibrium is Nash but ... ∃ Nash Equil. even if no dominant! ... i.e., ∃ rational strategies even if no dominant strategy/s

Pareto Optimal

	A: testify	A: refuse
B: testify	<i>A</i> = -5; <i>B</i> = -5	<i>A</i> = -10; <i>B</i> =0
<i>B:</i> refuse	<i>A</i> =0; B= -10	<i>A</i> = -1; <i>B</i> = -1

A : refuse; B : refuse > is Pareto Optimal as

- ¬∃ strategy where
 - \ge 1 players do better,
 - O players do worse
- 〈 A : testify; B : testify 〉 is NOT Pareto Optimal

DVD vs CD

Example with no dominant strategies...

- Acme: video game Hardware Best: video game Software
- Both WIN if both use DVD
 Both WIN if both use CD

	A: dvd	A: cd
<i>B:</i> dvd	A= 9; B= 9	<i>A</i> = -4; <i>B</i> =-1
<i>B:</i> cd	A=-3; B= -1	<i>A</i> = 5; <i>B</i> = 5

- NO dominant strategies
- 2 Nash Equilibria: < dvd, dvd >, < cd, cd >
 (If < dvd, dvd > and A switches to cd, then A will suffer...)
- Which Nash Equilibrium?
 - Prefer < dvd, dvd > as Pareto Optimal (payoff < A = 9; B = 9 > better than
 < cd, cd>, w/ < A = 5; B = 5 >)
 - ... but sometimes ≥ 1 Pareto Optimal Nash Equilibrium...

?Pure? Nash Equilibrium

Morra

$$\begin{array}{c|ccc} O: \text{ one } & O: \text{ two} \\ \hline E: \text{ one } & E=2; \ O=-2 & E=-3; \ O=3 \\ E: \text{ two } & E=-3; \ O=3 & E=4; \ O=-4 \end{array}$$

No PURE strategy

(else *O* could predict *E*, and beat it)

- Thrm [von Neumann, 1928]: For every 2-player, 0-sum game, ∃ OPTIMAL mixed strategy
- Let U(e, o) be payoff to E if E:e, O:o
 (So E is maximizing, O is minimizing)

Mixed Nash Equilibrium

- Spse E plays

 [p : one; (1 p) : two]
 For each FIXED p, *O* plays pure strategy
- If O plays one, payoff is

 $p \times U(\text{one, one}) + (1 - p) \times U(\text{one, two})$ $= p \times 2 + (1 - p) \times -3 = 5p - 3$

If *O* plays two, payoff is **4 – 7p**

 \Rightarrow For each *p*, O plays

	<i>O:</i> one	<i>O:</i> two
E: one	E=2; O= -2	E=-3; O=3
<i>E:</i> two	E= -3; O=3	E=4; O=-4

 E can get maximum of { 5p − 3, 4 − 7p } ... largest at p = 7/12
 ⇒ E should play [7/12 : one; 5/12 : two] Utility is −1/12

What about O?

	<i>O:</i> one	<i>O:</i> two
E: one	E=2; O= -2	E=-3; O=3
E: two	E= -3; O=3	E=4; O=-4

- Spse *O* plays
 [q : one; (1 q) : two]
 - $\Rightarrow \text{For each q, E plays} \begin{cases} \text{one if } 5q 3 \le 4 7q \\ \text{two if } 5q 3 > 4 7q \end{cases}$
- $\Rightarrow O$ should minimize {5q 3, 4 7q} ... smallest when **q = 7/12**
- ⇒ O should play [7/12 : one; 5/12 : two] Utility is -1/12
- Maximin equilibrium... and Nash Equilibrium!
- Coincidence that O and E have same strategy.
 NOT coincidence that utility is same!

Minimax Game Trees for Morra

General Results

- Every 2-player 0-sum game has a maximin equilibrium ...often a mixed strategy.
- Thrm: Every Nash equilibrium in O-sum game is maximin for both players.
- Typically more complex:
 - when n actions, need hyper-planes (not lines)
 - need to remove dominated pure strategies (recursively)
 - use linear programming

Iterated Prisoner Dilemma

 If A, B play just once... expect each to *testify*,

	A: testify	A: refuse
B: testify	A= -5; B= -5	<i>A</i> = -10; <i>B</i> =0
<i>B:</i> refuse	A=0; B= -10	<i>A</i> = -1; <i>B</i> = -1

- ... even though suboptimal for BOTH !
- If play MANY times. . . Will both refuse, so BOTH do better?
- Probably not: Suppose play 100 times
 - On R#100, no further repeats, so (testify, testify) !

 - ••••
 - So sub-optimal all the way down... each gets 500 years!!

Iterated P.D., con't

- Suppose 99% chance of meeting again ... not clear which round is last ??Co-operation??
- Perpetual Punishment:
 - refuse unless other player ever testify
 - As long as both players refuse: $\sum_{t=0}^{\infty} 0.99^t \times (-1) = -100$

If one player testify:

- O for this round, then -10 forever
- $\sum_{t=i}^{\infty} 0.99^t \times (-10) = -990$

(Mutually assured destruction ... both players lose)

 \Rightarrow neither player should testify! $\Rightarrow \langle$ refuse, refuse \rangle at each step!

Iterated P.D., III

tit-for-tat

MyAction₁ = refuse, then
 MyAction_{t+1} = OpponentAction_t
 Works pretty well...

Outline

- Game Theory
 - Motivation: Multiple agents
 - Dominant Action
 - Strategy
 - Prisoner's Dilemma
 - Domain Strategy Equilibrium; Paretto Optimum; Nash Equilibrium
 - Mixed Strategy (Mixed Nash Equilibrium)
 - Iterated Games
- Mechanism Design
 - Tragedy of the Commons
 - Auctions
 - Price of Anarchy
 - Combinatorial Auctions

Mechanism Design: Inverse Game Theory

- Design rules for Agent environment such that
 Agent maximizing OWN utility
 will maximize COLLECTIVE GOOD
- Eg:
 - Design protocols for
 - Internet Trac routers to maximize global throughput
 - auction off cheap airline tickets
 - assign medical intern to hospitals
 - get soccer players to cooperate
- 1990, gov't auctioned off frequencies due to bad design, lost \$\$ millions!
- Defn: Mechanism
 - set of strategies each agent may adopt
 - outcome rule G determining payoff for any strategy profile of allowable strategies
- Why complicated?

Tragedy of the Commons

- Every farmer can bring livestock to town commons
 destruction from overgrazing
 - . . . negative utility to ALL farmers
- Every individual farmer acted rationally
 - use of commons is free
 - refraining from use won't help, as others will use it anyway (use of atmosphere, oceans, . . .)
- Solution: Setting prices
 - ... must explicate external effects on global utility
 - What is correct price?
- Goal: Each agent maximizes global utility Impossible for agent, as does not know
 - current state
 - effect of actions on other agents
- First: simplify to deal with simpler decision

Price of Anarchy

- $\mathbf{A} = \begin{bmatrix} 1.0 & \alpha \\ 0 & 1.0 \\ 1.0 & \beta \end{bmatrix} \mathbf{B}$
- Many people want to go from A to B
 - Cost of $A \rightarrow \beta$ is 1; from $\alpha \rightarrow B$ is 1; $\alpha \leftrightarrow \beta$ is 0
 - Cost from A to α is "% of people on route" $x \in [0,1]$
 - Cost from β to B is "% of people on route" $y \in [0,1]$
- Which path would YOU take?
 - As x \leq 1 and y \leq 1, clearly A $\rightarrow \alpha \rightarrow \beta \rightarrow$ B is best (always \leq 2)
- But if EVERYONE takes it, $cost \equiv 2$
- non Anarchy:
 - [A-M] take $A \rightarrow \alpha \rightarrow B$
 - [N-Z] take $A \rightarrow \beta \rightarrow B$

Everyone pays only 1.5 !

Price of Anarchy

Α 0 0.5

0.5

α

1.0

- Many people want to go from A to B
 - Cost of $A \rightarrow \beta$ is 1; from $\alpha \rightarrow B$ is 1; $\alpha \leftrightarrow \beta$ is 0
 - Cost from A to α is "% of people on route" $x \in [0,1]$
 - Cost from β to B is "% of people on route" $y \in [0,1]$
- Which path would YOU take?
 - As x \leq 1 and y \leq 1, clearly A $\rightarrow \alpha \rightarrow \beta \rightarrow$ B is best (always \leq 2)
- But if EVERYONE takes it, $cost \equiv 2$
- non Anarchy:
 - [A-M] take $A \rightarrow \alpha \rightarrow B$
 - [N-Z] take $A \rightarrow \beta \rightarrow B$

Everyone pays only 1.5 !

Auctions

Mechanism for selling goods to individuals

- ("good" \equiv item for sale)
- Single "good"
 Each bidder Q_i has utility V_i for good
 - ... only Q_i knows V_i
- English Auction
 - auctioneer increments prices of good,
 - until only 1 bidder remains
 - Bidder w/ highest V_i gets good, at price $b_m \neq d$
 - (*b_m* is highest OTHER bid, *d* is increment)
- Strategy for Q_i :
 - bid current price p if $p \le v_i$

English Auction (con't)

 "Dominant" as independent of other's strategy No need to contemplate other player's strategy

Strategy-proof mechanism: players have dominant strategy (reveal true incentives)

but... High communication costs!

Sealed Bid Auction

Each player posts single bid to auctioneer

- *Q_i* w/highest bid *b_i* wins
- . . . Q_i pays $b_{i'}$ to get good
- **Q**: Should Q_i bid v_i ?
- A: Not dominant!

Better is min{ v_i , $b_m + \epsilon$ }

(b_m is max of others)

- Drawbacks:
 - player w/highest v_i might not get good
 - ... so seller gets too little!
 - ... as "wrong" bidder gets good!
 - bidders spend time contemplating others

Sealed-Bid 2nd-Price Auction

- Each player posts single bid to auctioneer
 - Q_i w/highest bid b_i wins
 - ... Q_i pays b_m , gets good
 - b_m is 2nd highest bid
- Q: Should Q_i bid V_i ?
- A: Yes, is dominant!
 - Q_i bids b_i

• Utility to
$$Q_i$$
 is $\begin{cases} V_i - b_m & \text{if } b_i > b_m \\ 0 & \text{otherwise} \end{cases}$

- $u_i(b_i, b_m) = If v_i b_m > 0$, any bid winning auction is good eg, bid v_i
- If v_i b_m < 0, any bid losing auction is good e.g., bid v_i
- So v_i is appropriate in all cases
 - ... is ONLY value appropriate in all cases!
- "Vickrey Auction" (Nobel prize)

Rabbit Auction

Flopsy Mopsy

C1: will pay \$5 for any one
C2: will pay \$9 for a breeding pair
(Flopsy and one of the others)
C3: will pay \$12 for all three

Jack

Combinatorial Auctions

- Auction all items simultaneously
- Bid specifies a price and a set of items ("all or nothing")
- Exclusive-OR: use "dummy item" representing the bidder
- Number of Rounds
 - Multi-round or Single-round
- Number of Units (per item)
 - 1 unit vs Many units
- Number of Items
 - 1 item vs Many items

\$12 for all three

\$9 for a breeding pair

\$5 for any one

Applications

- Airport gates
 - Gate in YEG at 2pm &&
 - Gate in YYZ at 6pm
- Parcels of land
 - 4 adjacent beach-front parcels, for 1 hotel
- FCC spectrum auctions
- Goods distribution routes
- eBay

Winner Determination

- Problem: how to determine who wins ?
- Choose a set of bids that
 - are feasible (disjoint) and
 - maximize the auctioneer's profit.
- NP-complete (set packing problem)

How Should Players Interact?

- Strategy
 - Dominant Strategy Equilibrium
 - Pareto Optimum
 - Nash Equilibrium
 - Mixed Strategy
- Prisoner's Dilemma, Iterated Games
- Mechanism Design
 - Non trivial (Tragedy of the Commons... of Anarchy)
 - Auctions: English, Sealed Bid, Vickrey
 - Combinatorial Auction

Bonus Material: Poker

<u>2-player</u>, <u>limit</u>, Texas Hold'em

The Challenges

- Large game tree
- Stochastic element
- Imperfect information
 - during hand, and after
- Variable number of players (2–10)
- Aim is not just to win, but to maximize winnings
 - Need to exploit opponent weaknesses

Game-Theoretic Approach

Linear Programming

2-player, 0-sum game with chance events, mixed strategies, and imperfect information can be formulated as a linear program (LP).

- LP can be solved in *polynomial time* to produce Nash strategies for P1 and P2.
- Guaranteed to *minimize losses* against the strongest possible opponent.
- "Sequence form" the LP is linear in the size of the game tree

(Koller, Megiddo, and von Stengel)

Linear Programming

- 2-player, 0-sum game with chance events, mixed strategies, and imperfect information can be formulated as a liper ran (LP).
- LP can be solved in **10¹⁸** P2.
- Guaranteed to *minimize losses* against the strongest possible opponent.
- "Sequence form" the LP is lir the size of the game

(Koller, Megiddo, and

Why Equilibrium?

In

- symmetric,
- two player,
- zero-sum games,
 playing an equilibrium
 - is equivalent to

- having a worst-case performance of tying.
- Given the state of the art of modeling of opponents, ... not be so bad.

PsOpti (Sparbot)

- Abstract game tree of size 10⁷
- Bluffing, slow play, etc.
 fall out from the mathematics.
- Best 2-player program to date !
- Has held its own against 2 world-class humans
- Won the AAAI'06 poker-bot competitions

PsOpti2 vs. "theCount"

PsOpti's Weaknesses

- The equilibrium strategy for the highly abstract game is far from perfect.
- No opponent modelling.
 - Nash equilibrium not the best strategy:
 - Non-adaptive
 - Defensive
 - Even the best humans have weaknesses that should be exploited

http://www.poker-academy.com

Man-Machine Poker Match! (2007)

A graph for each half of the duplicate match plotted in Poker Academy Prospector

http://games.cs.ualberta.ca/poker/man-machine/

Results

AAAI 2007

- 4 sessions; each 500-hard *duplicate matches*
- Ali won \$390; Phil lost \$465.
 -\$75 → DRAW
- 2. Phil: \$1570; Ali: -\$2495
 -\$925 → Polaris WON!
- 3. Ali: -\$625; Phil: +\$1455
 - +830 \rightarrow Polaris LOST!
- 4. Ali: +\$4605; Phil: +\$110
 - + $$570 \rightarrow Polaris LOST!$
- Total: 1-2-1
 - ... but only \$395 over 2000 hands!

Man vs Machine Poker

- Comparable with top human players (2007)
- Attracted international media attention

"We won, not by a significant amount, and the bots are closing in." – Phil Laak

"I really am happy it's over. I'm surprised we won ... It's already so good it will be tough to beat in future." - Ali Eslami

The Sydney Morning Herald smh.com.au San Francisco Chronicle

