

Partially-Observable MDPs

Decision Theoretic Agents

- Introduction to Probability [Ch13]
- Belief networks [Ch14]
- Dynamic Belief Networks [Ch15]
- Single Decision [Ch16]
- Sequential Decisions [Ch17]
 - MDPs [Ch17.1 17.3]
 - (Value Iteration, Policy Iteration, $TD(\lambda)$)
 - POMDPs [Ch17.4 17.5]

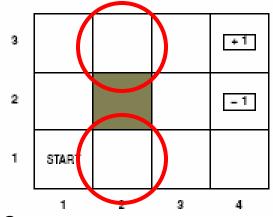
Dynamic Decision Networks

Game Theory [Ch17.6 – 17.7]

Partially Accessible Environment

 In inaccessible environment percept NOT enough to determine state Partially Observable Markov Decision Problem "POMDP"
 ⇒ Need to base decision on

DISTRIBUTION over possible states, based all previous percepts, . . . (E)



Eg: Given only distance to walls in 4 directions, "[2, 1] = [2, 3]" but DIFFERENT actions for each! If P(Loc[2,1] | E) = 0.8, P(Loc[2,3] | E) = 0.2then utility of action a is $0.8 \times U(a | Loc[2,1]) + 0.2 \times U(a | Loc[2,3])$

Dealing with POMDPs

- Why not view "percept == state"... and just apply MDP alg to "percept"??
- Markov property does NOT hold for percepts (percept ≠ states)
 - MDP means
 - next state depends only on current state
 - But in POMDP: next percept does NOT depend only on current percept
- 2. May need to take action to *reduce uncertainty* . . . not needed in MDP, as always KNOW state
 ⇒ utility should include ValueOfInfo. . .

Extreme Case: Senseless Agent

- What if NO observations?
- Perhaps
 - act to reduce uncertainty
 - then go to goal
 - (a) Initially: could be ANYWHERE
 - (b) After "Left" 5 times
 - (c) ... then "Up" 5 times
 - (d) ... then "Right" 5 times
- Prob of reaching [4,3]: 77.5% but slow: Utility ≈ 0.08

0.111	0.111	0.111	0.000
0.111		0.111	0.000
0.111	0.111	0.111	0.111

0.300	0.010	0.008	0.000	
0.221		0.059	0.012	
0.371	0.012	0.008	0.000	

0.622	0.221	0.071	0.024
0.005		0.003	0.022
0.003	0.024	0.003	0.000

0.005	0.007	0.019	0.775	
0.034		0.007	0.105	
0.005	0.006	0.008	0.030	

"Senseless" Multi-step Agents

 Want sequence of actions [a₁, ..., a_n] that maximizes the expected utility:

 $\operatorname{argmax}_{[a_{1},...,a_{n}]} \sum_{[s_{0},...,s_{n}]} P(s_{0},...,s_{n} \mid a_{1},...,a_{n}) \times U([s_{0},a_{1},...,a_{n},s_{n}])$

- If deterministic, use problem solving techniques to "solve"
 - (finding optimal sequence)
- Stochastic ⇒ don't know state. . .
 but deal w/ DISTRIBUTION OVER STATES

Unobservable Environments

View Action-Sequence as BIG action

For each possible actions-sequence $[a_1, \ldots, a_n]$ compute $P(S_0, S_1, \ldots, S_n | a_1, \ldots, a_n)$ compute $U([s_0, a_1, \ldots, a_n, s_n])$ compute $score = \sum_{[s_0, \ldots, s_n]} P(s_0, \ldots, s_n | a_1, \ldots, a_n) \cdot U([s_0, a_1, \ldots, a_n, s_n])$ Return action-sequence that gave maximum score

• As Markovian:

- $P(S_0, S_1, ..., S_n | a_1, ..., a_n) =$ $P(S_0) P(S_1 | S_0, a_1) \times P(S_2 | S_1, a_2) \times ... \times P(S_n | S_{n-1}, a_n)$
- U($[s_0, a_1, ..., a_n, s_n]$) = $\sum_t R(s_t)$
- ⇒ For each action sequence, requires searching over all possible sequences of resulting states.
 If P(S_{t+1} | S_t, A_{t+1}) deterministic, can be solved using search...

Next action must depends on Complete Sequence of Percepts, o (That is all available to agent!) Compress o into "distribution over states" • $p = [p_1, ..., p_n]$ where $p_i = P(\text{ state} = i | o)$ Given new percept O_t, $\mathbf{p}' = [P(state = i | \mathbf{o}, \mathbf{o}_{t})]$

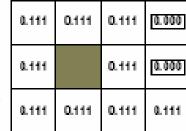
9

POMDPs

- Partially Observable Markov Decision Problem
 - $M^{a}_{s,s'} \equiv P(s' | s, a)$: transition
 - R(s) : reward function
 - O(s, o) = P(o | s) : observation model [If senseless: O(s, {}) = 1.0]
- Belief state $b(.) \equiv$ distribution over states
 - $b(s) \equiv P(s \mid ...)$ is prob b assigns to s
 - Eg: $b_{init} = \langle 1/9, 1/9, ..., 1/9, 0, 0 \rangle$
- Given b(.), after action a, observation o
 - $b'(s') = O(s', o) \sum_{s} P(s | a, s') b(s)$
 - b' = Forward(b, a, o)

Filtering!

Optimal action depends only on current belief state!
 . . . not on actual state



What to do, in POMDP?

$$b'(s') = \alpha O(s', o) \sum_{s} P(s' | a, s') b(s)$$

- Policy π maps BELIEF STATE b to ACTION a $\pi(b) = a$ π : [0, 1]ⁿ \mapsto { North, East, South, West }
- Given optimal policy π^{*}
 - 1. Given b_i compute/execute action $a_i = \pi(b_i)$
 - 2. Receive observation o_i
 - 3. Compute b_{i+1} = Forward(b_i, a_i, o_i)
- With MDPs, can just "reach" new state ... no observations...
 With POMDPs, need to know observation o_i to determine b'
- Some POMDP actions may be
 - to reduce uncertainty
 - to gather information
- How to compute optimal π^* ?
 - . . . perhaps make POMDP look like MDP?

Transform POMDP into MDP ?

- Every MDP needs
 - Transition M: State Action \mapsto Distribution over State
 - Reward R: State $\mapsto \Re$
- \Rightarrow Given "belief state" b, need

• $\rho(b) = (expected)$ reward for being in b = $\sum_{s} b(s) R(s)$

• $\mu(b, a, b') = P(b' | b, a)$

... prob of reaching b' if take action a in b. . .

Depends on observation o:

• $P(b' | a, b) = \sum_{o} P(b' | o, a, b) P(o | a, b)$

= $\sum_{o} \delta$ [b' = Forward(b, a, o)] P(o | a, b)

• where δ [b' = Forward(b, a, o)] = 1 *iff* b' = Forward(b, a, o)

Need DISTRIBUTION over observations . . .

Distribution over Observations

•
$$P(o | a, b)$$

= $\sum_{s'} P(o | a, s', b) P(s' | a, b)$
= $\sum_{s'} O(s', o) P(s' | a, b)$
= $\sum_{s'} O(s', o) \sum_{s} P(s' | a, s) b(s)$

• So...

$$\mu_{b,b'}^{a} = P(b' | a, b)$$

= $\sum_{o} P(b' | o, a, b) P(o | a, b)$
= $\sum_{o} \|b' = Forward(b, a, o)\| \sum_{s'} O(s', o) \sum_{s} P(s' | a, s) b(s)$

$\mathsf{POMDP} \Rightarrow^? \mathsf{MDP} ??$

 μ^a_{b,b'} = P(b' | b, a) ρ(b) = (expected) reward ... define OBSERVABLE MDP! (Agent can always observe its beliefs!)
 Optimal policy for this MDP π*(b) is optimal for POMDP Solving POMDP on physical state space

≡

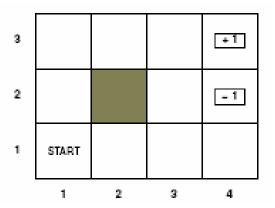
solving MDP on corresponding BELIEF STATE SPACE!

- But. . . this MDP has continuous (and usually HIGH-Dimension) state space!
- Fortunately . . .

Transform POMDP into MDP

- Fortunately, ∃ versions of
 - value iteration
 - policy iteration

that apply to such continuous-space MDPs (Represent $\pi(b)$ as set of REGIONS of belief space each with specific optimal action)



U = LINEAR FUNCTION of b w/in each regionEach iteration refines boundaries of regions . . .

• Solution:

```
[Left, Up, Up, Right, Up, Up, Right, Up, Up, ...]
(Left ONCE to ensure NOT at [4,1],
then go Right and Up until reaching [4, 3].)
Succeeds 86.6%, quickly. . .
Utility = 0.38
```

In general: finding optimal policies is PSPACE-Hard!

Solving POMDP, in General

function DECISION-THEORETIC-AGENT(*percept*) returns *action* calculate updated probabilities for current state based on available evidence including current percept and previous action calculate outcome probabilities for actions given action descriptions and probabilities of current states select *action* with highest expected utility given probabilities of outcomes and utility information **return** *action*

- To determine current state S_t:
 - Deterministic: previous action a_{t-1} from S_{t-1} determines S_t
 - Accessible: current percepts identify S_t
 - Partially accessible: use BOTH action and percepts
- Computing outcome probabilities:
 - . . . as above
- Computing *expected utilities*:

At time t, need to think about making decision D_{t+i} At that time t+i, agent will THEN have percepts $E_{t+1}, \ \ldots, \ E_{t+i}$ But not known now (at time t). . .

Challenges

- To decide about A_t (action at time t), need distribution of current state based on
 - all evidence (E_i is evidence at time i)
 - all actions (A_i is action at time i)

 $Bel(S_t) \equiv P(S_t | E_1, \dots, E_t, A_1, \dots, A_{t-1})$

- \Rightarrow very hard to compute, in general
- But. . . some simplifications:
 - $P(S_t | S1, ..., St-1, A_1, ..., A_{t-1}) = P(S_t | S_{t-1}, A_{t-1})$ Markov
 - $P(E_t | S_1, ..., S_t, E_1, ..., E_t, A_1, ..., A_{t-1}1) = P(E_t | S_t)$ Evidence depends only on current world
 - $P(A_{t-1} | A_1, ..., A_{t-2}, E_1, ..., E_{t-1}) = P(A_{t-1} | E_1, ..., E_{t-1})$ Agent acts based only input. . . and knows what it did

RECURSIVE form of *Bel()* updated with each evidence:

Prediction Phase:

Predict distribution over state, before evidence

Bel(S_t) = $\sum_{s_{t-1}} P(S_t | S_{t-1} = S_{t-1}, A_{t-1}) Bel(S_{t-1} = S_{t-1})$ Estimation Phase: ... Incorporate E_t

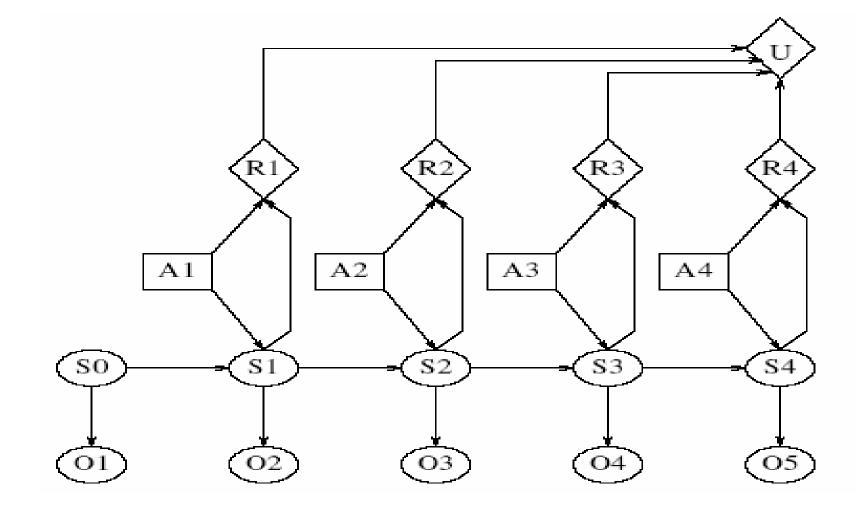
 $Bel(S_t) = \alpha P(E_t | S_t) \underline{Bel}(S_t)$

Decision-Theoretic Agent

function DECISION-THEORETIC-AGENT(E_t) returns an action inputs: E_t , the percept at time tstatic: BN, a belief network with nodes X Bel(X), a vector of probabilities, updated over time $\widehat{Bel}(X_t) \leftarrow \sum_{X_{t-1}} P(X_t \mid X_{t-1} = x_{t-1}, A_{t-1}) Bel(X_{t-1} = x_{t-1})$ $Bel(X_t) \leftarrow \alpha P(E_t \mid PX_t) \widehat{Bel}(X_t)$ $action \leftarrow \arg \max_{A_t} \sum_{X_t} \left[Bel(X_t = x_t) \sum_{X_{t+1}} P(X_{t+1} = x_{t+1} \mid X_t = x_t, A_t) U(x_{t+1}) \right]$ return action

Dependencies are reasonable:
 action mode: P(S_t | S_{t-1}, A_{t-1})
 sensor model: P(E_t | S_t)

Partially Observable MDPs Dynamic Decision Networks



Approximate Method for Solving POMDP's

Two Key Ideas:

- Compute optimal value function U(S) assuming complete observability (Whatever will be needed later, will be available)
- Maintain Bel(S_t) = P($S_t | E_t, A_t, S_{t-1}, ..., S_0, E_0$)

At each time t

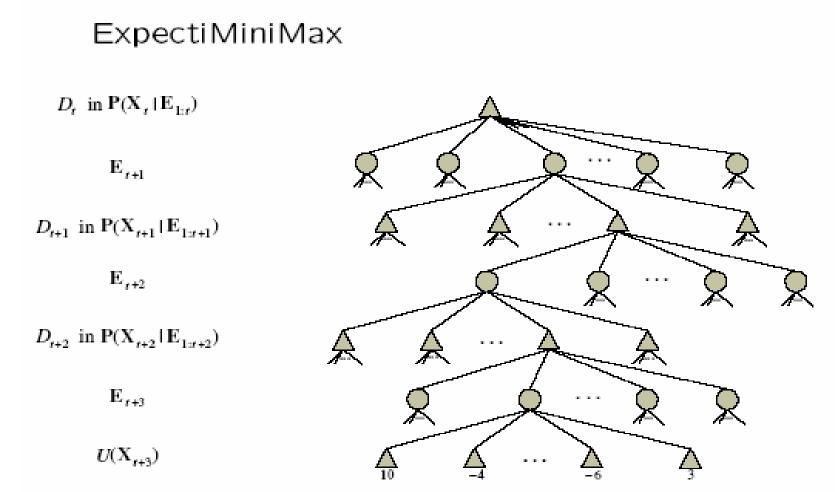
- Observe current percept E_t
- Update Bel(S_t)
- Choose next k optimal actions [a_{t+1}, ..., a_{t+k}] to maximize

 $\sum_{S_{t+1},\dots,S_{t+k}} \sum_{E_{t+1},\dots,E_{t+k}} P(S_{t+1}|S_{t}, a_{t+1})] P(E_{t+1}|S_{t+1}) \cdots P(S_{t+k}|S_{t+k-1}, a_{t+k})$

$$[\sum_{i=1}^{k} R(S_{t+i}|S_{t+i-1}, a_{t+i}) + U(S_{t+k})]$$

Perform action a_{t+1}

Look-ahead Search



Wrt Dynamic Decision Networks

- Handle uncertainty correctly... sometimes efficiently...
- Deal with streams of sensor input
- Handle unexpected events (as have no fixed "plan")
- Handle noisy sensors, sensor failure
- Act in order to obtain information as well as to receive rewards
- Handle relatively large state spaces as they decompose state into set of state var's with sparse connections
- Exhibit graceful degradation under time pressure and in complex environments using various approximation techniques

Open Problems wrt Probabilistic Agents

- First-order probabilistic representations If any car hits lamp post going over 30mph, occupants of car injured with probability 0.60.
- Methods for scaling up MDP's
- More efficient algorithms for POMDP's
- Learning environment

M^a_{ij}, P(E | S), ...

Probabilistic Agents Summary

Three key components:

- P(S' | S,A) (action model)
- P(E | S) (sensor model)
- R(S' | S,A) (reward function)
- In accessible environments,

{ Value iteration, Policy iteration } work well.

Each computes local (state) utility function, optimal policy.

- In { unobservable, partially-observable } environments,
 - lookahead search gives approx solutions
 - Updating current beliefs in a DDN is easy.
 - Look-ahead search is hard.