
Partially-Observable MDPs

RN, Chapter
17.4 — 17.5

2

Decision Theoretic Agents
Introduction to Probability [Ch13]
Belief networks [Ch14]
Dynamic Belief Networks [Ch15]
Single Decision [Ch16]

Sequential Decisions [Ch17]
MDPs [Ch17.1 – 17.3]

(Value Iteration, Policy Iteration, TD(λ))
POMDPs [Ch17.4 – 17.5]

Dynamic Decision Networks
Game Theory [Ch17.6 – 17.7]

3

Partially Accessible Environment

In inaccessible environment
percept NOT enough to determine state

Partially Observable
Markov Decision Problem “POMDP”

⇒

Need to base decision on
DISTRIBUTION over possible states,
based all previous percepts, . . . (E)

Eg: Given only distance to walls in 4 directions,
“[2, 1] ≡

[2, 3]”

but DIFFERENT actions for each!
If P(Loc[2,1] | E) = 0.8, P(Loc[2,3] | E) = 0.2

then utility of action a is
0.8 ×

U(a | Loc[2,1]) + 0.2 ×

U(a | Loc[2,3])

4

Dealing with POMDPs
Why not view “percept == state”…
and just apply MDP alg to “percept”??

1. Markov property does NOT hold for percepts
(percept ≠

states)

MDP means
next state depends only on current state
But in POMDP:
next percept does NOT depend only on
current percept

2. May need to take action to reduce uncertainty
. . . not needed in MDP, as always KNOW state
⇒

utility should include ValueOfInfo. . .

5

Extreme Case: Senseless Agent

What if NO observations?
Perhaps

act to reduce uncertainty
then go to goal

(a) Initially: could be ANYWHERE
(b) After “Left” 5 times
(c) ... then “Up” 5 times
(d) ... then “Right” 5 times
Prob of reaching [4,3]: 77.5%
but slow: Utility ≈

0.08

6

Want sequence of actions [a1, … , an]
that maximizes the expected utility:
argmax[a1,…,an] ∑[s0, …, sn] P(s0 , …, sn | a1 , …,an) ×

U([s0 , a1 , … , an , sn])

If deterministic,
use problem solving techniques to “solve”

(finding optimal sequence)
Stochastic ⇒ don't know state. . .
but deal w/ DISTRIBUTION OVER STATES

“Senseless” Multi-step Agents

7

Unobservable Environments

View Action-Sequence as BIG action

As Markovian:
P(S0, S1, ... , Sn | a1, ... , an) =
P(S0) P(S1 | S0 , a1) ×

P(S2 | S1, a2) ×

… ×

P(Sn | Sn-1 , an)
U([s0, a1, ... , an, sn]) = ∑t R(st)

⇒

For each action sequence,
requires searching over all possible sequences of resulting states.

If P(St+1 | St, At+1) deterministic, can be solved using search...

8

Next action must depends on
Complete Sequence of Percepts, o

(That is all available to agent!)

Compress o into “distribution over states”
p = [p1, …, pn] where pi = P(state = i | o)

Given new percept ot,
p’ = [P(state = i | o, ot)]

9

POMDPs
Partially Observable Markov Decision Problem

Ma
s,s’ ≡ P(s' | s, a) : transition

R(s) : reward function

O(s, o) ≡ P(o | s) : observation model
[If senseless: O(s, {}) = 1.0]

Belief state b(.) ≡ distribution over states
b(s) ≡ P(s | ...) is prob b assigns to s
Eg: binit = h 1/9, 1/9, … 1/9, 0,0 i

Given b(.), after action a, observation o
b’(s') = O(s', o) ∑s P(s | a, s') b(s)
b’ = Forward(b, a, o)

Filtering!
Optimal action depends only on current belief state!
. . . not on actual state

binit

10

What to do, in POMDP?

Policy π maps BELIEF STATE b to ACTION a
π(b) = a π: [0, 1]n a

{ North, East, South, West }

Given optimal policy π*

1. Given bi compute/execute action ai = π(bi)
2. Receive observation oi
3. Compute bi+1 = Forward(bi, ai, oi)

With MDPs, can just "reach" new state ... no observations…
With POMDPs, need to know observation oi to determine b’
Some POMDP actions may be

to reduce uncertainty
to gather information

How to compute optimal π* ?
. . . perhaps make POMDP look like MDP?

11

Transform POMDP into MDP ?
Every MDP needs

Transition M: State Action a Distribution over State
Reward R: State a ℜ

⇒

Given “belief state” b, need

ρ(b) = (expected) reward for being in b
= ∑s b(s) R(s)

μ(b, a, b’) = P(b’ | b, a)
... prob of reaching b’ if take action a in b. . .
Depends on observation o:

P(b’ | a, b) = ∑o P(b’ | o, a, b) P(o | a, b)
= ∑o δ[b’ = Forward(b, a, o)] P(o | a, b)

where δ[b’ = Forward(b, a, o)] = 1 iff b’ = Forward(b, a, o)
Need DISTRIBUTION over observations . . .

12

Distribution over Observations

13

POMDP ⇒? MDP ??
μa

b,b’ = P(b' | b, a)
ρ(b) = (expected) reward
… define OBSERVABLE MDP!
(Agent can always observe its beliefs!)

Optimal policy for this MDP π*(b)
is optimal for POMDP

Solving POMDP on physical state space
≡

solving MDP on corresponding BELIEF STATE SPACE!
But. . . this MDP has continuous

(and usually HIGH-Dimension)
state space!
Fortunately . . .

14

Transform POMDP into MDP
Fortunately, ∃ versions of

value iteration
policy iteration

that apply to such continuous-space MDPs
(Represent π(b) as set of REGIONS of belief space

each with specific optimal action)
U ≡

LINEAR FUNCTION of b w/in each region
Each iteration refines boundaries of regions . . .

Solution:
[Left, Up, Up, Right, Up, Up, Right, Up, Up, ...]

(Left ONCE to ensure NOT at [4,1],
then go Right and Up until reaching [4, 3].)

Succeeds 86.6%, quickly. . .
Utility = 0.38

In general: finding optimal policies is PSPACE-Hard!

15

Solving POMDP, in General
function DECISION-THEORETIC-AGENT(percept) returns action

calculate updated probabilities for current state based on
available evidence including current percept and previous action

calculate outcome probabilities for actions
given action descriptions and probabilities of current states

select action with highest expected utility
given probabilities of outcomes and utility information

return action

To determine current state St:
Deterministic: previous action at-1 from St-1 determines St
Accessible: current percepts identify St
Partially accessible: use BOTH action and percepts

Computing outcome probabilities:
. . . as above
Computing expected utilities:
At time t, need to think about making decision Dt+i
At that time t+i, agent will THEN have percepts Et+1 , ... , Et+i
But not known now (at time t). . .

16

Challenges
To decide about At (action at time t), need distribution of current state
based on

all evidence (Ei is evidence at time i)
all actions (Ai is action at time i)

Bel(St) ≡

P(St |E1 , ... ,Et , A1 , ... ,At-1)
⇒

very hard to compute, in general
But. . . some simplifications:

P(St | S1, ... , St-1, A1, …, At-1) = P(St | St-1, At-1)
Markov

P(Et | S1, ... , St,E1, ... ,Et, A1, ... ,At-11) = P(Et | St)
Evidence depends only on current world

P(At-1| A1, …, At-2, E1, …, Et-1) = P(At-1 | E1, …, Et-1)
Agent acts based only input. . . and knows what it did

RECURSIVE form of Bel() updated with each evidence:
Prediction Phase:
Predict distribution over state, before evidence
Bel(St) = ∑st-1

P(St | St-1 = st-1 , At-1) Bel(St-1 = st-1)
Estimation Phase: … Incorporate Et

Bel(St) = α

P(Et | St) Bel(St)

17

Decision-Theoretic Agent

Dependencies are reasonable:
action mode: P(St | St-1, At-1)
sensor model: P(Et | St)

18

Partially Observable MDPs
Dynamic Decision Networks

19

Approximate Method
for Solving POMDP's

Two Key Ideas:
Compute optimal value function U(S)
assuming complete observability
(Whatever will be needed later, will be available)
Maintain Bel(St) = P(St |Et,At, St-1, ... , S0, E0)

At each time t
Observe current percept Et
Update Bel(St)
Choose next k optimal actions [at+1, ... , at+k]
to maximize

∑St+1,...,St+k
∑Et+1,...,Et+k

P(St+1 |St , at+1)] P(Et+1 |St+1) L

P(St+k |St+k-1 ,at+k)

[∑i=1
k R(St+i |St+i-1 , at+i) + U(S

t+k
)]

Perform action at+1

20

Look-ahead Search

21

Wrt Dynamic Decision Networks
Handle uncertainty correctly... sometimes efficiently...
Deal with streams of sensor input
Handle unexpected events (as have no fixed “plan”)
Handle noisy sensors, sensor failure
Act in order to obtain information
as well as to receive rewards
Handle relatively large state spaces
as they decompose state into set of state var's
with sparse connections
Exhibit graceful degradation under time pressure
and in complex environments using various
approximation techniques

22

Open Problems
wrt Probabilistic Agents

First-order probabilistic representations
If any car hits lamp post going over 30mph,
occupants of car injured with probability 0.60.

Methods for scaling up MDP's
More efficient algorithms for POMDP's
Learning environment

Ma
ij, P(E | S), ...

23

Probabilistic Agents Summary
Three key components:

P(S' | S,A) (action model)
P(E | S) (sensor model)
R(S' | S,A) (reward function)

In accessible environments,
{ Value iteration, Policy iteration } work well.

Each computes local (state) utility function, optimal policy.
In { unobservable, partially-observable }
environments,

lookahead search gives approx solutions
Updating current beliefs in a DDN is easy.
Look-ahead search is hard.

	Partially-Observable MDPs
	Decision Theoretic Agents
	Partially Accessible Environment
	Dealing with POMDPs
	Extreme Case: Senseless Agent
	“Senseless” Multi-step Agents
	Unobservable Environments
	Slide Number 8
	POMDPs
	What to do, in POMDP?
	Transform POMDP into MDP ?
	Distribution over Observations
	POMDP ? MDP ??
	Transform POMDP into MDP
	Solving POMDP, in General
	Challenges
	Decision-Theoretic Agent
	Partially Observable MDPs�Dynamic Decision Networks
	Approximate Method�for Solving POMDP's
	Look-ahead Search
	Wrt Dynamic Decision Networks
	Open Problems�wrt Probabilistic Agents
	Probabilistic Agents Summary

