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Decision Theoretic Agents
Introduction to Probability [Ch13]
Belief networks [Ch14]

Dynamic Belief Networks [Ch15]
Foundations
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Hidden Markov Models (HMM)
Kalman Filter
General: Dynamic Belief Networks (DBN)
Applications
Future Work, Extensions, ...

Single Decision [Ch16]
Sequential Decisions [Ch17]
Game Theory [Ch 17.6 – 17.7]
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Markovian Models
In general, Xt+1 depends on everything !  … Xt, Xt-1, …
Markovian means...

Future is independent of the past
once you know the present.

P( Xt+1 | Xt , Xt-1 , … ) = P( Xt+1 | Xt )

Markov Chain: “state” (everything important) is visible
P( xt+1 | xt , 〈everything〉

 
) = P( xt+1 | xt )

Eg: First-Order Markov Chain
1. Random Walk along x axis, changing x-position ±1 at each time
2. Predicting rain

Stationarity:
P( x2 | x1 ) = P( x3 | x2 ) = … = P( xt+1 | xt )

Hidden Markov Model: State information not visible
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Using Markov Chain, for Classification

Two classes of DNA...
different di-nucleotide distribution

Use this to classify a nucleotide sequence
x = 〈ACATTGACCA…〉

A: P( x |+) = 
p+( x1 | ) p+( x2 | x1 ) p+( x3 | x2 ) … p+( xk | xk-1 ) = 
∏i=1

k p+(xi |xi-1 ) = ∏i=1
k a+

xi|xi-1

using Markov properties
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Using Markov Chain, for Classification

Is x = 〈ACATTGACCAT〉 positive?
P( x |+) = p+( x1 | ) p+( x2 | x1 ) p+( x3 | x2 ) … p+( xk | xk-1 )

= p+(A) p+( C | A ) p+( A  | C) … p+( T | A)    
= 0.25 ×

 

0.274 ×

 

0.171 ×

 

… ×

 

0.355

P( x |–) = p–( x1 | ) p–( x2 | x1 ) p–( x3 | x2 ) … p–( xk | xk-1 )
= p–(A) p–( C | A ) p–( A  | C) … p–( T | A) 
= 0.25 ×

 

0.205 ×

 

0.322 ×

 

… ×

 

0.239

Pick larger: + if p(x|+) > p(x | – )
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Results (Markov Chain)

Results over 48 sequences:

Here: everything is visible
Sometimes, can't see the “states”

Predict +Predict –
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Phydeaux, the Dog
Sometimes: Grumpy
Sometimes: Happy
But hides emotional state…
Only observations:
{ slobbers, frowns, yelps }

Known Correlations
State { G,H } to 

Observations {s, f, y}
State { G,H } on day  t to 
state { G,H } on day  t+1

Happy (state)
p( s | h) = 0.8
p( f  | h) = 0.15
p( y | h) = 0.05

Grumpy (state)
p( s | g) = 0.15
p( f  | g) = 0.75
p( y | g) = 0.10

p=0.15

p=0.05

p=0.85 p=0.95

Challenge: Given observation sequence: 〈 s,  s, f,  y,  y,  f, … 〉
what were Phydeaux's states? ??           〈

 
H, H, H, G, G, G, … 〉
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Umbrella+Rain Situation

State: Xt ∈ { +rain,  –rain }
Observation: Et ∈ {+umbrella, –umbrella}
Simple Belief Net:

Note: Umbrellat depends only on  Raint

Raint depends only on  Raint-1

R0
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HMM Tasks R0

1. Filtering / Monitoring: P( Xt | e1:t )
What is  P(R3 = + | U1 = +, U2 = +, U3 = –) ?
Need distr. current state to make rational decisions

2. Prediction: P( Xt+k | e1:t )
What is  P(R5 = – | U1 = +, U2 = +, U3 = –) ?
Use to evaluate possible courses of actions

3. Smoothing / Hindsight: P( Xt-k | e1:t )
What is  P(R1 = – | U1 = +, U2 = +, U3 = –) ?

4. Likelihood: P( e1:t )
What is P(U1 = +, U2 = +, U3 = –) ?
For comparing different models … classification

5. Most likely expl'n: argmaxx1:t { P( x1:t | e1:t ) }
Given 〈 U1 = +, U2 = +, U3 = – 〉,
what is most likely value for 〈

 

R1 , R2 , R3 〉

 

?
Compute assignments, for DNA, sounds, . . .
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1. Filtering
At time 3: have 

P(R2 | u1:2 ) = 〈 P(+r2 |++), P(–r2|++) 〉
… then observe u3 = –

P(R3 | u1:3 ) = P( R3 | u1:2, u3 )
= 1/P(u1:3 ) P( u3 | R3 , u1:2 ) P(R3 | u1:2 )
= 1/P(u1:3 ) P( u3 | R3 )        P(R3  | e1:2 )

P( R3 | e1:2 ) = ∑r2  
P(R3, r2 | e1:2 )

= ∑r2  
P(R3 | r2 , e1:2 ) P( r2 | e1:2 ) 

= ∑r2 
P(R3 | r2 )        P( r2 | e1:2 )

R0



14

1. Filtering
At time t: 

have P(Xt | e1:t )
… then update from et+1

P(Xt+1 | e1:t+1 ) = 
α P( et+1 | Xt+1 ) ∑xt

P(Xt+1 | xt ) P( xt | e1:t )

Called “Forward Algorithm”

Emission Prob’s Transition Prob’s distribution wrt time t

R0
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P( xt , e1:t ) vs P( xt | e1:t ) 

To compute P( Xt =a | e1:t ):
Just compute 

〈
 

P( Xt =1 , e1:t ), …, P( Xt =k , e1:t ) 〉

1. Compute P(e1:t ) = ∑i P( Xt =i , e1:t )
2. Return P( Xt =a | e1:t ) 

= P( Xt =a , e1:t ) / P( e1:t )
= P( Xt =a , e1:t ) / ∑i P( Xt =i , e1:t )

Normalizing constant: α
 

= 1/ P(e1:t )
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Filtering – Forward Algorithm

Let f1:t = P( Xt | e1:t )
= 〈

 
P( Xt = 1 | e1:t ),..., P( Xt = r | e1:t ) 〉

f1:t+1 (xt+1 ) = P( xt+1 | e1:t+1 )
= α

 
P( et+1 | xt+1 ) ∑xt 

P(Xt+1 | xt ) f1:t (xt )

f1:t+1 = α Forward( f1:t+1, et+1 )

Update (for discrete state variables):
Constant time & Constant space!

Detached!
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Filtering Process

State.t from State.t-1

State.t from Percept.t

State.t+1 from State.t
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Forward( ) Process

Given: P(R0 ) = 〈0.5, 0.5〉
Evidence 〈 U1 = +, U2 = + 〉 :

Predict state distribution (before evidence)

P(R1 ) = ∑r0 
P(R1 | r0 ) P( r0 ) 

= 〈0.7, 0.3〉×
 

0.5  +   〈0.2, 0.8〉×0.5    =   〈
 

0.45, 0.55 〉
Incorporate “Day 1 evidence" +u1:
P(R1 | +u1 ) =  α

 

P(+u1 | R1 ) P( R1 )

= α

 

〈0.9, 0.2〉
 

.* 〈
 

0.45, 0.55〉
 

=  α

 

〈0.405, 0.11〉
 

≈

 

〈
 

0.786, 0.214 〉

Predict (from t = 1 to t = 2, before new evidence)
P(R2 | +u1 ) = ∑r1 

P(R2 | r1 ) P( r1 | +u1 )

= 〈0.7, 0.3〉
 

0.786 + 〈0.2, 0.8〉
 

0.214  ≈

 

〈
 

0.593, 0.407 〉
Incorporate “Day 2 evidence” +u2:
P(R2 |+u1 ,+u2 ) =  P(+u2 |R2 ) P(R2 |+u1 ) =

α

 

〈
 

0.9, 0.2〉
 

.* 〈
 

0.609, 0.391〉
 

= α

 

〈
 

0.533, 0.081〉
 

≈

 

〈
 

0.868, 0.132 〉

R0
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HMM Tasks R0

1. Filtering / Monitoring: P( Xt | e1:t )
What is  P(R3 = + | U1 = +, U2 = +, U3 = –) ?
Need distr. current state to make rational decisions

2. Prediction: P( Xt+k | e1:t )
What is  P(R5 = – | U1 = +, U2 = +, U3 = –) ?
Use to evaluate possible courses of actions

3. Smoothing / Hindsight: P( Xt-k | e1:t )
What is  P(R1 = – | U1 = +, U2 = +, U3 = –) ?

4. Likelihood: P( e1:t )
What is P(U1 = +, U2 = +, U3 = –) ?
For comparing different models … classification

5. Most likely expl'n: argmaxx1:t { P( x1:t | e1:t ) }
Given 〈 U1 = +, U2 = +, U3 = – 〉,
what is most likely value for 〈

 

R1 , R2 , R3 〉

 

?
Compute assignments, for DNA, sounds, . . .
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4. Likelihood
How to compute likelihood P( e1:t ) ?
Let L1:t = P( Xt, e1:t )

L1:t+1 = P( Xt+1 , e1:t+1 ) = ∑
xt 

P( xt , Xt+1 , e1:t , et+1 )

= ∑xt P( et+1 | Xt+1 , xt , e1:t ) P(Xt+1 | xt , e1:t ) P( xt , e1:t )

= P( et+1 | Xt+1 ) ∑xt P(Xt+1 | xt ) L1:t (xt )

Note: Same Forward( ) algorithm!!
To compute actual likelihood:

P( e1:t ) = ∑xt P(Xt = xt , e1:t ) = ∑xt L1:t (xt )

R0
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Best Model of Phydeaux?

Happy (state)
p( s | h) = 0.8
p( f  | h) = 0.15
p( y | h) = 0.05

Grumpy (state)
p( s | g) = 0.15
p( f  | g) = 0.75
p( y | g) = 0.10

p=0.15

p=0.05

p=0.85 p=0.95

Challenge: Given observation sequence: 〈 s,  s, f,  y,  y,  f, … 〉
which model of Phydeaux is “correct”??           Want PI ( e ) vs PII ( e )

I

Happy (state)
p( s | h) = 0.5
p( f  | h) = 0.25
p( y | h) = 0.25

Grumpy (state)
p( s | g) = 0.10
p( f  | g) = 0.8
p( y | g) = 0.10

p=025

p=0.25

p=0.75 p=0.75 II
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Use HMMs to Classify Words 
in Speech Recognition

Use one HMM for each word
hmmj for jth word

Convert acoustic signal to sequence of fixed duration 
frames (eg, 60ms)
(Assumes know start/end of each word in speech signal)

Map each frame to nearest “codebook” frame 
(discrete symbol xt)

e1:T = 〈 e1, ... , en 〉
To classify sequence of frames e1:T

1. Compute P( e1:T | hmmj ) likelihood e1:T generated by 
each word hmmj

2. Return argmaxj { P( e1:T | hmmj ) }
word#j whose hmmj gave highest likelihood
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HMM Tasks R0

1. Filtering / Monitoring: P( Xt | e1:t )
What is  P(R3 = + | U1 = +, U2 = +, U3 = –) ?
Need distr. over current state to make rational decisions

2. Prediction: P( Xt+k | e1:t )
What is  P(R5 = – | U1 = +, U2 = +, U3 = –) ?
Use to evaluate possible courses of actions

3. Smoothing / Hindsight: P( Xt-k | e1:t )
What is  P(R1 = – | U1 = +, U2 = +, U3 = –) ?

4. Likelihood: P( e1:t )
What is P(U1 = +, U2 = +, U3 = –) ?
For comparing different models … classification

5. Most likely expl'n: argmaxx1:t { P( x1:t | e1:t ) }
Given 〈 U1 = +, U2 = +, U3 = – 〉,
what is most likely value for 〈

 

R1 , R2 , R3 〉

 

?
Compute assignments, for DNA, sounds, . . .
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2. Prediction
Already have 1 step prediction
Prediction (from t = 1 to t = 2, before new evidence)

P(R2 | +u1 ) = ∑r1 P(R2 | r1 ) P( r1 | +u1 ) = . . . ≈

 

〈
 

0.627, 0.373 〉
Prediction ≡ filtering w/o incorporating new evidence
Using transition info, but not observation info

P(Xt+k+1 | e1:t ) = ∑xt+k P(Xt+k+1 | xt+k ) P( xt+k | e1:t )

Converge to stationary distribution P(Y| e )

fixed-point:   P(Y| e )  =  ∑x P( Y | x ) P( x | e )

here 〈

 

0.5, 0.5 〉
Mixing time ≈

 

#steps until reach fixed point

⇒

 

Prediction meaningless unless k ≈

 

mixing-time
More “mixing” in transitions
⇒

 

shorter mixing time,
harder to predict future

R0
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3. Smoothing / Hindsight

Given 〈 +u1, +u2, –u3, +u4, –u5 〉 , what is best estimate of r3 ?
P( R3 | +u1 , +u2 , –u3 , +u4 , –u5 )

Let f1:k = P(Xk | e1:k )     bk+1:t = P( ek+1:t |Xk )
P(Xk | e1:t ) = P(Xk | e1:k , ek+1:t )
=  α

 
P(Xk | e1:k )  P( ek+1:t | Xk , e1:k )

=  α
 

P(Xk | e1:k )  P( ek+1:t | Xk )
=  α

 
f1:k            bk+1:t

Recursive computation for f1:k … go forward:    1, 2, 3, …,k
Recursive computation for b1:k …go backward: T, T-1, …,k+1

R0
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Smoothing – Backward Algorithm

b4:8 (x3 ) = P( e4:8 | x3 )
= ∑x4 P( e4:8 | x3 , x4 ) P( x4 | x3 )

= ∑x4 P( e4:8 |      x4 ) P( x4 | x3 )

= ∑x4 P( e4 , e5:8 | x4 ) P( x4 | x3 )

= ∑x4 P( e4 | x4 )  P( e5:8 | x4 )  P( x4 | x3 )

= ∑x4 P( e4 | x4 )    b5:8 (x4 ) P( x4 | x3 )

x3

e3

x4

e4

x5

e5

… … x8

e8

b4:8 (x3 ) = P( e4:8 | x3 )

x4

e4

x5

e5

x8

e8

…

e3

… x3
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Smoothing – Backward Algorithm
bk+1:t(xk) = P( ek+1:t | xk )
= ∑xk+1 P( ek+1:t | xk , xk+1 ) P( xk+1 | xk )
= ∑xk+1 P( ek+1:t | xk+1 )      P( xk+1 | xk )
= ∑

 
xk+1  P( ek+1 , ek+2:t | xk+1 ) P( xk+1 | xk )

= ∑
 

xk+1 P( ek+1 | xk+1 )  P( ek+2:t | xk+1 )  P( xk+1 | xk )
= ∑

 
xk+1 P( ek+1 | xk+1 )    bk+2:t (xk+1 ) P( xk+1 | xk )

So bk+1:t = Backward( bk+1:t, ek+2:t )

Initialize: bt+1:t(xt) = P( et+1:t | xt ) = 1

“Forward-Backward Algorithm”
Just polytree belief net inference!

Fixed-lag smoothing 〈 P( Xt | e1:t+k ) 〉t
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5. Most Likely Explanation

Given 〈 +u1, +u2, –u3, +u4, +u5 〉, 
which is most likely rain-sequence:
Perhaps

? 〈 +r1, +r2, +r3, +r4, +r5 〉
but forgot on day#3?
? 〈 +r1, +r2, –r3, –r4, +r5 〉
but was too cautious on day#4?
? ...  25 possibilities !

? Idea: Just use “3. Smoothing” ?

R0
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Use “Smoothing” for MLE ?
? Idea: Use “3. Smoothing" ?
For i = 1..5

Compute P( R1 | u )
Let  ri

* = argmaxr { P( Ri = r | u ) }
Return 〈

 

r1
*, …, r5

* 〉

Wrong!    Just local... ignores interactions!
Eg: Suppose
P( xt+1 = 1 | xt = 0 ) = 0.0      [ie, no transitions]
P( et = 1 | xt = 1 ) À

 

P( et = 0 | xt = 1 )
P( et = 0 | xt = 0 ) À

 

P( et = 1 | xt = 0 )
Given e = 〈

 

1,0,1 〉, tempting to say x = 〈

 

1,0,1 〉
… but this has 0 prob of occurring!!

Better: Path through states … dynamic program
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Need to consider ALL States

Observe 〈 s, f, s 〉
Predict   〈 H, G, H 〉
But  0 chance of occuring!!
Only possible sequences: 

〈 H, H, H 〉
〈 G, G, G 〉

Happy (state)
p( s | h) = 0.999
p( f | h) =  0.001

Grumpy (state)
p( s | g) = 0.001
p( f  | g) = 0.999

p=1.00 p=1.00
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MLE: Dynamic Program

Recursively, for each Xk = xk:
compute prob of most likely path to each xk

m1:t(Xt) = max x1,…,xt-1 P(x1,…,xt-1 , Xt | e1:t )

m1:t+1(Xt+1) = maxx1,…,xt P( x1:t, Xt+1 | e1:t+1 )
= P( e1:t+1 | Xt+1 ) maxxt [P(Xt+1 | xt ) maxx1:t-1 P( x1:t-1 , xt | e1:t ) ]
= P( e1:t+1 | Xt+1 ) maxxt [P(Xt+1 | xt ) m1:t (xt )]



32

MLE – con't
m1:t+1 = maxx1,…,xt P( x1:t, Xt+1 | e1:t+1 )
= P( e1:t+1 |Xt+1 ) maxxt P( Xt+1 | xt ) m1:t

Just like Filtering except
Replace f1:t = P( Xt | e1:t )
with m1:t = maxx1:t-1 P( x1:t-1, Xt | e1:t)
Replace ∑xt

with maxxt

To recover actual optimal-states x*
k

… keep back-pointers!
Viterbi Algorithm

Linear time, linear space
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Most Likely Sequence | DNA

Observe only output values

〈 g c c t a 〉
E1 = g, E2 = c, E3 = c, E4 = t, E5 = a

Want to determine:
Most likely sequence of STATES

X1:5 = 〈e e i i i i 〉
X1 = e, X2 = e, X3 = i, X4 = i, X5 = i
(e for exon, i for intron)
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Comments on HMMs

Results hold for
ANY Markov model
with arbitrary hidden state

HMM is special:
single discrete state variable
single discrete observation variable

per time
⇒

 
can use matrices

R0
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Kalman Filters
Tracking a bird in flight,  based on (noisy) sensors
Given observations

(“estimates" of its position/velocity)
predict its future position, . . .

Xt = TruePosition @time t
Ẋt = TrueVelocity @time t
Zt = MeasuredPosition @time t
Observation model: P( Zt |Xt )    Zt ~ N(Xt, σt

2 )
Transition model: P(Xt+1 | Xt , Ẋt )

Xt+1 ~ N(Xt + Ẋt , σt
2 )

Everything stays Gaussian!
… for Filtering, Smoothing, …
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Tracking Object in X-Y Plane

Tracking Smoothing
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Dynamic Belief Network

At each time slice:
description of state
description of observation

If 1 var for state, 1 var for obs
⇒

 
HMM

But can have > 1 variable for state/observation!
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Advantage of Dynamic BN

Why not view DBN as HMM ?
… just “bundle”

the observable variables {BMeter, Z} into 1 meganode
the latent variables {X, X’, Battery} into 1 meganode

Answer: Spse |X|=10; |X’|=10; |Battery|=10, |BMeter|=10, |Z|=10
Now:

CPtables: Battery → Bmeter: 10x10; X → Z: 10x10
X’, Batteryt → Batteryt+1: 10x10 x 10;  Xt, X’t → X’t+1: 10x10 x 10
Total: 2,200 values

As simple HMM:
CPtable for Transition Probability: 10x10x10 x 10x10x10 = 1M !
CPtable for Emission Probability:  10x10x10  x 10x10 = 100K



39

Representing State as 
GRAPH of Random Variables

... reduces complexity of representing
P(X’ | X, A ) and  P(E | X)
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Inference in DBNs
As DBN is Belief Net,

can use std BeliefNet Inference alg 
. . . after unrolling

Filtering

f1:t+1 (xt+1 ) = P( xt+1 | e1:t+1 )

=  P( et+1 | xt+1 ) ∑xt P(Xt+1 | xt ) f1:t (xt )

Sums out state variable Xt-1
corresponds to Variable Elimination
(with this temporal ordering of vars)
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Actual DBN Algorithm (Filtering)

DBN alg: just keep 2 slices in memory

〈
 

Xt-1 , et-1 〉
 

+ 〈
 

Xt , et 〉
f1:t+1 = α

 
Forward( f1:t+1 , et+1 ) 

Constant per-update time, per-update space
BUT. . .

as Evidence is CHILDREN, parents become COUPLED!
⇒

 
constant = O(d n)

as factor involves all state variables!
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Approximate Algorithms
Could try. . .

likelihood weighting, MCMC, . . .
... but still problems

Use set of TUPLES themselves as approx'n!
Focus on high-probability instances
... tuples ≈ posterior distribution . . .

Particle Filtering
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Particle Filtering
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Hierarchical HMMs
Can construct hierarchy of HMM's:

Each Sentence-HMM generates string of word-HMMs
(Ie, each “hidden state” is a possible word)
Each word-HMM generates strings of phoneme-HMMs
(Ie, each “hidden state” is a possible phoneme)
Each phoneme-HMM generates strings of speech frames

“Compile" hierarchy into frame-level HMM 
that finds

whole sentence most likely to have been spoken

MLE – computed by Viterbi algorithm
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Beyond First-Order
Recall First-Order Markov Chain

Random Walk along x axis,
changing x-position 1 at each time

What if position xt depends on xt-1, xt-2?
(Ie, need velocity, as well as position)
2nd-order Markov Chain

[Can make any process into 1st-order Markov,
by expanding state

Eg, to deal with power being consumed,
could have BatteryLevel in state

. . . in the limit: “state”≡
 

“all history"]

Interpolated Markov Model (GLIMMER)
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Computational Biology: 
Find Region of Interest in DNA

Segment DNA into
Exon vs Intron vs Intergenetic Region
StartCodon, DonorSite, AcceptorSite, StopCodon
Techniques: NN, DecisionTrees, HMMs

Identify “motif”
“Significant Nucleotide Sequence"
Intron/Exon boundary
Sites: Promoter, Enhancer,
Transcription factor binding, Splice cite

CRP Binding site (or LexA binding site, or ... )
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HMM's in Biological Sequence Data

Given collection of similar genes
(eg, same function, but different animals)
find new genes in other organisms that are similar.
[Ex: Globins (hemoglobin, myoglobin)]
Use “4. Likelihood" alg

Given collection of similar genes,
align them to one another

(identify where mutations have occurred:
insertions, deletions, replacements)

Useful for studying evolution and discovering 
functionally important parts

Use “5. MLE” alg



48

Simple Hidden Markov Model

Each box is “state"
w/prob of “emitting" a letter
Transition from state to state

Bottom Row: standard “emit a letter"
Upper Row: insert “extra” letter

(After state3, 3/5 of sequences goto “Insert"
Of 5 transitions from “Insert", 2 goto another insert)
If no gaps, same as earlier model.
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Profile HMM

Special structure: “profile HMM”
Main (level 0)

For “columns” of alignment
Insert (level 1)

For highly-variable regions
Delete (level 2)

“silent" or “null"
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Example
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[5] Probability of Sequence wrt HMM

Here, unambiguous. . .
Only consistent path through HMM is

〈
 

M1, M2, M3, I3, M4, M5, M6〉
In general, several possible paths. . .
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Recent applications of HMMs
Proteins

detection of bronectin type III domains in yeast
a database of protein domain families
protein topology recognition from secondary structure
modeling of a protein splicing domain 

Gene finding
detection of short protein coding regions and 
analysis of translation initiation sites in Cyanobacterium
characterization of prokaryotic and eukaryotic promoters
recognition of branch points

Also
prediction of protein secondary structure
modeling an oscillatory pattern in nucleosomes
modeling site dependence of evolutionary rates
for including evolutionary information in protein secondary 
structure prediction

Free packages:
hmmer – http://genome.wustl.edu/eddy/hmm.html
SAM – http://www.cse.ucsc.edu/research/compbio/sam.html
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Other Applications
Similar approaches work for analyzing

Proteins (Amino-Acid sequences)
Similar composition, similar function, and . . .

Protein Folding"
Protein  sequence of a.a.'s
“Tertiary structure" ≡ Complete 3D structure
“Secondary structure" ≡ Simpler decomposition
α-helices, β-sheets, (random) coil

TEMPORAL sequences
weather prediction
stock-market forecasting
...



54

Future Research

Scaling up to handle larger
{sequences, motifs, DBs }

Learn...
more accurate descriptions
in less time (fewer samples, less CPU-time)
rep'ns that allow more efficient computation

Exploiting other information
facts about a.a.'s (hierarchy?)
structural information
...
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Summary
To model temporal events

Use  rv Xt to model X at time t
Stationary distribution: P(Xt) same at any time

Markov Property: 
P(Xt+1 | Xt, Xt-1, …) = P( Xt+1 | Xt )

Hidden Markov Model:
Emission P(Et|Xt); Transition P(Xt+1| Xt)
Efficient (linear time!) to predict …

Current state (filtering)
Previous state (smoothing)
Future state (prediction)
Most likely explanation (Viterbi)

Dynamic Belief Nets – extension of HMM
… mixing …
Uses: Speech recognition; Tracking; 

BioInformatics, …
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