

Bayesian Belief Networks

Decision Theoretic Agents

- Introduction to Probability [Ch13]
- Belief networks [Ch14]
- Introduction [Ch14.1-14.2]
- Bayesian Net Inference [Ch14.4] (Bucket Elimination)
- Dynamic Belief Networks [Ch15]
- Single Decision [Ch16]
- Sequential Decisions [Ch17]

MONDAY TECHNOLOCY SPECTAL

Motivation

- Gates says [LATimes, 28/Oct/96]: Microsoft's competitive advantages is its expertise in "Bayesian networks"
- Current Products
- Microsoft Pregnancy and Child Care (MSN)
- Answer Wizard (Office, ...)
- Print Troubleshooter

Excel Workbook Troubleshooter
Office 95 Setup Media Troubleshooter
Windows NT 4.0 Video Troubleshooter
Word Mail Merge Troubleshooter

Motivation (II)

- US Army: SAI P (Battalion Detection from SAR, IR... GulfWar)
- NASA: Vista (DSS for Space Shuttle)
- GE: Gems (real-time monitor for utility generators)
- Intel: (infer possible processing problems from end-of-line tests on semiconductor chips)
- KIC:
- medical: sleep disorders, pathology trauma care, hand and wrist evaluations, dermatology, homebased health evaluations
- DSS for capital equipment: locomotives, gasturbine engines, office equipment

Motivation (III)

- Lymph-node pathology diagnosis
- Manufacturing control
- Software diagnosis
- Information retrieval
- Types of tasks
- Classification/Regression

- Sensor Fusion
- Prediction/Forecasting
- Modeling

Motivation

- Challenge: To decide on proper action
- Which treatment, given symptoms?
- Where to move?
- Where to search for info?
- . .
- Need to know dependencies in world
- between symptom and disease
- between symptom 1 and symptom ${ }_{2}$
- between disease ${ }_{1}$ and disease ${ }_{2}$
- Q: Full joint?
- A: Too big ($\geq 2^{n}$)
- Too slow (inference requires adding 2^{k}. . .)
- Better:
- Encode dependencies
- Encode only relevant dependencies

Components of a Bayesian Net

Directed Acyclic Graph:

$$
\mathcal{B N}=\left\{\begin{array}{ll}
\mathcal{N} & \text { Nodes } \equiv \text { Variables } \\
\mathcal{A} & \text { Arcs } \equiv \text { Dependencies } \\
\mathcal{C} & \text { CPTables } \equiv \text { "weights" }
\end{array}\right\}
$$

- Nodes: one for each random variable
- Arcs: one for each direct influence between two random variables
- CPT: each node stores a conditional probability table P(Node | Parents(Node)) to quantify effects of "parents" on child

Causes, and Bayesian Net

- What "causes" Alarm?

A: Burglary, Earthquake

- What "causes" JohnCall? A: Alarm
N.b., NOT Burglary, ...
- Why not Alarm \Rightarrow MaryCalls?

$$
\left(\mathrm{CPTable}=\begin{array}{c|c|}
\text { Alarm } & P(\mathrm{MC} \mid \mathrm{A}) \\
\hline \mathrm{T} & 1.0 \\
\mathrm{~F} & 0.0 \\
\hline
\end{array}\right)
$$

A: Mary not always home
... phone may be broken

Independence in a Belief Net

- Burglary, Earthquake independent
- B \perp E

- Given Alarm, JohnCalls and MaryCalls independent
- J \perp M|A
- JohnCalls is correlated with MaryCalls $\neg(\mathrm{J} \perp \mathrm{M})$ as suggest Alarm
- But given Alarm, JohnCalls gives no NEW evidence wrt MaryCalls

Conditional I ndependence

Local Markov Assumption: A variable X is independent of its non-descendants given its parents
$\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{xi}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}\right)$

- $B \perp E \mid\{ \} \quad(B \perp E)$
- $M \perp\{B, E, J\} \mid A$
- Given graph G, $\mathrm{I}_{\mathrm{LM}}(\mathrm{G})=\left\{\left(\mathrm{X}_{\mathbf{i}} \perp\right.\right.$ NonDescendants $\left.\left._{\mathrm{Xi}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{Xi}_{\mathrm{i}}}\right)\right\}$

Factoid: Chain Rule

- $P(A, B, C)=P(A \mid B, C) P(B, C)$

$$
=P(A \mid B, C) P(B \mid C) P(C)
$$

- In general:
$P\left(X_{1}, X_{2}, \ldots, X_{m}\right)=$
$P\left(X_{1} \mid X_{2}, \ldots, X_{m}\right) P\left(X_{2}, \ldots, X_{m}\right)=$
$P\left(X_{1} \mid X_{2}, \ldots, X_{m}\right) P\left(X_{2} \mid X_{3}, \ldots, X_{m}\right) P\left(X_{3}, \ldots, X_{m}\right)$
$\prod_{i} P\left(X_{i} \mid X_{i+1}, \ldots, X_{m}\right)$

$$
\begin{aligned}
& \left.P(+j,+m,+a,-b,-e) \quad \begin{array}{l}
J \perp\{M, B, E\} \mid A \\
\quad=P(+j \mid+m,+a,-b,-e)
\end{array}\right)=(+j \mid+a)
\end{aligned}
$$

$$
P(+m \mid+a,-b,-e) \quad M \perp\{B, E\} \mid A
$$

$$
P(+a \mid-b,-e) \longrightarrow P(+a \mid-b,-e)
$$

$$
P(-b \mid-e) \quad B \perp E \longrightarrow
$$

$$
P(-e) \longrightarrow P(-e)
$$

J oint Distribution

$$
\begin{aligned}
& P(+j,+m,+a,-b,-e) \\
& \quad=P(+j \mid+a)
\end{aligned}
$$

$$
\mathrm{P}(+\mathrm{m} \mid+\mathrm{a})
$$

P(+a| -b, -e)

$$
P(-b)
$$

P(-e)

Recovering J oint

$$
\begin{array}{lllll}
P(\neg b, e, a, \neg j, m) & = \\
P(\neg b) & P(e \mid \neg b) & P(a \mid e, \neg b) & P(\neg j \mid a, e, \neg b) & P(m \mid \neg j, a, e, \neg b) \\
P(\neg b) & P(e) & P(a \mid e, \neg b) & P(\neg j \mid a) & P(m \mid a) \\
0.99 \times 0.02 \times & 0.29 \times & 0.1 \times & 0.70
\end{array}
$$

Node independent of predecessors, given parents

Meaning of Belief Net

- A BN represents
- joint distribution
- condition independence statements
- $P(J, M, A, \neg B, \neg E)$

$$
\begin{aligned}
& =P(\neg B) P(\neg E) P(A \mid \neg B, \neg E) P(J \mid A) P(M \mid A) \\
& =0.999 \times 0.998 \times 0.001 \times 0.90 \times 0.70=0.00062
\end{aligned}
$$

. In gen'l, $P\left(X_{1}, X_{2}, \ldots, X_{m}\right)=\prod_{i} P\left(X_{i} \mid X_{i+1}, \ldots, X_{m}\right)$

- Independence means

$$
P\left(X_{i} \mid X_{i+1}, \ldots, X_{m}\right)=P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

Node independent of predecessors, given parents

- So... $P\left(X_{1}, X_{2}, \ldots, X_{m}\right)=\prod_{i} P\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$

Comments

- BN used 10 entries
 (Given structure, other 2^{5} - 10 entries are REDUNDANT)
\Rightarrow Can compute
P(Burglary | JohnCalls, \neg MaryCalls) :
Get joint, then marginalize, conditionalize, ...
\exists better ways. . .
- Note: Given structure, ANY CPT is consistent. \nexists redundancies in BN. . .

Conditional I ndependence

Node X is independent of its non-descendants given assignment to immediate parents parents(X)

- General question: " $X \perp Y \mid E "$
- Are nodes \mathbf{X} independent of nodes \mathbf{Y}, given assignments to (evidence) nodes \mathbf{E} ?
- Answer: If every undirected path from X to Y is d-separated by \mathbf{E}, then $\mathrm{X} \perp \mathrm{Y} \mid \mathrm{E}$
- d-separated if every path from X to Y is blocked by \mathbf{E} . . . if \exists node Z on path s.t.

1. $Z \in E$, and Z has 1 out-link (on path)
2. $Z \in E$, and Z has 2 out-link, or
3. Z has 2 in-links, $Z \notin E$, no child of Z in E

d-separation Conditions

$$
\begin{array}{lll}
\neg(X \perp Y) & X \rightarrow Z \rightarrow Y & X \perp Y \mid Z \\
\neg(X \perp Y) & X \leftarrow Z \rightarrow Y & X \perp Y \mid Z \\
X \perp Y & X \rightarrow Z \leftarrow Y & \neg(X \perp Y \mid Z)
\end{array}
$$

d-Separation

- Burglary and JohnCalls are
 conditionally independent given Alarm
- JohnCalls and MaryCalls are conditionally independent given Alarm
- Burglary and Earthquake are independent given no other information
- But. . .
- Burglary and Earthquake are dependent given Alarm
- Ie, Earthquake may "explain away" Alarm
... decreasing prob of Burglary

"V"-Connections

- What colour are my wife's eyes?
- Would it help to know MY eye color? NO! H_Eye and W_Eye are independent!
- We have a DAUGHTER, who has BLUE eyes Now do you want to know my eye-color?

- H_Eye and W_Eye became dependent!

Example of d-separation, II

d-separated if every path from X to Y is blocked by E

Is Radio d-separated from Gas given . . .

1. $\mathbf{E}=\{ \}$?

YES: $P(R \mid G)=P(R)$
Starts $\notin \mathbf{E}$, and Starts has 2 in-links
2. $\mathrm{E}=$ Starts ?
$N O!!P(R \mid G, S) \neq P(R \mid S)$
Starts $\in \mathbf{E}$, and Starts has 2 in-links
3. $\mathbf{E}=$ Moves ?

NO!! $P(R \mid G, M) \neq P(R \mid M)$

Moves $\in \mathbf{E}$, Moves child-of Starts, and Starts has 2 in-links (on path)
4. $\mathrm{E}=$ SparkPlug ?

YES: $\quad P(R \mid G, S p)=P(R \mid S p)$
SparkPlug \in E, and SparkPlug has 1 out-link
5. $\mathbf{E}=$ Battery ?

YES: $P(R \mid G, B)=P(R \mid B)$
Battery $\in \mathbf{E}$, and Battery has 2 out-links

Markov Blanket

Each node is conditionally independent of all others
given its Markov blanket:

- parents
- children
- children's parents

Simple Forms of CPTable

- In gen'I: CPTable is function mapping values of parents to distribution over child

Cold	Flu	Malaria	$P($ Fever \mid C,F,M $)$	$P(\neg$ Fever $\mid \mathrm{C}, \mathrm{F}, \mathrm{M})$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	0.02
T	F	F	0.4	0.06
T	F	T	0.94	0.12
T	T	F	0.88	0.012
T	T	T	0.988	C

$$
f(+C o l,-F l u,+M a l)=\langle 0.940 .06\rangle
$$

- Standard: Include $\Pi_{U \in \operatorname{Parents}(x)} / \operatorname{Dom}(U) /$ rows, each with $/ \operatorname{Dom}(X) /-1$ entries
- But... can be structure within CPTable: Deterministic, Noisy-Or, Decision Tree, . . .

Deterministic Node

- Given value of parent(s), specify unique value for child (logical, functional)

As if each row has just one 1. rest Os:

Rate	Time	$P($ Dist=0 $\mid \mathrm{R}, \mathrm{T})$	$P($ Dist=1 $\mid \mathrm{R}, \mathrm{T})$	$P($ Dist=2\|R,T $)$
0	1	1.0	0.0	0.0
1	0	1.0	0.0	0.0
1	1	1.0	1.0	0.0
1	2	0.0	0.0	1.0
2	1	0.0	0.0	1.0
\vdots		\vdots		

Noisy-OR CPTable

Cold

- Each cause is independent of the others
- All possible causes are listed

Want: No Fever if none of Cold, Flu or Malaria
P(\neg Fev | \neg Col, \neg Flu, \neg Mal $)=1.0$

+ Whatever inhibits cold from causing fever
is independent of
whatever inhibits flu from causing fever $\mathrm{P}(\neg$ Fev \mid Cold, Flu $) \approx \mathrm{P}(\neg$ Fev \mid Cold $) \times \mathrm{P}(\neg$ Fev \mid Flu $)$

Noisy-OR "CPTable" (2)

- $P(\mathrm{Fev} \mid \neg \mathrm{Col}, \neg \mathrm{Flu}, \neg \mathrm{Mal})=0$

$$
\begin{aligned}
& P(\neg \mathrm{Fev} \mid \mathrm{Col}) \approx q_{\text {col }}=0.6 \\
& P(\neg \mathrm{Fev} \mid \mathrm{Flu}) \approx q_{f l u}=0.2 \\
& P(\neg \mathrm{Fev} \mid \mathrm{Mal}) \approx q_{\text {mal }}=0.1
\end{aligned}
$$

- Independent inhibiters:

$$
P(\neg \mathrm{Fev} \mid \mathrm{Col}, \mathrm{Flu}) \approx P(\neg \mathrm{Fev} \mid \mathrm{Col}) \times P(\neg \mathrm{Fev} \mid \mathrm{Flu})
$$

$$
P\left(\neg \text { Fever } \mid \pm_{i} d_{i}\right)=\prod_{i:+d_{i}} q_{i}
$$

| Cold | Flu | Malaria | $P(\neg$ Fever $\mid \mathrm{c}, \mathrm{f}, \mathrm{m})$ | $P($ Fever $\mid \mathrm{c}, \mathrm{f}, \mathrm{m})$ |
| :---: | :---: | :---: | :--- | :--- | :--- |
| F | F | F | 10 | 0.0 |
| F | F | T | 0.1 | 0.9 |
| F | T | F | 0.2 | 0.8 |
| F | T | T | $0.02=0.2 \times 0.1$ | 0.98 |
| T | F | | 0.6 | 0.4 |
| T | F | T | $0.06=0.6 \times 0.1$ | 0.94 |
| T | T | F | $0.12=0.6 \times 0.2$ | 0.88 |
| T | T | T | $0.012=0.6 \times 0.2 \times 0.1$ | 0.988 |

Noisy-Or ... expanded

Noisy-Or (Gen'l)

- Fever if Cold, Flu or Malaria

Note Only k parameters, not 2^{k}

DecisionTree CPTable

Hybrid (discrete+continuous) Networks

- Discrete: Subsidy?, Buys?

Continuous: Harvest, Cost
Option 1: Discretization but possibly large errors, large CPTs

Option 2: Finitely parameterized canonical families Problematic cases to consider. . .

- Continuous variable, discrete+continuous parents Cost
- Discrete variable, continuous parents Buys?

Continuous Child Variables

- For each "continuous" child E,
- with continuous parents C
- with discrete parents D
- Need conditional density function

$$
P(E=e \mid C=c, D=d)=P_{D=d}(E=e \mid C=c)
$$

for each assignment to discrete parents $D=d$

- Common: linear Gaussian model
f(Harvest, Subsidy?) = "dist over Cost"

$$
\begin{aligned}
& P(\text { Cost }=\mathrm{c} \mid \text { Harvest }=\mathrm{h} \text {, Subsidy? }=\text { true }) \\
& \quad=\mathcal{N}\left[a_{t} h+b_{t}, \sigma_{t}\right](c) \\
& \quad=\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right) \\
& P(\text { Cost }=\mathrm{c} \mid \text { Harvest }=\mathrm{h}, \text { Subsidy? }=\mathrm{false}) \\
& \quad=\mathcal{N}\left[a_{f} h+b_{f}, \sigma_{f}\right](c)
\end{aligned}
$$

Need parameters:
$\sigma_{t} \quad a_{t} \quad b_{t}$
$\begin{array}{lll}\sigma_{f} & a_{f} & b_{f}\end{array}$

If everything is Gaussian...

- All nodes continuous w/ LG dist'ns
\Rightarrow full joint is a multivariate Gaussian

- Discrete+continuous LG network

\Rightarrow conditional Gaussian network

multivariate Gaussian over all continuous variables
for each combination of discrete variable values

Discrete variable w/ Continuous Parents

- Probability of Buys? given Cost ? " "soft" threshold:

- Probit distribution uses integral of Gaussian:

$$
\Phi(x)=\int_{-\infty}^{x} \mathcal{N}[0,1](x) d x
$$

$$
P(\text { Buys? }=\text { true } \mid \text { Cost }=c) \quad=\quad \Phi\left(\frac{\mu-c}{\sigma}\right)
$$

\approx hard threshold, whose location is subject to noise

Logit vs Probit

- Logit (Sigmoid) used in neural networks:

$$
P(\text { Buys? }=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{\mu-c}{\sigma}\right)}
$$

- Shapes:

Logit \approx Probit
but Logit has much longer tails

Example: Car Diagnosis

MammoNet

ALARM

A Logical Alarm Reduction Mechanism

- 8 diagnoses, 16 findings, ...

Troup Detection

ARCO1: Forecasting Oil Prices

ARCO1: Forecasting Oil Prices

Forecasting Potato Production

Warning System

Uses of Belief Nets \#1

Medical Diagnosis: "Assist/Critique" MD

- identify diseases not ruled-out
- specify additional tests to perform
- suggest treatments appropriate/cost-effective
- react to MD's proposed treatment
- Decision Support: Find/repair faults in complex machines
[Device, or Manufacturing Plant, or ...]
... based on sensors, recorded info, history,...
- Preventative Maintenance:

Anticipate problems in complex machines
[Device, or Manufacturing Plant, or ...]
...based on sensors, statistics, recorded info, device history,...

Uses (con't)

- Logistics Support: Stock warehouses appropriately ...based on (estimated) freq. of needs, costs,
- Diagnose Software:

Find most probable bugs, given program behavior, core dump, source code, ...

- Part Inspection/Classification:
... based on multiple sensors, background, model of production,...
- Information Retrieval:

Combine information from various sources, based on info from various "agents",...

General: Partial Info, Sensor fusion -Classification -Prediction
 -Interpretation

Belief Nets vs Rules

- Both have "Locality"

Specific clusters (rules / connected nodes)

- Often same nodes (rep’ning Propositions) but

BN:	Cause "Нер	$\stackrel{\Rightarrow}{\Rightarrow}$	Effect Jaundice"	$P(J \mid H)$
Rule:	Effect "Jaund		Cause Нер"	

WHY?: Easier for people to reason CAUSALLY even if use is DIAGNOSTIC
-BN provide OPTIMAL way to deal with

+ Uncertainty
+ Vagueness (var not given, or only dist)
+ Error
...Signals meeting Symbols ...
-BN permits different "direction"s of inference

Belief Nets vs Neural Nets

- Both have "graph structure" but

BN: Nodes have SEMANTICs
Combination Rules: Sound Probability

NN: Nodes: arbitrary Combination Rules: Arbitrary

- So harder to
- Initialize NN
- Explain NN
(But perhaps easier to learn NN from examples only?)
- BNs can deal with
-Partial Information
-Different "direction"s of inference

Belief Nets vs Markov Nets

- Each uses "graph structure" to FACTOR a distribution
... explicitly specify dependencies, implicitly independencies...
- but subtle differences...
-BNs capture "causality", "hierarchies"
-MNs capture "temporality"
Technical: BNs use DIRECTRED arcs \Rightarrow allow "induced dependencies"

$$
\begin{aligned}
& I(A,\{ \}, B) \\
\neg & I(A, C, B)
\end{aligned} \quad \text { "A independent of } B \text {, given }\} \text { " }
$$

MNs use UNDIRECTED arcs
$\Rightarrow \quad$ allow other independencies
$I(A, B C, D) \quad A$ independent of D, given B, C
$I(B, A D, C) \quad B$ independent of C, given A, D

Summary

- Components of Belief Net
- Conditional Independence
- d-separation
- V-connections
- Markov blanket
- CPtables
- Special cases
- Continuous
- Deployed Examples
- Comparison to other Rep'ns

