“STRIPS” Planning

e Set of operators, where each operator has
— Set of parameters
— Set of preconditions

— Set of effects, consisting of
add effects and
delete effects.

e Set of objects to instantiate operator’s
parameters
fully instantiated operator = action

e Set of propositions representing initial state

e Set of propositions representing goals

Planning problem: Find sequence of actions that,
starting in initial state,
achieve all the goals

Approaches to STRIPS planning

e Search through space of world states
— forward search,
— regression search
— bi-directional search
— means-ends analysis

e Search through space of plans
— total order planning
— partial order planning

e Search through planning graph

Graph-Plan

GraphPlan Approach

1. Construct a “PlanGraph” that contains
all valid plans
+ other stuff (invalid plans)

up to a maximum depth

2. Search PlanGraph for valid plan
... then return that plan

Simple Cake-Eating Domain

e Initial: HaveCake A —EatenCake

e Goal: HaveCake A EatenCake

e Actions:
Eat

Op| PreC: HaveCake
Eff: —HaveCake /\ EatenCake

Bake
Op| PreC: —HaveCake
Eff: HaveCake

e PlanGraph
SO AO S1 A1 S 2
Bake(Cake)
Have(Cake) = Have(Cake) >< H Have(Cake)
— Have(Cake) = — Have(Cake)
Eat(Cake) <:::::: Eat(Cake)
Eaten(Cake) = Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

Graph-Plan 4

Parts of a PlanGraph

SO AO S1 A1 S 2
Bake(Cake)
Have(Cake) = Have(Cake) = Have(Cake)
— Have(Cake) >< = — Have(Cake)
Eat(Cake) < Eat(Cake)
Eaten(Cake) = Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

“2-leveled” Graph (Sqg, Ag, S1, Aq,...)

e Sp:. propositions in initial state

e A,. each action whose preconditions
all occur in level S;,_1

e S;: each prop'n that is ADDed/DELETEd by
* an action in level A;
* a "No-Op” (persistance)

e Mutex links
* between actions in level A;
* between propositions in level S;
“mutually exclusive”
“‘cannot occur in same plan”

Graph-Plan

Mutex Conditions#1: Actions

So Ao S, A, S»
Bake(Cake)
Have(Cake) — Have(Cake) — Have(Cake)
— Have(Cake) >< H — Have(Cake)
Eat(Cake) < Eat(Cake)
Eaten(Cake) = Eaten(Cake)
— Eaten(Cake) H — Eaten(Cake) H — Eaten(Cake)

Between 2 actions O1 and O5, same level A;:

e |Inconsistent effects
O1:Eff negates O Eff

EatenCake, NoOp (HaveCake) disagree wrt “HaveCake"
EatenCake:Eff = -—HaveCake

NoOp (HaveCake) :Eff = HaveCake

e |Interference
O1:Eff negates O»:PreC

EatenCake interfers with NoOp(HaveCake):
EatenCake:Eff — —HaveCake

NoOp (HaveCake) :PreC = HaveCake

e | Competing Needs

O1:PreC negates O5:PreC
Bake:PreC = —HaveCake

Eat:PreC — HaveCake

Graph-Plan 6

Mutex Conditions#2: Propositions

SO AO S1 A1 S 2
Bake(Cake)
Have(Cake) = Have(Cake) = Have(Cake)
— Have(Cake) >< = — Have(Cake)
Eat(Cake) Eat(Cake)
< Eaten(Cake) = Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

Between 2 propositions p; and po, same level S;:

e | Negation
P1L — TP2

e | Inconsistent Support
Every action achieving p; (from S;_1)
IS mutex with every action achieving po

In Si: HaveCake mutex EatenCake as

only way to achieve HaveCake:
NoOp (HaveCake)

IS mutex with only way to achieve EatenCake:
Eat

N.b.: Not mutex at S, !

Graph-Plan 7

Planning Graphs

e A valid plan is "2-leveled’ graph

— two Kinds of nodes
(propositions, actions)
alternates: proposition level, action level

— 5 kinds of edges
* precondition (S; — Ap)
* add effect (A; — Sit1)
* delete effect (A; — Sit+1)
x mutex-action (A4; «— A;))
* mutex-prop (S; «— S;)

— Include action O at action-level A;
if all preconditions at proposition-level S;

— Include proposition p at proposition-level S;
if it is add/delete effect of action O € A;_1
(including no-op actions)

Restriction:
Allow actions O1, O, at same time ¢
ONLY if don't interfere with each other

e PlanningGraph =~ valid plan but
without no-interfere restriction

GraphPlan Algorithm

function Graphplan(problem) returns solution or failure
graph « Initial-Planning-Graph(problem)
goals «— Goals[problem]|
loop do
If goals all non-mutex in last level of graph then do
solution «— Extract-Solution(graph, goals, Length(graph))
If solution # failure then return solution
else if No-Solution-Possible(graph) then return failure
graph «— Expand-Graph(graph, problem)
end

Flat-Tire Domain

FlI= Flat; Sp= Spare; Ax= Axel; Tr= Trunk; Gr= Ground
e Initial: At(Fl, Ax) A At(Sp, Tr)
e Goal: At(Sp, Ax)

e Actions:

TakeOutSpare
Op| PreC: At(Sp, Tr)
Eff: —-At(Sp, Tr) A At(Sp, Gr)

RemoveFlat
PreC: At(Fl, Ax)
Eff: —-At(F1, Ax) A At(Fl, Gr)

Eff: —At(Sp, Gr) A At(Sp, Ax)

Leave(OverNight
PreC: {}
Eff: —At(Sp, Gr) A —At(Sp, Ax) A —At(Sp, Tr)

PutOnSpare
Op| PreC: At(Sp, Gr) A —-At(F1l, Ax)
(A —At(F1, Gr) A —At(Fl, Ax)

Flat-Tire in GraphPlan

)
Al Soae Tk

81 A1 82

Al Soars T \ I Al Soars Ty
TabeQutdoae

VA Spae T I \wAt(Spare,Trunk)
RemoveFl /
APt A / \ APt
/

 —|

LeaeOer mgh
HiSpae THiSae N iSpae
‘ = AlSpae Al
it Ground WiFaiGromg — it Ground
W P
WS o] WS o l WS o
Al SoarsGroun I Al SoarsGroun

Graph-Plan

Trace of GraphPlan Algorithm #£1

e Sp: initial facts (include —facts)

e As |At(Sp,Ax) | £ Sp
do not call Extract-Solution

e Expand-Graph forms Agp with
* 3 ‘“real” actions
* 5 No-op actions;
Sq is effects

Expand-Graph then finds
* 4 action-mutex within Ag
* 4 prop-mutex within Sy

e As |At(Sp,Ax) | & Sy
do not call Extract-Solution

e Expand-Graph forms A; with
* 4 ‘“real” actions
* 7 NO-Op actions
So is effects

Mutex wrt FlatTire

Inconsistent Effects

RemoveSpare —+ LeaveOvernlght

RemoveSpare:Eff = At (Sp,Gr)
LeaveOvernight :Eff = —At(Sp,Gr)
Inteference

RemoveFlat + LeaveOvernight

RemoveFlat :PreC = At (Sp,Ax)
LeaveOvernight :Eff = —At(Sp,Ax)
Competing Needs
RemoveFlat -+ PutOnSpare
RemoveFlat:PreC = At (F1,Ax)
PutOnSpare:Eff = At (F1l,Ax)

Inconsistent Support

At (Sp,Ax) + At(F1l,Ax) in S
At (Sp,Ax) by PutOnSpare
At (F1,Ax) by NoOp[At(F1,Ax)]
and
PutOnSpare mutex NoOp[At(F1l,Ax)]

(Can't put 2 objects in same place at same time)

Trace of GraphPlan Algorithm #£2

e “All" goal literals, [At(Sp, Ax) |, in S5
none are mutex . ..

e SO there MAY be solution
... call Extract-Solution

Extract-Solution(...)
Let G, be the GOAL at last level, S,
For each 1 = n..1
*x Let H; be a conflict-free subset of A;_1,
that covers G; (in S;)
* Let GG;_1 be preconditions of H;
... until reach state in Sp satisfying all goals

Action-set H is “conflict-free”

no pair of H are mutex, and

no pair of preconditions (in G) are mutex

Trace of Extract-Solution

Go = { At(Sp,Ax) }

H> = { PutOnSpare }

G1 = { At(Sp,Gr), —-At(F1l,Ax) }
What is H{7

— Achieve At (Sp,Gr) by | TakeOutSpare

— Achieve —At(F1,Ax) by
1. LeaveOvernight
#2. RemoveFlat

But not #1, as
LeaveOvernight is mutex with TakeOutSpare

#H]_

{ TakeOutSpare, RemoveFlat }

Go = { At(Sp,Tr), At(F1l,Ax) }

As in Gg C Sg, DONE!

Extending PlanGraph

Add action level A;:
ForEach action®) 0O
If O’s preconditions all true in prop-level S;,
and NOT mut-ex,
Then add O to level A;
include precondition-links
create mutex (O:actions-I-am-exclusive-of)

Add prop-level 57;—|-1-'
ForEach effect p of each action in action-level A;
Add p to prop-level S;41
Add S «— p add- or delete- links
Mark p1, po as mutex if
each way of generating pi1 is mutex to
each way of generating p»

(*) each instantiation of each operator; including “no-op”s

Correctness

Graphplan is sound and complete:
x any plan Graphplan finds is a legal plan
x If 9 legal plan then Graphplan will find one.

Theorem: If 4 valid plan using <t time steps,
then plan is subgraph of (depth-t)
Planning Graph.

If Goals not satisfiable by any valid plan,
then GraphPlan will halt, w/failure, in finite time.

(extends most partial-order planners)

Leveling Off

e GraphPlan = Iterative deepening
When to stop??

e Lemma: If no valid plan exists, then
4 a prop-level S, s.t. all future proposition
levels are identical to S,

— Identical = same propositions, mutual exclusions

— graph has “leveled off after S,,”

e Corollary: No solution exists if
— a goal does not appear in S,, or

— S, has mutually exclusive goals

e Subtlety:
{ on(A,B), on(B,C), on(C,A) }

Graph-Plan

Termination Condition

o Let S}L-5 denote set of memoized goal sets
at level ¢ after an unsuccessful stage ¢

e T heorem: If the graph has leveled off at
level n and stage t has passed in which
|St=1| = |St|, then no valid plan exists

Termination Proof

e As PlanGraph gets deeper...

— Literals increase monotonically
— Actions increase monotonically

— Mutex decrease monotonically
x If O1 and O> are mutex in Ag,
then mutex in A; : = 1..k provided 01,05 € A;

* If p1 and p> are mutex in Sk,

then mutex in S; ¢+ = 1..k provided pi1,p2 € S;

e Only finite # of actions/literals,

planning graph must eventually “level off”

Experimental Results

© 3500 =
3 /
< /
(]
E 3000 + /
- _.' /
2 /
& 2500 , /
] /
20.00 / /
/ /
15.00 / /
/ // — - — Prodigy-SABA
--------- Prodigy
10.00 / / — — - UCPOP
of Graphplan
5.00 4 ad
- /s
. e
; 7 -]
0.00/ =
0.00 100 2.00 3.00 400 500 6.00 700 800 9.00 10.00
Number of Goals
(¥} 1
2 Rockets Problem
fg‘ 12.00
& F
] /
E 1000 /
N~
E /
O g0):(
/
/
6.00 2 _ SNLP (from[VB])
AR Prodigy (from [VB])
/ Graphplan
o
4.00 y s
y=!
s
2.00 - e
T g e + >
006 60 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
Highest Goal

“Link-Repeat Problem”

Graph-Plan

21

Accounting for
Graphplan’s Efficiency

Mutual exclusions
(Most constraints are pair-wise mut-ex'’s;

Propagating constraints prunes large part of space.)

Consideration of parallel plans
(Valid parallel plans are short, wrt total plan

= reduces cost of constructing pgraph, search)

Memoizing
(Many goal-sets appear > 1)

Low-level costs

(Graphplan avoid cost of instantiation during search)

Efficiency
Size of Planning Graph

Theorem: Consider planning problem with
n objects,
p propositions in initial state,
m operators,
each w/constant number of parameters
Let [be length of longest add list.
Then size of a t-level planning graph, and
time needed to create the graph,
are polynomial in n, m, p, [, and t.

e Empirically: exclusion relations most expensive
part of graph creation

Graph creation only significant in simple problems

= AS graph is small,
“finding mut-ex’ is hard as planning. .. PSpace-hard

Comments

PlanGraph # StateGraph
plan = path in StateGraph but
plan = flow in PlanGraph

Like ‘““Traditional TotalOrder Planner’ :
considers action at FIXED time

Like “Partial Order Planner”
generates partially-ordered plans

Parallel Plan: can execute many actions
at once

if no conflicts

(eg, load all items at once)

Guaranteed to find SHORTEST plan

~ Not sensitive to given order of goals

Final Comments

e Planning = Searching

= GraphPlan

...a new approach to Planning

e Future work
x Learning (from one plan to next)
* | WO-way search (fact—goal, goal—fact)
x beyond "Strips’-like domains
creating objects, V, ...
x iIncorporating other types of constraints
* Why guarantee SHORTEST path?

® http://www.cs.cmu.edu/~avrim/graphplan.html

Graph-Plan

SatPlan

Convert plan-situation

(Operators, Initial/Final Conditions, ...)

to SAT

(Up to fixed length)

Run WalkSat to find
satisficing assignment

.. . 1terative deepening

Plays to SatPlan's strength,
as 1 satisfying assignment. ..

= plan. ..

