
“STRIPS” Planning

• Set of operators, where each operator has

– Set of parameters

– Set of preconditions

– Set of effects, consisting of

add effects and

delete effects.

• Set of objects to instantiate operator’s

parameters

fully instantiated operator ≡ action

• Set of propositions representing initial state

• Set of propositions representing goals

Planning problem: Find sequence of actions that,

starting in initial state,

achieve all the goals

Graph-Plan 1

Approaches to STRIPS planning

• Search through space of world states
– forward search,

– regression search

– bi-directional search

– means-ends analysis

– . . .

• Search through space of plans
– total order planning

– partial order planning

• Search through planning graph

Graph-Plan 2

GraphPlan Approach

1. Construct a “PlanGraph” that contains

all valid plans

+ other stuff (invalid plans)

up to a maximum depth

2. Search PlanGraph for valid plan

. . . then return that plan

Graph-Plan 3

Simple Cake-Eating Domain

• Initial: HaveCake ∧ ¬EatenCake

• Goal: HaveCake ∧ EatenCake

• Actions:

Op





Eat
PreC: HaveCake

Eff: ¬HaveCake ∧ EatenCake





Op





Bake

PreC: ¬HaveCake
Eff: HaveCake





• PlanGraph

Bake(Cake)

Eat(Cake)
Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)
Eat(Cake)

Graph-Plan 4

Parts of a PlanGraph

Bake(Cake)

Eat(Cake)
Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)
Eat(Cake)

“2-leveled” Graph 〈S0, A0, S1, A1, . . .〉

• S0: propositions in initial state

• Ai: each action whose preconditions

all occur in level Si−1

• Si: each prop’n that is ADDed/DELETEd by

? an action in level Ai

? a “No-Op” (persistance)

• Mutex links

? between actions in level Ai

? between propositions in level Si

“mutually exclusive”

“cannot occur in same plan”

Graph-Plan 5

Mutex Conditions#1: Actions

Bake(Cake)

Eat(Cake)
Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)
Eat(Cake)

Between 2 actions O1 and O2, same level Ai:

• Inconsistent effects

O1:Eff negates O2:Eff

EatenCake, NoOp(HaveCake) disagree wrt “HaveCake”
EatenCake:Eff = ¬HaveCake
NoOp(HaveCake):Eff = HaveCake

• Interference

O1:Eff negates O2:PreC

EatenCake interfers with NoOp(HaveCake):
EatenCake:Eff = ¬HaveCake
NoOp(HaveCake):PreC = HaveCake

• Competing Needs

O1:PreC negates O2:PreC
Bake:PreC = ¬HaveCake
Eat:PreC = HaveCake

Graph-Plan 6

Mutex Conditions#2: Propositions

Bake(Cake)

Eat(Cake)
Have(Cake)

S0 0A S1 A1 S 2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)
Eat(Cake)

Between 2 propositions ρ1 and ρ2, same level Si:

• Negation

ρ1 = ¬ρ2

• Inconsistent Support

Every action achieving ρ1 (from Si−1)

is mutex with every action achieving ρ2

In S1: HaveCake mutex EatenCake as
only way to achieve HaveCake:

NoOp(HaveCake)
is mutex with only way to achieve EatenCake:

Eat

N.b.: Not mutex at S2 !

Graph-Plan 7

Planning Graphs

• A valid plan is “2-leveled” graph

– two kinds of nodes
(propositions, actions)

alternates: proposition level, action level

– 5 kinds of edges
? precondition (Si → Ai)
? add effect (Ai → Si+1)
? delete effect (Ai → Si+1)
? mutex-action (Ai ↔ Ai)
? mutex-prop (Si ↔ Si)

– Include action O at action-level Ai

if all preconditions at proposition-level Si

– Include proposition ρ at proposition-level Si

if it is add/delete effect of action O ∈ Ai−1

(including no-op actions)

Restriction:

Allow actions O1, O2 at same time t

ONLY if don’t interfere with each other

• PlanningGraph ≈ valid plan but

without no-interfere restriction

Graph-Plan 8

GraphPlan Algorithm

function Graphplan(problem) returns solution or failure
graph ← Initial-Planning-Graph(problem)
goals ← Goals[problem]
loop do

if goals all non-mutex in last level of graph then do

solution ← Extract-Solution(graph, goals, Length(graph))
if solution 6= failure then return solution

else if No-Solution-Possible(graph) then return failure

graph ← Expand-Graph(graph, problem)
end

Graph-Plan 9

Flat-Tire Domain

Fl= Flat; Sp= Spare; Ax= Axel; Tr= Trunk; Gr= Ground

• Initial: At(Fl, Ax) ∧ At(Sp, Tr)

• Goal: At(Sp, Ax)

• Actions:

Op





TakeOutSpare

PreC: At(Sp, Tr)

Eff: ¬At(Sp, Tr) ∧ At(Sp, Gr)





Op





RemoveFlat

PreC: At(Fl, Ax)
Eff: ¬At(Fl, Ax) ∧ At(Fl, Gr)





Op





PutOnSpare
PreC: At(Sp, Gr) ∧ ¬At(Fl, Ax)

Eff: ¬At(Sp, Gr) ∧ At(Sp, Ax)





Op







LeaveOverNight
PreC: {}
Eff: ¬At(Sp, Gr) ∧ ¬At(Sp, Ax) ∧ ¬At(Sp, Tr)

∧ ¬At(Fl, Gr) ∧ ¬At(Fl, Ax)







Graph-Plan 10

Flat-Tire in GraphPlan

S0 0A S1 A1 S 2
At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)
At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)
At(Flat,Ground)
At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)
At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)
At(Flat,Ground)
At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOnSpare

LeaveOvernight

RemoveFlat

TakeOutSpare

TakeOutSpare

RemoveFlat

LeaveOvernight

Graph-Plan 11

Trace of GraphPlan Algorithm #1

• S0: initial facts (include ¬facts)

• As At(Sp,Ax) 6∈ S0

do not call Extract-Solution

• Expand-Graph forms A0 with

? 3 “real” actions

? 5 no-op actions;

S1 is effects

Expand-Graph then finds

? 4 action-mutex within A0

? 4 prop-mutex within S1

• As At(Sp,Ax) 6∈ S1

do not call Extract-Solution

• Expand-Graph forms A1 with

? 4 “real” actions

? 7 no-op actions

S2 is effects

Graph-Plan 12

Mutex wrt FlatTire

• Inconsistent Effects

RemoveSpare + LeaveOvernight
RemoveSpare:Eff = At(Sp,Gr)

LeaveOvernight:Eff = ¬At(Sp,Gr)

• Inteference

RemoveFlat + LeaveOvernight
RemoveFlat:PreC = At(Sp,Ax)

LeaveOvernight:Eff = ¬At(Sp,Ax)

• Competing Needs

RemoveFlat + PutOnSpare
RemoveFlat:PreC = At(Fl,Ax)

PutOnSpare:Eff = ¬At(Fl,Ax)

• Inconsistent Support

At(Sp,Ax) + At(Fl,Ax) in S2
At(Sp,Ax) by PutOnSpare
At(Fl,Ax) by NoOp[At(Fl,Ax)]

and
PutOnSpare mutex NoOp[At(Fl,Ax)]

(Can’t put 2 objects in same place at same time)

Graph-Plan 13

Trace of GraphPlan Algorithm #2

• “All” goal literals, At(Sp, Ax) , in S2

none are mutex . . .

• So there MAY be solution

. . . call Extract-Solution

Extract-Solution(. . .)
Let Gn be the GOAL at last level, Sn

For each i = n..1
? Let Hi be a conflict-free subset of Ai−1,

that covers Gi (in Si)
? Let Gi−1 be preconditions of Hi

. . . until reach state in S0 satisfying all goals

Action-set H is “conflict-free”

≡

no pair of H are mutex, and

no pair of preconditions (in G) are mutex

Graph-Plan 14

Trace of Extract-Solution

• G2 = { At(Sp,Ax) }

H2 = { PutOnSpare }

• G1 = { At(Sp,Gr), ¬At(Fl,Ax) }

What is H1?

– Achieve At(Sp,Gr) by TakeOutSpare

– Achieve ¬At(Fl,Ax) by
#1. LeaveOvernight
#2. RemoveFlat

But not #1, as
LeaveOvernight is mutex with TakeOutSpare

⇒ H1 = { TakeOutSpare, RemoveFlat }

• G0 = { At(Sp,Tr), At(Fl,Ax) }

As in G0 ⊂ S0, DONE!

Graph-Plan 15

Extending PlanGraph

Add action level Ai:

ForEach action(∗) O

If O’s preconditions all true in prop-level Si,

and NOT mut-ex,

Then add O to level Ai

include precondition-links

create mutex (O:actions-I-am-exclusive-of)

Add prop-level Si+1:

ForEach effect ρ of each action in action-level Ai

Add ρ to prop-level Si+1

Add S ← ρ add- or delete- links

Mark ρ1, ρ2 as mutex if

each way of generating ρ1 is mutex to

each way of generating ρ2

(∗) each instantiation of each operator; including “no-op”s

Graph-Plan 16

Correctness

Graphplan is sound and complete:

∗ any plan Graphplan finds is a legal plan

∗ if ∃ legal plan then Graphplan will find one.

Theorem: If ∃ valid plan using ≤ t time steps,

then plan is subgraph of (depth-t)

Planning Graph.

+

If Goals not satisfiable by any valid plan,

then GraphPlan will halt, w/failure, in finite time.

(extends most partial-order planners)

Graph-Plan 17

Leveling Off

• GraphPlan ≈ Iterative deepening

When to stop??

• Lemma: If no valid plan exists, then
∃ a prop-level Sn s.t. all future proposition
levels are identical to Sn

– Identical ≡ same propositions, mutual exclusions

– graph has “leveled off after Sn”

• Corollary: No solution exists if

– a goal does not appear in Sn or

– Sn has mutually exclusive goals

• Subtlety:

{ on(A,B), on(B,C), on(C,A) }

Graph-Plan 18

Termination Condition

• Let St
i denote set of memoized goal sets

at level i after an unsuccessful stage t

• Theorem: If the graph has leveled off at

level n and stage t has passed in which

|St−1
n | = |St

n|, then no valid plan exists

Graph-Plan 19

Termination Proof

• As PlanGraph gets deeper. . .

– Literals increase monotonically

– Actions increase monotonically

– Mutex decrease monotonically

? If O1 and O2 are mutex in Ak,

then mutex in Ai i = 1..k provided O1, O2 ∈ Ai

? If ρ1 and ρ2 are mutex in Sk,

then mutex in Si i = 1..k provided ρ1, ρ2 ∈ Si

• Only finite # of actions/literals,

planning graph must eventually “level off”

Graph-Plan 20

Experimental Results

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

CP
U

tim
e

(s
ec

)

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
Number of Goals

Graphplan
UCPOP
Prodigy
Prodigy-SABA

“2 Rockets Problem”

0.00

2.00

4.00

6.00

8.00

10.00

12.00

CP
U

tim
e

(s
ec

)

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00
Highest Goal

Graphplan
Prodigy (from [VB])
SNLP (from [VB])

“Link-Repeat Problem”

Graph-Plan 21

Accounting for

Graphplan’s Efficiency

• Mutual exclusions

(Most constraints are pair-wise mut-ex’s;

Propagating constraints prunes large part of space.)

• Consideration of parallel plans

(Valid parallel plans are short, wrt total plan

⇒ reduces cost of constructing pgraph, search)

• Memoizing

(Many goal-sets appear > 1)

• Low-level costs

(Graphplan avoid cost of instantiation during search)

Graph-Plan 22

Efficiency

Size of Planning Graph

Theorem: Consider planning problem with

n objects,

p propositions in initial state,

m operators,

each w/constant number of parameters

Let l be length of longest add list.

Then size of a t-level planning graph, and

time needed to create the graph,

are polynomial in n, m, p, l, and t.

• Empirically: exclusion relations most expensive
part of graph creation

Graph creation only significant in simple problems

⇒ As graph is small,
“finding mut-ex” is hard as planning. . . PSpace-hard

Graph-Plan 23

Comments

• PlanGraph 6= StateGraph

plan ≡ path in StateGraph but

plan ≡ flow in PlanGraph

• Like “Traditional TotalOrder Planner”:

considers action at FIXED time

Like “Partial Order Planner”

generates partially-ordered plans

• Parallel Plan: can execute many actions

at once

if no conflicts

(eg, load all items at once)

• Guaranteed to find SHORTEST plan

• ≈ Not sensitive to given order of goals

Graph-Plan 24

Final Comments

• Planning ≡ Searching

⇒ GraphPlan

. . . a new approach to Planning

• Future work

∗ Learning (from one plan to next)

∗ Two-way search (fact7→goal, goal7→fact)

∗ beyond “Strips”-like domains

creating objects, ∀, . . .

∗ incorporating other types of constraints

∗ Why guarantee SHORTEST path?

• http://www.cs.cmu.edu/∼avrim/graphplan.html

Graph-Plan 25

SatPlan

• Convert plan-situation

(Operators, Initial/Final Conditions, . . .)

to SAT

(Up to fixed length)

• Run WalkSat to find

satisficing assignment ≡ plan. . .

. . . iterative deepening

• Plays to SatPlan’s strength,
as ∃ satisfying assignment. . .

Graph-Plan 26

