

Planning

Some material taken from D. Lin, J-C Latombe

Logical Agents

- Reasoning [Ch 6]
- Propositional Logic [Ch 7]
- Predicate Calculus
- Representation [Ch 8]
- Inference [Ch 9]
- Implemented Systems [Ch 10]
- Planning [Ch 11]
- Representations in planning (Strips)
- Representation of action: preconditions + effects
- Forward planning
- Backward chaining
- Partial-order planning

Planning Agent

Updating State, Based on Action

See 10.3 -Situation Calculus.pdf

```
\(S_{1}=\) Result (Forward, \(S_{\mathrm{O}}\) )
\(S_{2}=\) Result (TurnRight, \(S_{1}\) )
\(=\) Result (TurnRight, Result(Forward, So) )
\(S_{3}=\) Result (Forward, \(S_{2}\) )
\(=\) Result ( Forward,
Result( TurnRight, Result ( Forward, \(S_{o}\) ) ) )
Result: Action \(\times\) State \(\longmapsto\) State
```


Planning in Situation Calculus

- Given:
- Initial: At(Home, S_{0}) \& \neg Have(Milk, S_{0})
- Goal: $\exists \mathrm{s}$ At(Home,s) \& Have(Milk,s)
- Operators: $\forall \mathrm{a}$, s Have(Milk, Result(a, s$)) \Leftrightarrow$ $[(a=B u y(M i l k) \& A t(S t o r e, ~ s))$ v (Have(Milk,s) \& a $=$ Drop(Milk))]
- Find: Sequence of operators $\left[o_{1}, \ldots, o_{k}\right]$ where $\mathrm{S}=\operatorname{Result}\left(\mathrm{o}_{\mathrm{k}}, \operatorname{Result}\left(\ldots \operatorname{Result}\left(\mathrm{o}_{1}, \mathrm{~S}_{0}\right) \ldots\right.\right.$)
s.t. At(Home, S) \& Have(Milk, S)
- but... Standard Problem Solving is inefficient As goal is "black box", just generate-\&-test!

Naïve Problem Solving

- Goal:

"At home; have Milk, Bananas, and Drill"
\exists s At(Home, s) \& Have(Milk, s) \& Have(Banana, s) \& Have(Drill, s)

- I nitial: "None of these; at home"

At(Home, $\left.S_{0}\right) \& \neg$ Have (Milk, $\left.S_{0}\right) \& \neg$ Have (Banana, $\left.S_{0}\right) \&$
$\neg H a v e\left(\right.$ Drill, S_{0})

- Operators:

Goto(y), Sitl n(z), Talk(w), Buy(q), ...

General Issues

- Done?
- General problems:
- Problem solving is P-space complete
- Logical inference is only semidecidable
- .. plan returned may go from initial to goal, but extremely inefficiently (NoOp, [A, A ${ }^{-1}$], ...)
- Solution
- Restrict language
- Special purpose reasoner
\Rightarrow PLANNER

Key Ideas

1. Open up representation ... to connect States to Actions If goal includes "Have(Milk)", and "Buy(x) achieves Have(x)", then consider action "Buy(Milk)"
2. Add actions ANYWHERE in plan ... Not just to front!

Order of adding actions \neq order of execution!
Eg, can decide to include Buy(Milk) BEFORE deciding where?
... how to get there? . . .
Note: Exploits decomposition:
doesn't matter which Milk-selling store, whether agent currently has Drill, . . .
. . . avoid arbitrary early decisions ...
3. Subgoals tend to be nearly independent
\Rightarrow divide-\&-conquer
Eg, going to store does NOT interfere with borrowing from neighbor...

Goal of Planning

- Choose actions to achieve a certain goal
- Isn't PLANNI NG 三 Problem Solving ?
- Difficulties with problem solving:

Successor function is a black box:
it must be "applied" to a state to know

- which actions are possible in each state
- the effects of each action

Representations in Planning

Planning opens up the black-boxes by using logic to represent:

- Actions
- States
- Goals

One possible language: STRIPS

State Representation

TABLE

Conjunction of propositions: BLOCK(A), BLOCK(B), BLOCK(C), ON(A,TABLE), ON(B,TABLE), ON(C,A), CLEAR(B), CLEAR(C), HANDEMPTY

Goal Representation

ウ | $\frac{C}{A}$ | |
| :---: | :---: |

TABLE

Conjunction of propositions:
ON(A,TABLE), ON(B,A), ON(C,B)
Goal G is achieved in state S iff
all the propositions in G are in S

Unstack(x, y)

- $P=$ HANDEMPTY, $\operatorname{BLOCK}(x), \operatorname{BLOCK}(y)$, $\operatorname{CLEAR}(x), O N(x, y)$

\longrightarrow Precondition: conjunction of propositions
" \neg " means: Remove HANDEMPTY from state

Example

Unstack(C,A)

- $\mathrm{P}=\mathrm{HANDEMPTY}, \operatorname{BLOCK}(\mathrm{C}), \operatorname{BLOCK}(\mathrm{A})$, CLEAR(C), ON(C,A)
- $E=\neg$ HANDEMPTY, $\neg \operatorname{CLEAR}(C)$, HOLDI NG(C),
$\neg \mathrm{ON}(\mathrm{C}, \mathrm{A}), \operatorname{CLEAR}(\mathrm{A})$

Example

C

BLOCK(A), BLOCK(B), BLOCK(C), ON(A,TABLE), ON(B,TABLE), ON(C,A), CLEAR(B), CLEAR(C), HANDEMPTY A B HOLDING(C), CLEAR(A)

Unstack(C,A)

- $\mathrm{P}=\mathrm{HANDEMPTY}, \operatorname{BLOCK}(\mathrm{C}), \operatorname{BLOCK}(\mathrm{A})$,

CLEAR(C), ON(C,A)

- $E=\neg$ HANDEMPTY, $\neg \operatorname{CLEAR}(C)$, HOLDI NG(C),
$\neg \mathrm{ON}(\mathrm{C}, \mathrm{A}), \operatorname{CLEAR}(\mathrm{A})$

Action Representation

Unstack(x, y)

- $\mathrm{P}=\mathrm{HANDEMPTY}, \operatorname{BLOCK}(\mathrm{x}), \operatorname{BLOCK}(\mathrm{y}), \operatorname{CLEAR}(\mathrm{x}), \mathrm{ON}(\mathrm{x}, \mathrm{y})$
$\bullet E=\neg H A N D E M P T Y, \neg C L E A R(x)$, HOLDING(x), $\neg O N(x, y)$, CLEAR(y)
Stack(x,y)
$\cdot P=\operatorname{HOLDING}(x), \operatorname{BLOCK}(x), \operatorname{BLOCK}(y), \operatorname{CLEAR}(y)$
- $\mathrm{E}=\mathrm{ON}(\mathrm{x}, \mathrm{y}), \neg \operatorname{CLEAR}(\mathrm{y}), \neg$ HOLDING(x$)$, CLEAR(x$)$, HANDEMPTY

Pickup(x)

- $\mathrm{P}=\mathrm{HANDEMPTY}$, BLOCK (x), CLEAR (x), ON(x, TABLE)
$\bullet E=\neg H A N D E M P T Y, \neg C L E A R(x), \operatorname{HOLDING}(x), \neg O N(x, T A B L E)$
PutDown(x)
- $P=$ HOLDING(x)
$\bullet E=O N(x, T A B L E), \neg H O L D I N G(x)$, CLEAR(x), HANDEMPTY

Summary of STRI PS language features

- Representation of states
- Decompose the world into logical conditions; state \equiv conjunction of positive literals
- Closed world assumption.

Conditions not mentioned in state assumed to be false

- Representation of goals
- Partially specified state;
conjunction of positive ground literals
- A goal \boldsymbol{g} is satisfied at state \boldsymbol{s} iff
\boldsymbol{s} contains all literals in goal \boldsymbol{g}

Summary of

 STRIPS language features

 STRIPS language features}

Representations of actions

- Action = PRECONDITION + EFFECT
- Header:
- Action name and parameter list
- Precondition:
- conj of function-free literals
- Effect:
- conj of function-free literals
- Add-list \& delete-list

Semantics

Executing action a
in state s
produces state s'

- s' is same as s except
- Every positive literal P in a :Effect is added to s
- Every negative literal $\neg P$ in $a:$ Effect is removed from s
- STRIPS assumption:

Every literal NOT in the effect remains unchanged

- (avoids representational frame problem)

Expressiveness

- STRIPS is not arbitrary FOL
- Important limit: function-free literals
- Allows for propositional representation
- Function symbols lead to infinitely many states and actions
- Recent extension: Action Description language (ADL)

Example:

Air Cargo Transport

Init(Cargo(C1) \& Cargo(C2) \& Plane(P1) \& Plane(P2) \& Airport(J FK) \& Airport(SFO) \& At(C1, SFO) \& At(C2,J FK) \& $A t(P 1, S F O) \& A t(P 2, J F K))$

Goal($A t(C 1, J F K) \& A t(C 2, S F O))$

Example:
 Air Cargo Transport

Init(Cargo(C1) \& Cargo(C2) \& Plane(P1) \& Plane(P2) \& Airport(J FK) \& Airport(SFO) \& At(C1, SFO) \& At(C2,JFK) \& At(P1,SFO) \& At(P2,JFK))

Goal(At(C1,JFK) \& At(C2,SFO))
Action(Load(c, p, a)
PRECOND: At(c, a) \&At(p, a) \&Cargo(c) \& Plane(p) \&Airport(a)
EFFECT: $\neg A t(c, a) \& / n(c, p))$
Action(Unload((c, p, a)
PRECOND: In $(c, p) \& A t(p, a) \& C a r g o(c) \&$ Plane(p) \&Airport(a)
EFFECT: At $(c, a) \& \neg / n(c, p))$
Action (Fly (p, from, to)
PRECOND: At $(p$, from) \& Plane $(p) \&$ Airport(from) \& Airport(to)
EFFECT: \neg At $(p$, from $) \& A t(p$, to $))$
[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1, P1, JFK), Load(C2,P2,J FK), Fly(P2,J FK,SFO), Unload(C2, P2, SFO)]

Planning with State-space Search

- Forward search vs Backward search
- Progression planners
- Forward state-space search
- Consider the effects of all possible actions in a given state
- Regression planners
- Backward state-space search
- To achieve a goal, what must have been true in the previous state

Progression vs Regression

- Progressive

- Regressive

Progression Planning Algorithm

Formulation as state-space search problem:

- Initial state $=$ initial state of the planning problem
- ... literals not appearing are false
- Actions $=$ (just actions whose preconditions are satisfied)
- Add positive effects, delete negative effects
- Goal test = does the state satisfy the goal?
- Step cost $=$ each action costs 1
- Any graph search that is complete is a complete planning algorithm.
(No functions)
- Inefficient:
(1) irrelevant action problem
(2) good heuristic required for efficient search

Progression (Forward) Planning

Regression (Backward Chaining)

Typically...
\#[actions relevant to a goal] < \#[actions applicable to a state]
\rightarrow
Backward chaining has smaller branching factor than forward planning

Back

Backward planning searches a space of goals

Stack(C,B)
$\mathrm{ON}(\mathrm{B}, \mathrm{A}), \mathrm{ON}(\mathrm{C}, \mathrm{B})$ ON(B,A), CLEAR(B), HOLDI NG(C)

Pickup(C)
ON(B,A), CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,TABLE),
Stack(B,A) \downarrow
CLEAR(A), HOLDI NG(B), CLEAR(C), ON(C,TABLE)
Pickup(B)

$\operatorname{CLEAR}(A), \operatorname{HANDEMPTY}, \operatorname{CLEAR}(B)$, ON(B,TABLE), CLEAR(C), ON(C,TABLE)
Putdown(C)

$$
\operatorname{CLEAR}(\mathrm{A}), \operatorname{HOLDING(C),\operatorname {CLEAR}(\mathrm {B}),\mathrm {ON}(\mathrm {B},\mathrm {TABLE})}
$$

Unstack(C,A)
$\operatorname{CLEAR}(B)$, HANDEMPTY, $\operatorname{CLEAR}(C), \mathrm{ON}(\mathrm{C}, \mathrm{A}), \mathrm{ON}(\mathrm{B}, \mathrm{TABLE})$

Regression Algorithm

- How to determine predecessors?
- What S can lead to goal G, by applying an action a ?

Goal state $=A t(C 1, B) \& A t(C 2, B) \& \ldots \& A t(C 20, B)$
Action relevant for first conjunct: Unload $(C 1, p, B)$
(Works only if pre-conditions are satisfied)
Previous state $=\ln (C 1, p) \& A t(p, B) \& A t(C 2, B) \& \ldots \& A t(C 20, B)$
Subgoal At(C1,B) should not be present in this state.

- Actions must not undo desired literals (consistent)
- Main advantage:

Only relevant actions are considered!

- Often much smaller branching factor than forward search

Heuristics for State-space Search

- Neither progression nor regression are efficient ... without a good heuristic.
- How many actions are needed to achieve the goal?
- Exact solution is NP-hard, ... need a good heuristic:
- Two ways to find admissible heuristic:
- Optimal solution to relaxed problem
- Remove all preconditions from actions
- Subgoal independence assumption:

Approximate
cost of solving a conjunction of subgoals
by
sum of the costs of solving the subproblems independently

Partial-order Planning

- Progression and regression planning are totally ordered plan search forms
- Must decide on complete action sequence on all subproblems
- Operates on "sequences", in order
\Rightarrow Does not take advantage of problem decomposition

Search the Space of Partial Plans

- Start with partial plan

Expand plan until producing complete plan

- Refinement operators: add constraints to partial plan

Eg: Adding an action
Imposing order on actions
Instantiating unbound variable
(View "partial plan" as set of "completed" plans...
Each refinement REMOVES some plans.)

- + Modification Operators
other changes - "debugging" bad plans

Searching in Space of "Partial Plans"

Shoe Example

Goal（ RightShoeOn＾LeftShoeOn ）
（Init（）
Action（ RightShoe，PRECOND：RightSockOn，EFFECT：RightShoeOn ） Action（ RightSock，PRECOND：EFFECT：RightSockOn ） Action（ LeftShoe，PRECOND：LeftSockOn，EFFECT：LeftShoeOn ） Action（ LeftSock，PRECOND：EFFECT：LeftSockOn ）
）

Planner：combine two action sequences

- 〈LeftSock，LeftShoe 〉
- 〈RightSock，RightShoe 〉

I nitial Partial Plan (Shoes)

Consider: Goal: RShoeOn \& LShoeOn
Initial: \{\}
Operators:
Op(RShoe, PreC: RSockOn, Eff: RShoeOn)
Op(LShoe, PreC: LSockOn, Eff: LShoeOn)
Op(RSock, PreC: fg, Eff: RSockOn)
Op(LSock, PreC: fg, Eff: LSockOn)

- Initially... just dummy actions:
S_{s} (Start): no PreC; Effects are FACTs
S_{f} (Finish): PreC = Goal; no Effects

Plan(

- Actions: \{ Ss: Act(Start; PreC: \{\}; E: \{\})
S_{f}^{s} : Act(Finish; PreC: RShoeOn \& LShoeOn) \}
- Orderings: $\left\{\mathrm{S}_{\mathrm{s}} \prec \mathrm{S}_{\mathrm{f}}\right\}$
- CausalLinks: \{\}
- Open-PreC: \{ RShoeOn, LShoeOn \})

Shoe Plan \#2

- "Open-PreC" $\neq\{ \}$
\Rightarrow NOT DONE!
- Next partial plan:

Try to achieve "RShoeOn" \in Open-PreC ... using "RShoe"

Comments on Partial Plans

- Every action is between S_{s} and S_{f} S_{s} for start, before everything S_{e} for finish, only when all goals achieved
- \prec means BEFORE
" $S_{i} \xrightarrow{\text { not necessarily IMMEDIATELY before }}$ with no "intervening clobber-er"
- In "Planning Space":

Move from Plan_{i} to Plan $_{j}$ by \star Adding new Action S
\star Adding new Ordering \prec; Causallink $S_{i} \xrightarrow{\text { PreC }} S_{j}$, Value for Variable,

Q: When to add S ?
A: If S :Effect matches Open-Prec
Q : How to add S ?
A: Add S to Actions
Add $S \prec T$ to Ordering
Add $S \xrightarrow{\text { PreC }} T$ to CausalLinks Add S :Prec to Open-Prec
as necessary

+ more..

Shoe Plan \#3

Plan(Actions:

$$
\begin{aligned}
& \left\{\begin{array}{ll}
S_{s}: & \text { Act(Start; Prec: }\} ; \text { Eff: } 1 \text {) } \\
S_{e}: & \text { Act(Finish; Prec: RShoeOn A LShoeOn) } \\
S_{r s}: & \text { Act(RShoe; Prec: RSockOn; Eff: RShoeOn) } \\
S_{r x}: & \text { Act(RSock; Prec: }\} ; \text { Eff: RSockOn) } \\
S_{l x}: & \text { Act(LSock; Prec: \{\}; Eff: LSockOn) } \\
S_{l s}: & \text { Act(LShoe; Prec: LSockOn; Eff: LShoeOn) }
\end{array}\right\} \\
& \text { Orderings: }\left\{\begin{array}{l}
S_{s}<S_{e}, S_{s}<S_{l x}, S_{s}<S_{r x}, \ldots \\
S_{l x}<S_{l s}, S_{r x}<S_{r s} \\
S_{l s}<S_{e}, S_{r s}<S_{e}, \ldots
\end{array}\right\} \\
& \text { CausalLinks: }\left\{\begin{array}{l}
S_{l x} \stackrel{\text { SackOn }}{\longrightarrow} S_{l s} \\
S_{r x} \text { RockOn } S_{r s}
\end{array}\right\} \\
& \text { Open-Prec: }\} \\
& \text {) }
\end{aligned}
$$

Notes: As "Open-Prec $=\{ \}$, can stop (Still another check) ...

- $\approx\langle$ RSock, RShoe \rangle and \langle LSock, LShoe \rangle

Q: Should they be combined, to produce LINEAR plan??
A: Why?
If left PARTIALLY specified, more options later
. . . when we have more constraints!

- Principle of least commitment:
- Don't make decisions until necessary.
- Only order actions that HAVE to be ordered
- Only instantiate variables when needed (Don't decide on store until have all constraints)

Partial- vs Total- Order Plan

Partial Order Plan:

Total Order Plans:

- LeftSock before LeftShoe RightSock before RightShoe But nothing else specified!

Constraints on PO-Plans

- "Partial order plan"
* Some constraints on order of actions
* Must be consistent NOT: $S_{a} \prec S_{b}$ and $S_{b} \prec S_{a}$
- A linearization of (partial) plan completely orders all actions ... producing a "totally ordered plan"
- "Causal Link" $A \xrightarrow{\rho} B$
... A achieves ρ for B
\star connects action A to action B where A :Effect $=\rho=B$:PreCond If C : Effect $=\neg \rho$, must not add C between A and B

Solution

A solution \equiv a (partial) plan that agent can execute and guarantees achievement of goal(s).
\equiv a complete, consistent plan:

- Complete: Open-PreC= $=\{ \}$

Each precond ρ of each action A is achieved by some other action B s.t.

$$
B<A \text { and }
$$

$\neg \exists C$ s.t. C undoes ρ and $B<C<A$
$\forall \mathrm{A} \in$ Actions(Plan), $\forall \rho \in \operatorname{PreC}(\mathrm{A})$;
$\exists B \quad B<A \quad \& \quad \rho \in \operatorname{Eff}(A)$
$\& \neg \exists C B<C \prec A \& \neg \rho \in \operatorname{Eff}(C)$

- Consistent: No contradictions in ordering constraints.
- Note: Need not be a TOTAL plan.
... but every linearization is correct!

Partial-order Planning

A Partial-order planner is a planning algorithm

- that can place two actions into a plan
- without specifying which comes first

Partial Oıder Plan:

Recent Progress

- SAT-plan
- Convert Planning Task to SAT problem; Send to SAT solver
- WORKS very well!
- GraphPlan
- Create graph structure of states+actions
- Find traversal, until levels out...
- It works too!
- More expressive descriptions, ...
- Action Description language (ADL)
- Re-planning
- Not "open loop", but reactive
- Stochastic outcomes.. \Rightarrow Markov Decision Process
- ... Reinforcement Learning

Comparison of Strips vs ADL

Strips language	ADL language
Positive literals in states Poor A Unlmonn	Positive and negative literals in states: \rightarrow Rich $\wedge \rightarrow$ Famous
Closed World Assumption: Unmentioned literals are false	Open World Assumption: Unmentioned literals are unknown
Effect $P \vee \neg Q$ means add P and delete Q	Effect $P \vee \neg Q$ means add " P and $\neg Q$ " and delete ${ }^{"}-P$ and Q "
Only ground literals in goals: Rich A Famous	Quantified variables in goals: $\exists x A t\left(P_{1}, x\right) \wedge A t\left(P_{2}, x\right)$ is goal of having P_{1} and P_{2} in same place
Goals are conjunctions Rich A Famous	```Goal can include conjunctions and disjunctions ~Poor A (Famous V Smart)```
Effects are conjunctions	Conditional effects allowed: " When P : E " means E is an effect only if P is satisfied
No support for equality	Equality predicate ($x=y$) is built in
No support for types	Variables can have types, as in (p: Plane)

Summary

- Representations in planning
- Representation of action: preconditions + effects
- Forward planning
- Backward chaining
- Partial-order planning

Limits of Strips-Based Planners

- Hierarchical plans
"Prepare booster, prepare capsule, load cargo, launch" then achieve each sub-part, recursively . . .
- Complex conditions

Strips: Simple Proposition literals
Better: "Launch causes ALL items to go into space"
"If...THEN . . ."

- Time

Strips: discrete, sequential,. . .
Better: deadlines, actions have durations, time windows,. . .

- Resources

Global constraints on TOTAL resources allowed
. . . of allowed at instant, . . .

POPlaning Example:
 Changing a Tire

Flat-Tire Domain

FI=Flat; $S p=$ Spare; $A \times=A \times e l ;$ Tr= Trunk; Gr= Ground

- Initial: At (Fl, Ax) \wedge At(Sp, Tr)
$\operatorname{Op}\left(\begin{array}{l}\text { Start } \\ \text { Prec: }\} \\ \text { Eff: } A t(F 1, A x) \wedge A t(S P, ~ T r)\end{array}\right)$
- Goal: At(Sp, Ax)

$$
\text { op }\left(\begin{array}{ll}
\text { Finish } & \\
\text { Prec: } & \text { At }(S p, A x) \\
\text { Eff: } & \}
\end{array}\right)
$$

- Actions:

```
Op \(\left(\begin{array}{l}\text { TakeOutSpare } \\ \text { Prec: At } S \text {, Tr } \\ \text { Eff: } \quad \neg A t(S p, \operatorname{Tr}) \wedge A t(S p, G r)\end{array}\right)\)
\(\operatorname{Op}\left(\begin{array}{l}\text { RemoveFlat } \\ \text { Prec: At(Fl, Ax) } \\ \text { Eff: } \neg A t(F 1, A x) \wedge A t(F l, G r)\end{array}\right)\)
\(\operatorname{Op}\left(\begin{array}{l}\text { PutOnSpare } \\ \text { Prec: At }(S p, \text { Gr) } \wedge \neg A t(F l, A x) \\ \text { Eff: } \neg A t(S p, G r) \wedge A t(S p, A x)\end{array}\right)\)
\(\operatorname{Op}\left(\begin{array}{l}\text { LeaveOverNight } \\ \text { Prec: } \\ \text { Eff: } \\ \qquad \neg \mathrm{At}(\mathrm{Sp}, \mathrm{Gr}) \wedge \neg \neg \mathrm{At}(\mathrm{Sp}, \mathrm{Ax}) \wedge \wedge \neg \mathrm{At}(\mathrm{Sp}, \mathrm{Tr})\end{array}\right)\)
```


Tire - Planning \#1

- Initial configuration:

- Only "Open-PreC': At (Sp,Ax)

Given

$$
\mathrm{Op}\left(\begin{array}{l}
\text { PutOnSpare } \\
\text { PreC: } \\
\text { At }(\mathrm{Sp}, \mathrm{Gr}) \wedge \neg \mathrm{At}(\mathrm{Fl}, \mathrm{Ax}) \\
\mathrm{Eff}: \\
\mathrm{At}(\mathrm{Sp}, \mathrm{Gr}) \wedge \mathrm{At}(\mathrm{Sp}, \mathrm{Ax})
\end{array}\right)
$$

- New (partial) plan ...

Tire - Planning \#2

- Now work on Open-PreC: At(Sp,Gr)
(PutOnSpare's pre-cond)
Only action achieving this condition:
TakeOutSpare

- Now: Open-PreC $=\left\{\begin{array}{c}\operatorname{At}(\mathrm{Sp}, \mathrm{Tr}) \\ \neg \operatorname{At}(\mathrm{FI}, \mathrm{Ax})\end{array}\right\}$

To process $\neg \mathrm{At}(\mathrm{Fl}, \mathrm{Ax}) \ldots$

"Clobbering"

Absspara Trunk; TakeCutSpare
Start A.tyspara. Trunk)
A.tpmat,A.da)

AySpara,Ground PutOnSipare \rightarrow Arfipara-Axdei Finlsh

- For $\neg \mathrm{At}(\mathrm{Fl}, \mathrm{Ax})$:

Spse LeaveOvernight
$\mathrm{Op}\left(\begin{array}{ll}\text { LeaveOverNight } \\ \text { Prec: } & \} \\ \text { Eff: } & \neg \mathrm{At}(\mathrm{Sp}, \mathrm{Gr}) \wedge \neg \mathrm{At}(\mathrm{Sp}, \mathrm{Ax}) \wedge \neg \mathrm{At}(\mathrm{Sp}, \mathrm{Tr}) \\ & \wedge \neg \mathrm{At}(\mathrm{Fl}, \mathrm{Gr})\end{array}\right.$

,
-BUT...
LeaveOvernight: Effects includes \neg At (Sp, Gr), which clobbers

TakeOutSpare $\xrightarrow{\text { At (Sp,Gr) }}$ PutOn(Sp, Ax)

- Ie, sequence

〈TakeOutSpare, LeaveOvernight, PutOn(Sp,Ax) >
will NOT work:
when about to perform PutOn (Sp,Ax)
its precondition At (Sp,Gr) is NOT true!

Protected Links

Problen : A step ss threatens causallink $S_{1} \xrightarrow{\rho} S_{2}$
if effect of ss is deleting (clobbering) ρ

Eg:
Leaveluernight threatens Takelutspare $\xrightarrow{A t\left(S_{p}, G x\right)}$ Putonspare
solution: Adid ordering constraints to keep Ss from intervening betwveen si and sz

Sptionl: Demotion (before si): (b)
Sption2: promotion (after sz): (c)

(b)

403

Where to add LeaveOvernight?

\Rightarrow need to move LeaveOvernight to

1. before TakeOutSpare
2. after PutOnSpare
3. does NOT work:
as LeaveOvernight: Effects includes $\neg \mathrm{At}(\mathrm{Sp}, \mathrm{Ax})$. which clobbers

$$
\text { PutOn }\left(S_{p}, A x\right) \xrightarrow{A t\left(S_{p}, A_{x}\right)} \text { Finish }
$$

$\Rightarrow A F T E R$ Finish
.. . but NOTHING can be AFTER Finish...
\Rightarrow need to use 1 .
see dotted-line (for $<$)

Problem... backtrack ...

- Here, Open-PreC= \{ At(Sp,Tr)\}

Start is only action $W / E f f e c t=A t(S p, T r)$
\Longrightarrow need Start ${ }^{\text {At }(S p, T r)}$ Takelutspare,
But. . . Leavedvernight threatens
Start $\xrightarrow{\text { At (Sp,Tr) }}$ TakeDutSpare,
Promote or Demote?

1. Move Leavedvernight BEFORE Start? Not allowed!
2. Move Leavedvernight AFTER Takedutspare? No - as Leavedvernight $<$ Takedutspare

Neither is possible!

- Planner has proven

Leavelvernight is NOT (this) part of changing tire!
\Longrightarrow Need to backtrack!

Tire - Planning \#3

- Return to

How else to achieve $\neg A t(F 1, A x)$?

- Try
$\operatorname{Op}\left(\begin{array}{l}\text { RemoveFlat } \\ \text { Prec: } \\ \text { Eff: At (Fl, Ax) } \\ \text { At (Fl, Ax) }\end{array} \wedge \mathrm{At}(\mathrm{Fl}, \mathrm{Gr})\right)$

- Open-PreC $=\{\mathrm{At}(\mathrm{F} 1, \mathrm{Ax}), \mathrm{At}(\mathrm{Sp}, \mathrm{Tr})\}$

Use

- Open-PreC $=\{ \} \ldots$ DONE!

Comments

- Partial Order: 2 linearizations
(in general, can be MANY extensions)
Added FLEXIBITY
if events later impose other constraints
- Further improvements

Might unlink Start $\xrightarrow{\text { At (Fl,Ax) }}$ RemoveFlat, then re-link it

Should use Dependency-Directed backtracking!

- Other complications if FirstOrder
and have unbound variables
- Some good heuristics
* most-constrained variables (CSP)

POP: Partial Order Planner

function $\mathbb{P O P (i n i t i a l}$ goal, operators) neturns plan

```
plam & Make-MiNIMAL-PLAN(inutial, goal)
loop dor
    if SOLUTHON?(plan) then return plan
        Smodt c & SELECT-SUEGOAL(plan)
        ChOOSE-OPERATORA(plan, opevanors, Smed, c)
        RESOLVE-THREATS(p/an)
    end
```

function Select-Subgoal $L(p / k i n)$ neturns S smed, ac
pick a plan step $S_{\text {meed }}$ from Steps (plan)
with a precondition c that has not been achieved
return $S_{\text {need, }} c$
proced ure Choose-OpERATOR(plan, openators, Smed, c)
choose a step $S_{\text {adt }}$ from operators or STEPS (plan) that has cos an effect if there is no such step then fail
add the causall link $S_{e=d} \Leftrightarrow S_{n \text { ned }}$ to LINES (plan)
add the ondering constraint $S_{\text {add }} \sim S_{\text {med }}$ to ORDERINGS($p l a n$)
if $S_{\text {odd }}$ is a newly added step from operators then
adld Scadd to STEPS(plan)
adid Start $<$ Sour - Finish to Orderings (plan)
procedure Resolve-Threats (plan)
for each $S_{\text {rhear }}$ that threatens a link $S_{i} \leadsto S_{j}$ in LINES (plan) do choose either

Promotion: Add $S_{\text {minar }}<S_{i}$ to ORDERINGS($p \mathrm{Lan}$)
Demotion: Add $S_{j} \leqslant S_{\text {mivear to }}$ ORDERINGS(plan)
if not Consistennt p pan) then fail
end

Comments on POP

- Starts from

- Smeed is step (in current partial plan) with an unsatisfied precondition, c

Try to achieve e from

- an existing step. or
- some operator
- Link Smeed to that step.
- Resolve any nevn threats
- P®P is REEGRESSIBN Planner
- Sound and complete!

Dealing with Variables

- So far, everything PROPOSITIONAL In general: Variables!

SubGoal: On(A,B)
- Use

...move A from somewhere to B
"least committment principle"
- If initially On (A, D): could be "Move (A, D, B)"

Or if reach $\operatorname{On}(A, Q)$, then "Move (A, Q, B) "
Q: Is Move(A,x,B) $\xrightarrow{\text { On(A,B) }}$ Finish M_{2} where M_{2} : Effect $=\operatorname{On}(Q, z) ?$
A: Only if $z=A$ or $z=B$
So need to record $z \neq \mathrm{A}, \mathrm{z} \neq \mathrm{B}$

RealWorld Planning

- Sptimun-AIV
- used by European Space Agency
- assembly, integration, verification of space-craft
- Generate plans, monitor their execution + replan as required
- DS1: nasa probe
- Celcorp . . .
- Job-Shop scheduling
- Scheduling for space mission Hubble telescope

Comparison

- Speration Research tools
(eg. PERT chart, Critical Path method)
Input: Hand-constructed complete partial-order plan
Sutput: Find optimal schedule action $=$ object that
takes time.
have ordering constraints
. . . effects igmored

Note: Srdering constraints hard-coded no additional knowledge engineering

- Don't have info needed to replan or to handle many different planning task
- Here, need general information ... + sophisticated planner . . .
- Most time spent finding what the constraints really are

