Al
)
{7

| Planning

Some material taken from D. Lin, J-C Latombe

Logical Agents

= Reasoning [Ch 6]
= Propositional Logic [Ch 7]

= Predicate Calculus
= Representation [Ch 8]
= Inference [Ch 9]

\ = Implemented Systems [Ch 10]
= Planning [Ch 11]
= Representations in planning (Strips)

= Representation of action:
preconditions + effects

Forward planning
= Backward chaining
= Partial-order planning

‘.h Planning Agent

SEeNnsors

. @

ctuators

Updating State, Based on Action

T —
""“'--.,H“‘H‘-‘“'“--.
]
— e Q)
] iu;ﬁ]
| I e
i - I
[, | ""-._:-‘-‘HH""--.._______' S-r
E x““"‘m a“--.___
— @
—— ﬁ' | Forward
T~ B A
"““-m..‘ r— "“‘--.,H__"__‘H 2
[] h |
= | (R —L-
-] "--.___S TurnBighs
—]
s Formward
S\'J
51 = Result({ Forward, Sgp)
S> = Result(TurnRight, S1)
= Result(TurnRight, Result{(Forward, Sp))
S3 = Result(Forward, So)

Result(Forward,
Result(TurnRight,
Result(Forward, Sao)))
Result:. Action X State +— State

Planning In Situation Calculus

= Given:
= Initial: At(Home, S;) & —Have(Milk, S;)
= Goal: 3s At(Home,s) & Have(Milk,s)

= Operators: Va, s Have(Milk, Result(a,s)) <
[(a = Buy(Milk) & At(Store, s))
v (Have(Milk,s) & a #Drop(Milk))]

= Find: Sequence of operators [0,, ..., 0,] where
S = Result(o,, Result(... Result(0., S;) ...))
s.t. At(Home, S) & Have(Milk, S)

= but... Standard Problem Solving is inefficient
As goal is “black box”, just generate-&-test!

i Naive Problem Solving

s Goal:
“At home: have Milk, Bananas, and Drill”

1 s At(Home, s) & Have(Milk, s) &
Have(Banana, s) & Have(Drlll, s)

= Initial: “None of these; at home”
At(Home, S,) & —Have(Milk, S,) & —Have(Banana, S;) &
—Have(Drill, Sy)

= Operators:
Goto(y), Sitin(z), Talk(w), Buy(q), ...

Start

Go To Pet Store

Talk to Parrot

-
/Euy a Dog

Go To School

-

Go To Class

Go To Supermarket

Buy Tuna Fish

-

\
\

\ % Buy Arugula
\

\

\
\HEW Milk

Sit Some More

|
IH& Etc. Etc. ...

-

\Head A Book
—

Finish

i General Issues

s Done?

= General problems:
= Problem solving is P-space complete
= Logical inference is only semidecidable
= .. plan returned may go from initial to goal,
but extremely inefficiently (Noop, [A, A1], ..)
= Solution
= Restrict language

= Special purpose reasoner
= PLANNER

Key ldeas

1. Open up representation ... to connect States to Actions

If goal includes “Have(Milk)”, and “Buy(x) achieves Have(x)”,
then consider action “Buy(Milk)”

2. Add actions ANYWHERE in plan ... Not just to front!
Order of adding actions # order of execution!

Eg, can decide to include Buy(Milk) BEFORE deciding where?
... how to get there? . ..

Note: Exploits decomposition:
doesn't matter which Milk-selling store,
whether agent currently has Drill, . . .

. . . avoid arbitrary early decisions ...

3. Subgoals tend to be nearly independent
= divide-&-conquer
Eg, going to store does NOT interfere with borrowing from neighbor...

10

i Goal of Planning

= Choose actions to achieve a certain goal
= Isn't PLANNING = Problem Solving ?
= Difficulties with problem solving:
Successor function is a black box:
It must be “applied” to a state to know
= Which actions are possible in each state
s the effects of each action

11

i Representations in Planning

Planning opens up the black-boxes
by using logic to represent:

= Actions Problem solving Logic representation
= States
= Goals Planning

One possible language: STRIPS

State Representation

-

J_I_ TABLE

Conjunction of propositions:
BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A),
CLEAR(B), CLEAR(C), HANDEMPTY

13

. -
Goal Representation :

I TABLE

Conjunction of propositions:
ON(A,TABLE), ON(B,A), ON(C,B)

Goal Gis achieved In state S
Iff
all the propositionsin G are in S 14

i Action Representation s

IJ.I

TABLE

Unstack(X, y)

CLEAR(X). ON(X,y)
—» E = GQHANDEMPTY,) —CLEAR(X)

— ON(xly), CLEAR(Y)

» P = HANDEMPTY, BLOCK(x), BLOCK(y),

EHOLDING (),

s Effect: |list of literals

“.7 means: Remove
HANDEMPTY
from state

> Precondition: conjunction of propositions

Means: Add
HOLDING(X)
to state

15

ﬁ Example
M

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A, TABLE), ON(B,TABLE), ON(C,A),
CLEAR(B), CLEAR(C), HANDEMPTY

Unstack(C,A)

e P = HANDEMPTY, BLOCK(C), BLOCK(A),
CLEAR(C), ON(C,A)

e E = —.HANDEMPTY, —CLEAR(C), HOLDING(C),
—ON(C,A), CLEAR(A)

16

ﬁ Example
g

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A, TABLE), ON(B, TABLE), ON(e-#Y,
CLEAR(B), CLEARTT), HANDEMPTY

. . HOLDING(C), CLEAR(A)

Unstack(C,A)

e P = HANDEMPTY, BLOCK(C), BLOCK(A),
CLEAR(C), ON(C,A)

e E = —.HANDEMPTY, —CLEAR(C), HOLDING(C),
—ON(C,A), CLEAR(A)

17

TABLE

i Action Representation in

Unstack(X,y)
e P = HANDEMPTY, BLOCK(x), BLOCK(y), CLEAR(X), ON(X,y)
e E = -HANDEMPTY, —CLEAR(X), HOLDING(X), —ON(X,y), CLEAR(Y)

Stack(x,y)
e P = HOLDING(x), BLOCK(x), BLOCK(y), CLEAR(Y)
e E = ON(X,y), —CLEAR(Y), —=HOLDING(x), CLEAR(X), HANDEMPTY

Pickup(x)
e P = HANDEMPTY, BLOCK(x), CLEAR(X), ON(X,TABLE)
e E = —HANDEMPTY, —~CLEAR(X), HOLDING(x), —ON(x,TABLE)

PutDown(x)
e P = HOLDING(X)
e E = ON(X,TABLE), —HOLDING(x), CLEAR(x), HANDEMPTY

18

Summary of
i STRIPS language features

= Representation of states

= Decompose the world into logical conditions;
state = conyunction of positive literals

» Closed world assumption:
Conditions not mentioned in state assumed to be false
= Representation of goals

= Partially specified state;
conjunction of positive ground literals

= A goal gis satisfied at state s iff
s contains all literals in goal g

19

Summary of
STRIPS language features

Representations of actions

= Action = PRECONDITION + EFFECT

» Header:
= Action name and parameter list

= Precondition:
= conj of function-free literals

s Effect:

= conj of function-free literals
« Add-list & delete-list

20

i Semantics

Executing action a
In state s

produces state s’

= S’ IS same as s except
= Every positive literal P in a:Effect is added to s
= Every negative literal =”in a.Effect is removed from s

= STRIPS assumption:

Every literal NOT in the effect remains unchanged
= (avoids representational frame problem)

21

i Expressiveness

= STRIPS Is not arbitrary FOL

« Important limit: function-free literals
= Allows for propositional representation

= Function symbols lead to infinitely many
states and actions

= Recent extension:
Action Description language (ADL)

22

Example:
i Air Cargo Transport

Init(Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) &
Ainport(JFK) & Airport(SFO) & At(C1, SFO) & A((C2,JFK) &
At(P1,5F0) & At(P2,JFK))

Goal(At(C1,JFK) & At(C2,SFO))

23

Example: N
i Air Cargo Transport "“7‘

Init(Cargo(C1) & Cargo(CZ2) & Plane(P1) & Plane(P2) & Airport(JFK) &
Alrport(SFO) & At(C1, SFO) & At(C2,JFK) & At(P1,5F0) & At(P2,JFK))

Goal(At(C1,JFK) & At(C2,SFO0))

Action(Load(c,p,a)
PRECOND: At(c,a) &At(p,a) &Cargo(c) & Plane(p) &Airport(a)
EFFECT: —Ai(c,a) &In(c,p))

Action(Unload(c,p,a)
PRECOND: /n(c,p) & At(p,a) &Cargo(c) & Plane(p) &Airport(a)
EFFECT: Af(c,a) & —=In(c,p))

Action(Fly(p, from,to)
PRECOND: At(p,from) & Plane(p) & Airport(from) & Airport(to)

EFFECT: —At(p,from) & At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1, P1, JFK),
Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2, P2, SFO)]

i Planning with State-space Search

s Forward search vs Backward search

= Progression planners
= Forward state-space search

= Consider the effects of all possible actions in a
given state

= Regression planners
= Backward state-space search

= To achieve a goal,
what must have been true in the previous state

25

i Progression vs Regression

At(P,, B

Fly(F, A,BI AtP,, A)
J:FMPE-A-E'J At(P,, A)
AtP,, B)

AtiP, , A)
At(P,, B) ~{my(P, AR
. AtiP,, B)
s Regressive At(P,, B)
J'!l:fl:rp1 . B) Fy(P;,AB)
AtiP,, A)

= Progressive [A

At(P,, A)

26

Progression Planning Algorithm

= Formulation as state-space search problem:
= Initial state = initial state of the planning problem
= ... literals not appearing are false
= Actions = (just actions whose preconditions are satisfied)
= Add positive effects, delete negative effects
= Goal test = does the state satisfy the goal?
= Step cost = each action costs 1

= Any graph search that is complete

IS a complete planning algorithm.
(No functions)

= Inefficient:
(1) irrelevant action problem
(2) good heuristic required for efficient search

27

Progression (Forward) Planning

r

Pickup(B) -

Am

‘ Unstack(C,A))

-

r

Forward planning searches a space

of world states

TA

<
<
A

~_|In general, many actions are applicable
to a state -
| hug\? branching fg\ctor

28

Regression
i (Backward Chaining)

ON(B.A), ON(C,B) =

Stack(C,B) I B]

ON(B,A), HOLDING(C), CLEAR(B)

Typically...
#| actions relevant to a goal | <

#[actions applicable to a state |
9

Backward chaining has smaller branching
factor than forward planning

Backward planning searches

a space of goals

i Back\

ON(B,A)| ON(C,B)

Stack(C,B)

ON(B,A), CLEAR(B), |HOLDING(C)

Pickup(C)

Stack(B,A) l

I_I_I

b

ON(B,A)| CLEAR(B), HANDEMPTY, CLEAR(C), ON(C, TABLE),

CLEAR(A)| HOLDING(B), CLEAR(C), ON(C, TABLE)

Pickup(B) A/N‘

CLEAR(A), HANDEMPTY, CLEAR(B), ON(B,TABLE), CLEAR(C), |[ON(C,TABLE)

Putdown(C)
CLEAR(A),

Unstack(C,A)

CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,A), ON(B,TABLE)

CNE TARLE, CLEAR(O) BREST

HOLDING(C), CLEAR(B), ON(B, TABLE)

Regression Algorithm

= How to determine predecessors?

= What S can lead to goal G, by applying an action a ?
Goal state = A1(C1, B) & A{(C2, B) & ... & At(C20, B)
Action relevant for first conjunct. Unload(C1,p,B)
(Works only if pre-conditions are satisfied)
Previous state= /n(C1, p) & At(p, B) & At(C2, B) & ... & At(C20, B)
Subgoal At(C1,B) should not be present in this state.

= Actions must not undo desired literals (consistent)

= Main advantage:
Only relevant actions are considered!

= Often much smaller branching factor than forward search

31

32

Heuristics for State-space Search

= Neither progression nor regression are efficient
... without a good heuristic.

= How many actions are needed to achieve the goal?
= Exact solution is NP-hard, ... need a good heuristic:

= Two ways to find admissible heuristic:

= Optimal solution to relaxed problem
= Remove all preconditions from actions

= Subgoal independence assumption:

Approximate
cost of solving a conjunction of subgoals

by
sum of the costs of solving the subproblems independently
33

i Partial-order Planning

= Progression and regression planning are
totally ordered plan search forms

= Must decide on complete action sequence
on all subproblems

= Operates on “sequences”, in order

— Does not take advantage of
problem decomposition

34

i Search the Space of Partial Plans

= Start with partial plan
Expand plan until producing complete plan
= Refinement operators: add constraints to partial plan
Eg: Adding an action
Imposing order on actions
Instantiating unbound variable

(View “partial plan” as set of “completed” plans...
Each refinement REMOVES some plans.)

= + Modification Operators
other changes — “debugging” bad plans

35

Searching In Space of

i “Partial Plans"

/ﬂ:b/
= _

<¢ - \ {/&"‘

i Shoe Example

Goal(RightShoeOn A LeftShoeOn)

(1nitQ)

Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Action(RightSock, PRECOND: EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND: EFFECT: LeftSockOn)
)

Planner: combine two action seqguences
m { LeftSock, LeftShoe)
= { RightSock, RightShoe)

37

Initial Partial Plan (Shoes)

Consider: Goal: RShoeOn & LShoeOn
Initial: {}
Operators:
Op(RShoe, PreC: RSockOn, Eff: RShoeOn)
Op(LShoe, PreC: LSockOn, Eff: LShoeOn)
Op(RSock, PreC: fg, Eff: RSockOn)
Op(LSock, PreC: fg, Eff: LSockOn)

= Initially... jJust dummy actions:
S, (Start): no PreC; Effects are FACTs
S; (Finish): PreC = Goal; no Effects

Plan(

= Actions: { S_: Act(Start; PreC: {}; E: {})
S; : Act(Finish; PreC: RShoeOn & LShoeOn) }

Orderings: { S, < S; }
CausalLinks: {}
Open-PreC: { RShoeOn, LShoeOn }

38

Shoe Plan #2

; . S Act(Start; Fredc: . ETT:
Actions. Sy ACIE Finish; PreC: AShoeon A 1.shoeon)
Orderings: Ss = 5
Plan CausallLinks: { 1 =
Open-PreC: { Egﬁgzgs }
e "Open-PreC' = {}
= NOT DONE!
e Next partial plan:
Try to achieve “"RShoeOn" cOpen-PreC
. using ‘“RShoe’’
|r/ Fa: A-:T:E Start, PreZ: [}, Ef. {1}) \l
) Sy Act(Finish; PreC: RShoeOn ~ LShoeOn)
ol =l Srs: Act(RShoe; prec: RSockOn;
err: RShoeOn)
R S: = 5
Plan Orderings: Se —{i Srs —= Sf }
On({RSockO
Causallinks: { RSock n(=0 n) RShoe }
|1\ Open-PreC: { IH_'SS]:LS:DEDII

39

Comments on Partial Plans

e Every action is between Ss and Sg

20 »0

S for start, bhefore evervthing
S, for finish, anly when all goals achiewed

— means EEFORE
?Jotcﬁnecessarily INMMEDIAT ELLY before
“S; = S;" means before

with Nno “‘intervening clobber-er’

In “"Planning Space' :

Move Trom FPlan; Tto Plan; oy
x> Adding new Action S
& Adding new Ordering —; CausalLink 5;

“Walue for Variable,

FPyreld

S,

“YWhen to add S7
It 5 :Effect matches Open-PreC

How to add S7
Aoodd e to Actions

Aocdd S to Ordering

Add g BreC 4 to Cawusallinks

Add S PrecC to Open-FPreC
as nNecessary
+ more. ..

40

{ Shoe Plan #3

Plan{ Actions:
= Act(Start; Prec: {}; Eff: {}))
Se: Act(Finish; PreCc: RShoeOn ~ LShoeOn)

{ Srs: Act(RShoe; PreC: RSockOn; Em: RShoeOn)
Srr: AcCt(RSock; PreC: {}; EMm RSockOn)

S : Act(LSock; Prec: {}: Eff: LSockOn)
Sis: Act(LShoe; PreC: LSockOn; Eff LShoeOn) |

SS — SE-. SS — SI!I"! S.s — S-r:['-. . e
Orderings: St < Sty Sex < Srs
Sis < Se, Srs <= Se,

L SockCin

. Sﬂr # st
Causallinks: B el Om
W CHTIC
S-ir':[' - S?“S
Open-PreC: {}
)
Motes: As “Open-PreC = {}. <can stop

(Still another check) . ..

Plan(Actions:
k'

Partlal Plans S.. Act(start; PreC: {}; Eff. {})
S, Act(Finish; PreC: RShoeOn A LShoeOn)
Sre. AcCt(RShoe; PreC: RSockOn; Eff: RShoeOn)
g, Act(RSock; PreC: {}; Eff: RSockOn)

P 2T

Stz ActELSack; PreC: {}; Eff. LSockOn)

=

Act(LShoe; PreC: LSockOn; Eff: LShoeCn)

Ss

%
) |5'ug - E'! 53 - 5}-.1" |5‘3 - |5'u;r-1-, 1 @ a
Drle'rllHQ'E.' ||3'I_'|:| —= 5}_3.. ||3';f'1 — 51"3

Siz < Se, Srs < Se, ...
. ASockOn
- |51-'1 —F rs
Causallinks: }

, LSoekOn
St » S

Open-PreC: {})

e ~ (RSock, RShoe) and (LSock, LShoe)

Q: Should they be combined, to produce LINEAR plan??

A: Why?
If left PARTIALLY specified, more options later
. . . when we have more constraints!
= Principle of least commitment:
= Don't make decisions until necessary.
= Only order actions that HAVE to be ordered
= Only instantiate variables when needed
(Don't decide on store until have all constraints) 42

Partial- vs Total- Order Plan

Partial Order Plan: Total Order Plans:
Start Start Start Start Start Start Start
/ \ Right Right Left Left Right L eft
Lot Fiohi Sock Sock Sock Sock Sock Sock
g
Sock Sock + + + + + +
Left Left Righit Righit Righit Left
l l Sock Sock Sock Sock Shoe Shoe
LeffSockOn RightSock On + r t‘t Fi:'+ i I_ett * Ft'* =
Left Right Right e i Left 1)
Shoe Shoe STE STE STE Sh::e.- STK S{I:k
Left Right Left Rig ht Left Righit
Shoe Shoe Shos Shoe Shoe Shoe
L eftShoeOn, RightShos O + * + + + *
Finisk Finish Finish Finmish Finish Finish Finish

o LeftSock befTore LeftShoe
RightSock beTore RightShoe

But nmnothing else speciTied!

Constraints on PO-Plans

e “‘Partial order plan’
* Some constraints on order of actions
* Must be consistent
NOT: Sag < Sp and S < Sa

e A Jinearization of (partial) plan
completely orders all actions
. . . producing a “totally ordered plan’

e “Causal Link” A 2. B
.. .A achieves p Tor B
* Cconnects action A to action B
where A Effect —m p = B:PreCond

IT O : Effect — —p,
must not add ' between A and B

44

Solution

A solution = a (partial) plan that
agent can execute and

guarantees achievement of goal(s).

= a complete, consistent plan:

Complete: Open-PreC= {}
Each precond p of each action A is achieved by some
other action B s.t.
B <A and
—3Cs.t. Cundoespand B<C<A
VvV A e Actions(Plan), V p € PreC(A);
B B<A & p e Eff(A)
& -3ICB<C<A & —p e Eff(C)

Consistent: No contradictions in ordering constraints.

Note: Need not be a TOTAL plan.
... but every linearization is correct!

45

Partial-order Planning

A Partial-order planner is a planning algorithm
= that can place two actions into a plan
= Wwithout specifying which comes first

Partial Oder Plan: Total Order Plans:
Start Start Start Start Start Start Start
/ \ Right Right Left Laft Right Left
= Aoht Seck Sock Saock Sock Sack Sack
Sock Seck * Y * * * *
Lasft Laft Right Right Right Left
l Sock Sock Sock Sock Shas Shoa
LeftSockiOn RightSockCn * i * + * +
: Right Laft Right Left Laft Right
Left Right
Shos Shoa STE 5 h:-a SI'I:la 5 Ta So*ck S-Tk
Laft Right Laft Right Left Right
Shoa Shoa Shos Shoa Shos Shoa
Le#Shosln, RightShoaln * i * + * +
Finizh Finish Finish Finish Finish Finish Finigh

Recent Progress

= SAT-plan
= Convert Planning Task to SAT problem; Send to SAT solver
= WORKS very well!

= GraphPlan
= Create graph structure of states+actions
= Find traversal, until levels out...
= It works too!

= More expressive descriptions, ...
= Action Description language (ADL)

= Re-planning

= Not “open loop”, but reactive

= Stochastic outcomes...= Markov Decision Process
= ... Reinforcement Learning

47

Comparison of Strips vs ADL

Strips languadge

ADL language

[PosItive NNLerals In sLales

FPoor A Unknown

Fositive and negative [ILerals in
states:

—Hich A —Famous

Closed World Assumption:
Unmentioned literals are false

Open Wordd Assumption:
Unmentioned literals are
LN knowsn

Effect P v - means
add P and delete ()

Effect Pv =} means
add “FP and =" and

delete “=F and Q"

Only ground literals in goals:
Rich A Famous

Quantified variables in goals:
3r At{ Py, r)rnAt{ Py, 1) is goal of
having Fi and a2 in same place

Goals are conjunctions

Rich A Famous

Goal can include conjunctions
and disjunctions
—Poor A (Famous % Smart)

Effects are conjunctions

Conditional effects allowed:
"whenF : E" means E is an
effect only if P is satisfied

Mo support for equality

Equality predicate (r = v) is
built in

Mo support for types

Variables can have types, as in
(p: Plane)

48

i Summary

= Representations in planning

= Representation of action:
preconditions + effects

= Forward planning
= Backward chaining
= Partial-order planning

49

Limits of Strips-Based Planners

= Hierarchical plans
“Prepare booster, prepare capsule, load cargo, launch"
then achieve each sub-part, recursively . . .
= Complex conditions
Strips: Simple Proposition literals
Better: “Launch causes ALL items to go into space"
“If .. . THEN .. ."
= TIme
Strips: discrete, sequential,. . .
Better: deadlines, actions have durations, time windows,. . .
= Resources

Global constraints on TOTAL resources allowed
.. . of allowed at instant,. . .

51

POPIanlng Example

52

Flat-Tire Domain

Fl= Flat; Sp= Spare; Ax— Axel; Tr= Trunk; Gr= Ground
o INnitial: At(F1, Ax) A~ At(Sp, Tx)
Start
[]P PreC: {}
Eff : AC(Fl1, Ax) A~ ATt(Sp, Tr)
o Goal: At(Sp, Ax)
Finish
DP Pre(C: AL SP . BA3C)
Eff : {}
e Actions:
TakeOutSpare
Dp Pre: At (Sp s TxTd)
Eff : —AL(Sp, Tr) A At (Sp, Gr)
RemoveFlat
[]p Pre(: At (F1 ., Ax)
Eff : —ATCCFlL, Ax) A~ At (F1l1l, Gx)
PutOnSpare
Op PreC: AC(Sp, Gr) ~ —ATC(F1, Ax)
Eff : —ATC(Sp, Gr) A~ ATC(Sp, Ax)
LeavelOverNight
O FPre: {}
F Eff : —AT(Sp, Gr) A —AT(Sp, Ax) A —AT(Sp, Tr)

A —ATt(Fl, Gr) ~ —At(Fl, Ax)

Tire — Planning #1

e [Nnitial configuration:

Acts: S Act(Start; PreC: {}; Efff At(Sp,Tr) ~ At(FI, Ax)
' Seo oAct{ Finish; PreC: At(Sp,Ax), ET: {})

Orderings: { Ss < Sy }

CausalLinks: {

Open-PreC: { At(Sp,Ax) }

AL(Sp,Tr)

AL(Sp,A Finish
e Only “"Open-PreC': At(Sp,Ax)
Given
PutOnSpare
DP Prel: At(Sp,Gr] A AT (Fl, Ax)
Eff: —At(Sp,Gr) A |At(Sp,Ax)

e New (partial) plan

Se: Act(Start; PreC: {}; Eff: At(Sp,Tr) ~A At(FI,Ax) \l
Sy Act(Finish; PreC: At(Sp,Ax); ETf: {})
Acts:
S Act{ PutOnSpare; PreC: AL(Sp,Gr) ~ —AL(FI, A%
Eff: —-AU(Sp,Gr) A AL(Sp,Ax))

Orderings: { Sg =< 51 = S'f
At(Sp,Ax)

CausalLinks: { S1 — o
. At (Sp,Gx)
open-prec: { FUFE Ax Y,

o4

‘L Tire — Planning #2

Acts: Sg: Act(Finish; PreC: At(Sp,Ax); Eff: {})
‘ S: Act(PutOnSpare; PreC: AtSSp,Gr} A -AL(FLAX)

(S,: Act(Start; PreC: {}; Eff: At(Sp,Tr) A At(Fl,Ax) } \
)

N Eff: —AL(Sp,Gr) » At(Sp,Ax
lan | orderings: { S.<S1<5; }

CausalLinks: 5 At(spAz) s

\Onen—PreC: { Eif.'{%’ﬂiﬂ }

e Now work on Open-PreC. At(Sp,Gr)
(PutOnSpare’s pre-cond)

Only action achieving this condition:
TakeOutSpare

AtfSpare Trunk)| TakeOutSpare \

A{Spare, Trunk) At{Spare, Ground)
A Bpare Axis)
’fF‘“M o —1AtiFiat Axde) | PutOnSpare -

. i _] At(Sp,Tr)
e Now: Open-PreC = { “At(FI,AX) }

To process —At(F1,Ax) ...

“Clobbering”

anspare, Trurk)| TakeOutSpars

JrEee R T Arseare Grovnal J[_Fintsn |
TN el [Fuonseas e isemese

AR atAxtay

o For —At(Fl,Ax):
Spse LeaveOvernight

LeavelOverNight
0 PreC: {}
P Eff: —AT(Sp, Gr) M —ATL(Sp, Ax) A~ —-At(Sp, Tr)

A —ATt(Fl, Gr) A —At(Fl, Ax) A

e BUT. ..
LeaveOvernight:Effects includes —-At(Sp,Gr),
which clobbers

At (Sp.G
TakeOutSpare tijiaﬁ}

PutOn(Sp,Ax)

e Ie, sequence

{TakeOutSpare, | LeaveOwvernight| PutOn(Sp,Ax))

will NO'T work:
when about to perform PutOn (Sp,Ax)
its precondition At (Sp,Gr) is NO'T true! 56

‘L Protected Links

Froblem: A step S threatens
causal link sS4 L S
iT effect of S35 is deleting (clobberinmng) o

Ea: LeavelOvernight threatens

AC{Sp.x)

Take(OutSparae PutOnSpare

Solution: Add ordering constraimnts to kKeep
S Trom intervening between S5 and S-o

Optionl: Demotion (betore Sq9): (b))
O ption2: Promotion (atter S=): (<)

b B 5

o
Iil‘

(8} =T (c)

Where to add LeaveOvernight?

— need to Mmove LeavelOvernight ToO
1. before TakeOutSpare
2. atter PutOnSpare

2. does MOT wwork:

as LeavelOvernight: Effects includes —At(Sp,Ax),

which clobbers

PutOn(Sp, Ax) ht{s—P{I}

Finish

= AFTER Finish

.but NOTHING can be AFTER Finish. ..

—= need to use 1.
see dotted-line (for <)

At Spare, Trunk)| Take OutSpare

o iSpare Ao _Finish_|

L Spoars, Troed) Ay Spars, Groeonal
[Start | GYIShE
__:R'Frazmp} —AgETat Axde) | n—apare

Lesw e emight E:t
—1Ay

—a E‘%ﬁ&tﬁx i)

{ Problem... backtrack ...

e e, Toreeske i [T o e L e D

FrETar_ S ol TSR AT S

—y N
—..Ar.—l=\-=r. ﬁ:’;l.':-"-:r.-

l Lal:l:u'-:l-q:lrvnrnI-Eht T e
QF.-E!:--:-\.%W?J

"

r e T m—
BT P b =T =T e, ML o

e Here, Open-FPreC— { At(Sp.Tr) }

Start is only action w,/Effect — At (Sp, Tr)
Ac(Sp.Tr)
—= neeaed Start ' TakeOutSpare,
But. .. LeavelOvernight threatens
Ac(Sp.Tr)
Start — TakeOutSpare,

FPromote or Demote’

1. Mowve LeavelOvernight EEFORE Start ¥
Not allowed!

2. Mowve LeavelOvernight AF T ER TakeOutSpare s
MNo — as LeavelUvernight <= TakelUutSpare

MNMeither is possible!

o Planner has proven

LeaveOvernight is NOT (this) part of changing tire!

= MNeed to backtrack!

Tire — Planning #3

e Return to

Ay Spare Trunk)| Take OutSpare

A Syoar e, T e) A Spars, Growm
AtSpara Axie)_Finish_|
ﬁ:’Fl’azA:dE-.:l | PutCrnSpars |—-- L=t]

—LANFEIat A

How else to achieve —At(Fl,Ax) 7

e Ty
RemoveFlat
Op PreC: At (F1, Ax)
Eff : —ATt(Fl, Ax) A~ At(F1l, Grr)
FT =T T Trr.rﬂﬁ'ji T kot It o
yp:ratMg._;. ! A—t:..-!.b'FratEA;:'\::r: I Put hSpora I—-—.AE’BﬂrnAxrq_l
< A atA.m'ﬂ-jll Farmeow e loxt
o Open-FPreC — { At (F1l,Ax), At (Sp,Txr) }
==l A (Fl Ax))
T LA
Start At(S --T y RemoveFlat
T il iy
Start L) TakeOutSpare

o Open-PreC — {} ... DONE!

comments

Aﬁ:’EpEf&.Tm‘ﬂFr}l TakeOutSpare |\
wwsos e) AtSpare. Grouneli e AtSorexie|_Finish]
a.fFrazA:ds-;' — A Fiat Axie) [PutonSpare — !

AtFiatAxie) | RemoveFlat

e Partial Order: 2 linearizations
(in general, can be MANY extensions)

Added FLEXIBITY
IT events later impose other constraints

e Further improvements

PMiaght unlink Start M{Fl',n} RemoveFlat,

then re-link it

Should use Dependency-Directed backtracking!

e Other complications it FirstOrder
and have unbound wvariables

e SOoOme good heuristics
+ Most-constrained wvariables (CsP)

‘L POP: Partial Order Planner

Manction POPinirnael goal operarcrs) re turns plan

plan +— Marke-Mirasa L -Prariiinial goal)
B g cllice
if SoLUTHION™ pdfand the n return pilan
Speeat, € +— SELECTSUBGOALL prlarn)
CHOOS E-OPFERA TOR] pprlarn operaiors, Sneed,)
REs ol vE-THREATS[plan)
emd

Manction SELECT-SURBGOA LD plant returns Snpeeq, o

pick a plan step Saceas from STEPS(plan)

with a preconditon o that has not been achiewved
returm 5, 5. C©

procedure CHOOSE-OPER ATOR A G, et af ors, Sneed o)

choose a step Sa from operarors or STEPS(plan) that has ¢ as an effect
if there is no such step then Eail

add the causal link Saay % o Sheeg o LI s plan)
add the ordering constraint S,y = Speg 0 DRDERIMNGS plarn)
if Sazy is @ newly added step from operaiors then

add 5 ;4 to STEPS(plan)

add Srarr — Sage — Finish o ORDERIMNGS(prlan)

procedure RESOIWE-THREATS prfan)

Ffor each 5.4 .o that threatens a link 5; <, 5; in LIiNgs) plan) do
choose ettlheaer

Fromonon: Add 5, . = 5 to ORDERIMNGS] plan)

Dernorion: Add S = Soaear o0 ORDERINGS(prilan)

if ot CoNSISTENT prian) then Cail
e md

4 Comments on POP

==]

Ainiomer Sefisy S8 Fasasal Seallsy S AL Sl WS COR

ooy Tl P Ao oy B0 oo ey i assarsa® Sy A st

b §

e STarts Trorm Findes

- S cead IS step (in current partial plan)
with amn unsatistfied precondition, o

Trw Tto achieve o Trom
— an existing step, O
— SsSOIMme operator

o Link S,c=-qg To TtThat step.

e Resolve any mnaew TtThreats

o PO is REGORESSIOMN planner

o Sound anmnd Completal

{ Dealing with Variables

So far, evervithing PROPOSIT ICONAL
Imn general: Yariables!

Move (b ,x ,y)
« 0Op PreC: On(b,x) A Clear(b) A Cleard(y)
Eff - On(b,y> A Clear(x) A~ —0n(b,x) A —Clear(y)

SubGoal: OndA,B)

e Lise
Move(A,.x ,B)
Op PreC: OnCA,x> ~ Clear (A) .~ Clear (B)
Eff : OnA.B) ~ Cleard(x) »~ —0OndA.x)> .~ —Clear(B)

Srmowe A from sormevrhere to B
“least caommittment primciple"

e If initially On(A,D)Y: could be “Move(A. D |[B)"
Or i reach OndA,Q),. then “‘Move (A, | QBT
2 Is Move(A,.x ,B) e Sy Finish
threatenaed by
M~ where Mo:Effect = On(Q,=) 7
A Only it = = A Or = =B

So need to record =z = A, =z = B

{ RealWorld Planning

COpPptirmmurTty— AW
— used by European Space Adgeray

— assaembly, integration, wverification of
space—cratt

e GCenerate plans, Monitor their execultion
—+ replanmn as required

o DS 1: MNASA probe

o CelCorp

o _JOob-Shop scheduling

o Schedulinmng Tor space mission
Hubble telescope

{ Comparison

o Operation Research tools
(ea, PERT chart, Critical Path method)

Input: Hand-constructed complete partial-order plan

Output: Find optimal schedule

action = object that
takes time,
hawve ordering constraints
. effects ianored

Note: Ordering constraints hard-coded
No additional Kknowledge engaineering

o DonNn't have inTo needed Tto replan
or to handle many different planning task

o Here, need general iNnTormation

—+ sophisticated planner

e MMost time spent Tinding what the con-
straints really are

	Planning
	Logical Agents
	Planning Agent
	Slide Number 4
	Updating State, Based on Action
	Planning in Situation Calculus
	Naïve Problem Solving
	Slide Number 8
	General Issues
	Key Ideas
	Goal of Planning
	Representations in Planning
	State Representation
	Goal Representation
	Action Representation
	Example
	Example
	Action Representation
	Summary of �STRIPS language features
	Summary of �STRIPS language features
	Semantics
	Expressiveness
	Example: �Air Cargo Transport
	Example: �Air Cargo Transport
	Planning with State-space Search
	Progression vs Regression
	Progression Planning Algorithm
	Progression (Forward) Planning
	Regression �(Backward Chaining)
	Backward Chaining
	Regression Algorithm
	Slide Number 32
	Heuristics for State-space Search
	Partial-order Planning
	Search the Space of Partial Plans
	Searching in Space of�“Partial Plans"
	Shoe Example
	Initial Partial Plan (Shoes)
	Shoe Plan #2
	Comments on Partial Plans
	Shoe Plan #3
	Partial Plans
	Partial- vs Total- Order Plan
	Constraints on PO-Plans
	Solution
	Partial-order Planning
	Recent Progress
	Comparison of Strips vs ADL
	Summary
	Slide Number 50
	Limits of Strips-Based Planners
	POPlaning Example:�Changing a Tire
	Flat-Tire Domain
	Tire – Planning #1
	Tire – Planning #2
	“Clobbering”
	Protected Links
	Where to add LeaveOvernight?
	Problem... backtrack ...
	Tire – Planning #3
	Comments
	POP: Partial Order Planner
	Comments on POP
	Dealing with Variables
	RealWorld Planning
	Comparison

