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Planning

Some material taken from D. Lin, J-C Latombe

RN, Chapter 11
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Logical Agents
Reasoning [Ch 6]
Propositional Logic [Ch 7]
Predicate Calculus

Representation [Ch 8]
Inference [Ch 9]

Implemented Systems [Ch 10]
Planning [Ch 11]

Representations in planning (Strips)
Representation of action:

preconditions + effects
Forward planning
Backward chaining
Partial-order planning
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Planning AgentPlanning Agent

environment
agent

?

sensors

actuators

A1 A2 A3



4



5

Updating State, Based on Action

See 10.3-SituationCalculus.pdf
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Planning in Situation Calculus
Given: 

Initial: At(Home, S0) & ¬Have(Milk, S0)
Goal: ∃s At(Home,s) & Have(Milk,s)
Operators: ∀a, s Have(Milk, Result(a,s)) ⇔

[(a = Buy(Milk) & At(Store, s))
v (Have(Milk,s) & a ≠Drop(Milk))]

...
Find: Sequence of operators [o1, …, ok] where
S = Result( ok , Result( ... Result( o1 , S0 ) ...))
s.t. At(Home, S) & Have(Milk, S)

but... Standard Problem Solving is inefficient
As goal is “black box”,   just generate-&-test!
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Naïve Problem Solving

Goal: 
“At home; have Milk, Bananas, and Drill”
∃

 
s At(Home, s) & Have(Milk, s) & 
Have(Banana, s) & Have(Drill, s)

Initial: “None of these; at home”
At(Home, S0 ) & ¬Have(Milk, S0 ) & ¬Have(Banana, S0 ) & 

¬Have(Drill, S0 )

Operators:
Goto(y), SitIn(z), Talk(w), Buy(q), ...
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General Issues
Done?
General problems:

Problem solving is P-space complete
Logical inference is only semidecidable
..  plan returned may go from initial to goal,
but extremely inefficiently (NoOp, [A, A-1], …)

Solution
Restrict language
Special purpose reasoner
⇒

 

PLANNER
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Key Ideas

1. Open up representation ... to connect States to Actions
If goal includes “Have(Milk)”, and “Buy(x) achieves Have(x)”, 
then consider action “Buy(Milk)”

2. Add actions ANYWHERE in plan … Not just to front!
Order of adding actions ≠

 

order of execution!
Eg, can decide to include Buy(Milk) BEFORE deciding where? 
… how to get there? . . .
Note: Exploits decomposition:

doesn't matter which Milk-selling store,
whether agent currently has Drill, . . .

. . . avoid arbitrary early decisions ...

3. Subgoals tend to be nearly independent
⇒

 

divide-&-conquer
Eg, going to store does NOT interfere with borrowing from neighbor...
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Choose actions to achieve a certain goal
Isn’t PLANNING ≡ Problem Solving ?
Difficulties with problem solving:
Successor function is a black box: 
it must be “applied” to a state to know

which actions are possible in each state
the effects of each action

Goal of Planning
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Representations in PlanningRepresentations in Planning

Planning opens up the black-boxes 
by using logic to represent:

Actions
States
Goals

One possible language: STRIPS

Problem solving Logic representation

Planning



13

State Representation

Conjunction of propositions:
BLOCK(A),  BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY

A B
C

TABLE
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Goal Representation

A
B
C

Conjunction of propositions:
ON(A,TABLE),   ON(B,A),   ON(C,B)

Goal G is achieved in state S 
iff

all the propositions in G are in S

A B
C

TABLE
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Action RepresentationAction Representation

Unstack( x, y )
• P = HANDEMPTY, BLOCK(x), BLOCK(y), 

CLEAR(x), ON(x,y)
• E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), 

¬
 

ON(x,y), CLEAR(y)

Precondition: conjunction of propositions
Effect: list of literals

“¬” means: Remove
HANDEMPTY 
from state

Means: Add 
HOLDING(x)

to state

A B
C

TABLE
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ExampleExample

A B
C

Unstack(C,A)
• P = HANDEMPTY, BLOCK(C), BLOCK(A), 

CLEAR(C), ON(C,A)
• E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C), 

¬ON(C,A), CLEAR(A)

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY
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ExampleExample

Unstack(C,A)
• P = HANDEMPTY, BLOCK(C), BLOCK(A), 

CLEAR(C), ON(C,A)
• E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C), 

¬ON(C,A), CLEAR(A)

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY
HOLDING(C), CLEAR(A)A B

C
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Action Representation

Unstack(x,y)
• P = HANDEMPTY, BLOCK(x), BLOCK(y), CLEAR(x), ON(x,y)
• E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x),  ¬ON(x,y), CLEAR(y)

Stack(x,y)
• P = HOLDING(x), BLOCK(x), BLOCK(y), CLEAR(y)
• E = ON(x,y),  ¬CLEAR(y), ¬HOLDING(x),  CLEAR(x), HANDEMPTY

PutDown(x)
• P = HOLDING(x)
• E = ON(x,TABLE),  ¬HOLDING(x),  CLEAR(x), HANDEMPTY

Pickup(x)
• P = HANDEMPTY, BLOCK(x), CLEAR(x), ON(x,TABLE)
• E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ON(x,TABLE)

A B
C

TABLE
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Summary of 
STRIPS language features

Representation of states
Decompose the world into logical conditions;
state ≡ conjunction of positive literals
Closed world assumption: 
Conditions not mentioned in state assumed to be false

Representation of goals
Partially specified state;
conjunction of positive ground literals
A goal g is satisfied at state s iff
s contains all literals in goal g
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Representations of actions
Action = PRECONDITION + EFFECT

Header:
Action name and parameter list

Precondition:
conj of function-free literals

Effect:
conj of function-free literals
Add-list  &  delete-list

Summary of 
STRIPS language features
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Semantics
Executing action a 

in state s
produces state s’

s’ is same as s except
Every positive literal   P in   a:Effect is added to s
Every negative literal ¬P in   a:Effect is removed from s

STRIPS assumption: 
Every literal NOT in the effect remains unchanged

(avoids representational frame problem)
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Expressiveness

STRIPS is not arbitrary FOL  
Important limit: function-free literals
Allows for propositional representation

Function symbols lead to infinitely many 
states and actions

Recent extension:
Action Description language (ADL)
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Example: 
Air Cargo Transport

Init( Cargo(C1)  & Cargo(C2) & Plane(P1) & Plane(P2) & 
Airport(JFK) & Airport(SFO) & At(C1, SFO) & At(C2,JFK) & 
At(P1,SFO) & At(P2,JFK) ) 

SFO

P1

JFK

P2

Goal( At(C1,JFK) & At(C2,SFO) )

C1 C2



24

Example: 
Air Cargo Transport

Init( Cargo(C1)  & Cargo(C2) & Plane(P1) & Plane(P2) & Airport(JFK) & 
Airport(SFO) & At(C1, SFO) & At(C2,JFK) & At(P1,SFO) & At(P2,JFK) ) 

Goal( At(C1,JFK) & At(C2,SFO) )

Action( Load(c,p,a)
PRECOND: At(c,a) &At(p,a) &Cargo(c) & Plane(p) &Airport(a)
EFFECT: ¬At(c,a) &In(c,p) ) 

Action( Unload(c,p,a)
PRECOND: In(c,p) & At(p,a) &Cargo(c) & Plane(p) &Airport(a)
EFFECT: At(c,a) & ¬In(c,p) )

Action( Fly(p,from,to)
PRECOND: At(p,from) & Plane(p) & Airport(from) & Airport(to) 
EFFECT: ¬At(p,from) & At(p,to) ) 

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1, P1, JFK),
Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2, P2, SFO) ]
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Planning with State-space Search

Forward search vs Backward search
Progression planners

Forward state-space search
Consider the effects of all possible actions in a 
given state

Regression planners
Backward state-space search
To achieve a goal, 
what must have been true in the previous state
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Progression vs Regression

Progressive

Regressive
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Progression Planning Algorithm
Formulation as state-space search problem:

Initial state = initial state of the planning problem
… literals not appearing are false

Actions = (just actions whose preconditions are satisfied)
Add positive effects, delete negative effects

Goal test = does the state satisfy the goal?
Step cost = each action costs 1

Any graph search that is complete 
is a complete planning algorithm.
(No functions)

Inefficient: 
(1) irrelevant action problem 
(2) good heuristic required for efficient search
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Progression (Forward) Planning

A B
C

A B
C

A B C A C

B

A C
B

A

C
B

A

C
B

A

B
C

A B

C

Unstack(C,A))

Pickup(B)

Forward planning searches a space
of world states

In general, many actions are applicable 
to a state 

huge branching factor



29

Regression 
(Backward Chaining)

ON(B,A), ON(C,B)

Stack(C,B)

ON(B,A), HOLDING(C), CLEAR(B)

A B
C

Typically… 
#[ actions relevant to a goal ]  <

#[actions applicable to a state ] 

Backward chaining has smaller branching 
factor than forward planning
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Backward ChainingBackward Chaining

ON(B,A), ON(C,B)
Stack(C,B)

A B
C

CLEAR(A), HANDEMPTY, CLEAR(B), ON(B,TABLE), CLEAR(C), ON(C,TABLE) 

CLEAR(A), HOLDING(B), CLEAR(C), ON(C,TABLE) 
Stack(B,A)

Pickup(B)

Putdown(C)
CLEAR(A), HOLDING(C), CLEAR(B), ON(B,TABLE) 

Unstack(C,A)

CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,A), ON(B,TABLE) 

Pickup(C)

ON(B,A), CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,TABLE), 

A
B
C

ON(B,A), CLEAR(B), HOLDING(C) 

Backward planning searches 
a space of goals
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Regression Algorithm
How to determine predecessors?

What S can lead to goal G, by applying an action a ?
Goal state = At(C1, B) & At(C2, B) & … & At(C20, B)
Action relevant for first conjunct: Unload(C1,p,B)

(Works only if pre-conditions are satisfied)
Previous state= In(C1, p) & At(p, B) & At(C2, B) & … & At(C20, B)
Subgoal At(C1,B) should not be present in this state.

Actions must not undo desired literals (consistent)
Main advantage:
Only relevant actions are considered!

Often much smaller branching factor than forward search
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Heuristics for State-space Search

Neither progression nor regression are efficient
… without a good heuristic.

How many actions are needed to achieve the goal?
Exact solution is NP-hard, … need a good heuristic: 

Two ways to find admissible heuristic:
Optimal solution to relaxed problem

Remove all preconditions from actions
Subgoal independence assumption:

Approximate 
cost of solving a conjunction of subgoals

by 
sum of the costs of solving the subproblems independently
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Partial-order Planning

Progression and regression planning are 
totally ordered plan search forms

Must decide on complete action sequence 
on all subproblems
Operates on “sequences”, in order

⇒
 

Does not take advantage of 
problem decomposition
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Search the Space of Partial Plans

Start with partial plan
Expand plan until producing complete plan
Refinement operators: add constraints to partial plan

Eg: Adding an action
Imposing order on actions
Instantiating unbound variable
...

(View “partial plan” as set of “completed" plans…
Each refinement REMOVES some plans.)
+ Modification Operators
other changes – “debugging” bad plans
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Searching in Space of 
“Partial Plans"
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Shoe Example

Goal( RightShoeOn ∧

 

LeftShoeOn )

( Init()
Action( RightShoe,  PRECOND: RightSockOn, EFFECT: RightShoeOn )
Action( RightSock,  PRECOND:                     EFFECT: RightSockOn )
Action( LeftShoe,   PRECOND: LeftSockOn,   EFFECT: LeftShoeOn )
Action( LeftSock,    PRECOND:                     EFFECT: LeftSockOn )

)

Planner: combine two action sequences 
〈 LeftSock, LeftShoe 〉
〈 RightSock, RightShoe 〉
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Initial Partial Plan (Shoes)
Consider: Goal: RShoeOn & LShoeOn

Initial: {}
Operators:

Op(RShoe, PreC: RSockOn, Eff: RShoeOn)
Op(LShoe, PreC: LSockOn, Eff: LShoeOn)
Op(RSock, PreC: fg, Eff: RSockOn)
Op(LSock, PreC: fg, Eff: LSockOn)

Initially... just dummy actions:
Ss (Start): no PreC; Effects are FACTs
Sf (Finish): PreC = Goal; no Effects

Plan(
Actions: { Ss: Act( Start;  PreC: {}; E: {} )

Sf : Act( Finish; PreC: RShoeOn & LShoeOn ) }
Orderings: { Ss ≺ Sf }
CausalLinks: {}
Open-PreC: { RShoeOn, LShoeOn }

)
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Shoe Plan #2
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Comments on Partial Plans
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Shoe Plan #3
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Partial Plans

Q: Should they be combined, to produce LINEAR plan??
A: Why?

If left PARTIALLY specified, more options later 
. . . when we have more constraints!
Principle of least commitment:

Don't make decisions until necessary.
Only order actions that HAVE to be ordered
Only instantiate variables when needed
(Don't decide on store until have all constraints)
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Partial- vs Total- Order Plan
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Constraints on PO-Plans
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Solution

≡
 

a complete, consistent plan:
Complete: Open-PreC= {}
Each precond ρ of each action A is achieved by some 
other action B s.t.

B ≺

 

A and
¬∃C s.t. C undoes ρ

 

and B ≺

 

C ≺

 

A
∀

 

A ∈

 

Actions(Plan),  ∀ ρ ∈ PreC(A);
∃B B ≺

 

A &   ρ ∈ Eff(A)
& ¬∃C B ≺

 

C ≺

 

A &  ¬

 

ρ ∈ Eff(C)

Consistent: No contradictions in ordering constraints.
Note: Need not be a TOTAL plan.
... but every linearization is correct!

A solution ≡
 

a (partial) plan that 
agent can execute and
guarantees achievement of goal(s).
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Partial-order Planning

A Partial-order planner is a planning algorithm 
that can place two actions into a plan
without specifying which comes first
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Recent Progress
SAT-plan

Convert Planning Task to SAT problem; Send to SAT solver
WORKS very well!

GraphPlan
Create graph structure of states+actions
Find traversal, until levels out…
It works too!

More expressive descriptions, …
Action Description language (ADL)

Re-planning 
Not “open loop”, but reactive
Stochastic outcomes…⇒ Markov Decision Process

… Reinforcement Learning
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Comparison of Strips vs ADL
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SummarySummary

Representations in planning
Representation of action:

preconditions + effects
Forward planning
Backward chaining
Partial-order planning
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Limits of Strips-Based Planners
Hierarchical plans
“Prepare booster, prepare capsule, load cargo, launch"
then achieve each sub-part, recursively . . .

Complex conditions
Strips: Simple Proposition literals
Better: “Launch causes ALL items to go into space"
“If . . .THEN . . . "

Time
Strips: discrete, sequential,. . .
Better: deadlines, actions have durations, time windows,. . .

Resources
Global constraints on TOTAL resources allowed
. . . of allowed at instant,. . .
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POPlaning Example: 
Changing a Tire



53

Flat-Tire Domain
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Tire – Planning #1
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Tire – Planning #2
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“Clobbering”
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Protected Links
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Where to add LeaveOvernight?
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Problem... backtrack ...
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Tire – Planning #3
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Comments
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POP: Partial Order Planner
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Comments on POP
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Dealing with Variables
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RealWorld Planning
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Comparison
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