
1

Planning

Some material taken from D. Lin, J-C Latombe

RN, Chapter 11

2

Logical Agents
Reasoning [Ch 6]
Propositional Logic [Ch 7]
Predicate Calculus

Representation [Ch 8]
Inference [Ch 9]

Implemented Systems [Ch 10]
Planning [Ch 11]

Representations in planning (Strips)
Representation of action:

preconditions + effects
Forward planning
Backward chaining
Partial-order planning

3

Planning AgentPlanning Agent

environment
agent

?

sensors

actuators

A1 A2 A3

4

5

Updating State, Based on Action

See 10.3-SituationCalculus.pdf

6

Planning in Situation Calculus
Given:

Initial: At(Home, S0) & ¬Have(Milk, S0)
Goal: ∃s At(Home,s) & Have(Milk,s)
Operators: ∀a, s Have(Milk, Result(a,s)) ⇔

[(a = Buy(Milk) & At(Store, s))
v (Have(Milk,s) & a ≠Drop(Milk))]

...
Find: Sequence of operators [o1, …, ok] where
S = Result(ok , Result(... Result(o1 , S0) ...))
s.t. At(Home, S) & Have(Milk, S)

but... Standard Problem Solving is inefficient
As goal is “black box”, just generate-&-test!

7

Naïve Problem Solving

Goal:
“At home; have Milk, Bananas, and Drill”
∃

s At(Home, s) & Have(Milk, s) &
Have(Banana, s) & Have(Drill, s)

Initial: “None of these; at home”
At(Home, S0) & ¬Have(Milk, S0) & ¬Have(Banana, S0) &

¬Have(Drill, S0)

Operators:
Goto(y), SitIn(z), Talk(w), Buy(q), ...

8

9

General Issues
Done?
General problems:

Problem solving is P-space complete
Logical inference is only semidecidable
.. plan returned may go from initial to goal,
but extremely inefficiently (NoOp, [A, A-1], …)

Solution
Restrict language
Special purpose reasoner
⇒

PLANNER

10

Key Ideas

1. Open up representation ... to connect States to Actions
If goal includes “Have(Milk)”, and “Buy(x) achieves Have(x)”,
then consider action “Buy(Milk)”

2. Add actions ANYWHERE in plan … Not just to front!
Order of adding actions ≠

order of execution!
Eg, can decide to include Buy(Milk) BEFORE deciding where?
… how to get there? . . .
Note: Exploits decomposition:

doesn't matter which Milk-selling store,
whether agent currently has Drill, . . .

. . . avoid arbitrary early decisions ...

3. Subgoals tend to be nearly independent
⇒

divide-&-conquer
Eg, going to store does NOT interfere with borrowing from neighbor...

11

Choose actions to achieve a certain goal
Isn’t PLANNING ≡ Problem Solving ?
Difficulties with problem solving:
Successor function is a black box:
it must be “applied” to a state to know

which actions are possible in each state
the effects of each action

Goal of Planning

12

Representations in PlanningRepresentations in Planning

Planning opens up the black-boxes
by using logic to represent:

Actions
States
Goals

One possible language: STRIPS

Problem solving Logic representation

Planning

13

State Representation

Conjunction of propositions:
BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A),
CLEAR(B), CLEAR(C), HANDEMPTY

A B
C

TABLE

14

Goal Representation

A
B
C

Conjunction of propositions:
ON(A,TABLE), ON(B,A), ON(C,B)

Goal G is achieved in state S
iff

all the propositions in G are in S

A B
C

TABLE

15

Action RepresentationAction Representation

Unstack(x, y)
• P = HANDEMPTY, BLOCK(x), BLOCK(y),

CLEAR(x), ON(x,y)
• E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x),

¬

ON(x,y), CLEAR(y)

Precondition: conjunction of propositions
Effect: list of literals

“¬” means: Remove
HANDEMPTY
from state

Means: Add
HOLDING(x)

to state

A B
C

TABLE

16

ExampleExample

A B
C

Unstack(C,A)
• P = HANDEMPTY, BLOCK(C), BLOCK(A),

CLEAR(C), ON(C,A)
• E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C),

¬ON(C,A), CLEAR(A)

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A),
CLEAR(B), CLEAR(C), HANDEMPTY

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A),
CLEAR(B), CLEAR(C), HANDEMPTY

17

ExampleExample

Unstack(C,A)
• P = HANDEMPTY, BLOCK(C), BLOCK(A),

CLEAR(C), ON(C,A)
• E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C),

¬ON(C,A), CLEAR(A)

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A),
CLEAR(B), CLEAR(C), HANDEMPTY
HOLDING(C), CLEAR(A)A B

C

18

Action Representation

Unstack(x,y)
• P = HANDEMPTY, BLOCK(x), BLOCK(y), CLEAR(x), ON(x,y)
• E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ON(x,y), CLEAR(y)

Stack(x,y)
• P = HOLDING(x), BLOCK(x), BLOCK(y), CLEAR(y)
• E = ON(x,y), ¬CLEAR(y), ¬HOLDING(x), CLEAR(x), HANDEMPTY

PutDown(x)
• P = HOLDING(x)
• E = ON(x,TABLE), ¬HOLDING(x), CLEAR(x), HANDEMPTY

Pickup(x)
• P = HANDEMPTY, BLOCK(x), CLEAR(x), ON(x,TABLE)
• E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ON(x,TABLE)

A B
C

TABLE

19

Summary of
STRIPS language features

Representation of states
Decompose the world into logical conditions;
state ≡ conjunction of positive literals
Closed world assumption:
Conditions not mentioned in state assumed to be false

Representation of goals
Partially specified state;
conjunction of positive ground literals
A goal g is satisfied at state s iff
s contains all literals in goal g

20

Representations of actions
Action = PRECONDITION + EFFECT

Header:
Action name and parameter list

Precondition:
conj of function-free literals

Effect:
conj of function-free literals
Add-list & delete-list

Summary of
STRIPS language features

21

Semantics
Executing action a

in state s
produces state s’

s’ is same as s except
Every positive literal P in a:Effect is added to s
Every negative literal ¬P in a:Effect is removed from s

STRIPS assumption:
Every literal NOT in the effect remains unchanged

(avoids representational frame problem)

22

Expressiveness

STRIPS is not arbitrary FOL
Important limit: function-free literals
Allows for propositional representation

Function symbols lead to infinitely many
states and actions

Recent extension:
Action Description language (ADL)

23

Example:
Air Cargo Transport

Init(Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) &
Airport(JFK) & Airport(SFO) & At(C1, SFO) & At(C2,JFK) &
At(P1,SFO) & At(P2,JFK))

SFO

P1

JFK

P2

Goal(At(C1,JFK) & At(C2,SFO))

C1 C2

24

Example:
Air Cargo Transport

Init(Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) & Airport(JFK) &
Airport(SFO) & At(C1, SFO) & At(C2,JFK) & At(P1,SFO) & At(P2,JFK))

Goal(At(C1,JFK) & At(C2,SFO))

Action(Load(c,p,a)
PRECOND: At(c,a) &At(p,a) &Cargo(c) & Plane(p) &Airport(a)
EFFECT: ¬At(c,a) &In(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) & At(p,a) &Cargo(c) & Plane(p) &Airport(a)
EFFECT: At(c,a) & ¬In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) & Plane(p) & Airport(from) & Airport(to)
EFFECT: ¬At(p,from) & At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1, P1, JFK),
Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2, P2, SFO)]

25

Planning with State-space Search

Forward search vs Backward search
Progression planners

Forward state-space search
Consider the effects of all possible actions in a
given state

Regression planners
Backward state-space search
To achieve a goal,
what must have been true in the previous state

26

Progression vs Regression

Progressive

Regressive

27

Progression Planning Algorithm
Formulation as state-space search problem:

Initial state = initial state of the planning problem
… literals not appearing are false

Actions = (just actions whose preconditions are satisfied)
Add positive effects, delete negative effects

Goal test = does the state satisfy the goal?
Step cost = each action costs 1

Any graph search that is complete
is a complete planning algorithm.
(No functions)

Inefficient:
(1) irrelevant action problem
(2) good heuristic required for efficient search

28

Progression (Forward) Planning

A B
C

A B
C

A B C A C

B

A C
B

A

C
B

A

C
B

A

B
C

A B

C

Unstack(C,A))

Pickup(B)

Forward planning searches a space
of world states

In general, many actions are applicable
to a state

huge branching factor

29

Regression
(Backward Chaining)

ON(B,A), ON(C,B)

Stack(C,B)

ON(B,A), HOLDING(C), CLEAR(B)

A B
C

Typically…
#[actions relevant to a goal] <

#[actions applicable to a state]

Backward chaining has smaller branching
factor than forward planning

30

Backward ChainingBackward Chaining

ON(B,A), ON(C,B)
Stack(C,B)

A B
C

CLEAR(A), HANDEMPTY, CLEAR(B), ON(B,TABLE), CLEAR(C), ON(C,TABLE)

CLEAR(A), HOLDING(B), CLEAR(C), ON(C,TABLE)
Stack(B,A)

Pickup(B)

Putdown(C)
CLEAR(A), HOLDING(C), CLEAR(B), ON(B,TABLE)

Unstack(C,A)

CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,A), ON(B,TABLE)

Pickup(C)

ON(B,A), CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,TABLE),

A
B
C

ON(B,A), CLEAR(B), HOLDING(C)

Backward planning searches
a space of goals

31

Regression Algorithm
How to determine predecessors?

What S can lead to goal G, by applying an action a ?
Goal state = At(C1, B) & At(C2, B) & … & At(C20, B)
Action relevant for first conjunct: Unload(C1,p,B)

(Works only if pre-conditions are satisfied)
Previous state= In(C1, p) & At(p, B) & At(C2, B) & … & At(C20, B)
Subgoal At(C1,B) should not be present in this state.

Actions must not undo desired literals (consistent)
Main advantage:
Only relevant actions are considered!

Often much smaller branching factor than forward search

32

33

Heuristics for State-space Search

Neither progression nor regression are efficient
… without a good heuristic.

How many actions are needed to achieve the goal?
Exact solution is NP-hard, … need a good heuristic:

Two ways to find admissible heuristic:
Optimal solution to relaxed problem

Remove all preconditions from actions
Subgoal independence assumption:

Approximate
cost of solving a conjunction of subgoals

by
sum of the costs of solving the subproblems independently

34

Partial-order Planning

Progression and regression planning are
totally ordered plan search forms

Must decide on complete action sequence
on all subproblems
Operates on “sequences”, in order

⇒

Does not take advantage of
problem decomposition

35

Search the Space of Partial Plans

Start with partial plan
Expand plan until producing complete plan
Refinement operators: add constraints to partial plan

Eg: Adding an action
Imposing order on actions
Instantiating unbound variable
...

(View “partial plan” as set of “completed" plans…
Each refinement REMOVES some plans.)
+ Modification Operators
other changes – “debugging” bad plans

36

Searching in Space of
“Partial Plans"

37

Shoe Example

Goal(RightShoeOn ∧

LeftShoeOn)

(Init()
Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Action(RightSock, PRECOND: EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND: EFFECT: LeftSockOn)

)

Planner: combine two action sequences
〈 LeftSock, LeftShoe 〉
〈 RightSock, RightShoe 〉

38

Initial Partial Plan (Shoes)
Consider: Goal: RShoeOn & LShoeOn

Initial: {}
Operators:

Op(RShoe, PreC: RSockOn, Eff: RShoeOn)
Op(LShoe, PreC: LSockOn, Eff: LShoeOn)
Op(RSock, PreC: fg, Eff: RSockOn)
Op(LSock, PreC: fg, Eff: LSockOn)

Initially... just dummy actions:
Ss (Start): no PreC; Effects are FACTs
Sf (Finish): PreC = Goal; no Effects

Plan(
Actions: { Ss: Act(Start; PreC: {}; E: {})

Sf : Act(Finish; PreC: RShoeOn & LShoeOn) }
Orderings: { Ss ≺ Sf }
CausalLinks: {}
Open-PreC: { RShoeOn, LShoeOn }

)

39

Shoe Plan #2

40

Comments on Partial Plans

41

Shoe Plan #3

42

Partial Plans

Q: Should they be combined, to produce LINEAR plan??
A: Why?

If left PARTIALLY specified, more options later
. . . when we have more constraints!
Principle of least commitment:

Don't make decisions until necessary.
Only order actions that HAVE to be ordered
Only instantiate variables when needed
(Don't decide on store until have all constraints)

43

Partial- vs Total- Order Plan

44

Constraints on PO-Plans

45

Solution

≡

a complete, consistent plan:
Complete: Open-PreC= {}
Each precond ρ of each action A is achieved by some
other action B s.t.

B ≺

A and
¬∃C s.t. C undoes ρ

and B ≺

C ≺

A
∀

A ∈

Actions(Plan), ∀ ρ ∈ PreC(A);
∃B B ≺

A & ρ ∈ Eff(A)
& ¬∃C B ≺

C ≺

A & ¬

ρ ∈ Eff(C)

Consistent: No contradictions in ordering constraints.
Note: Need not be a TOTAL plan.
... but every linearization is correct!

A solution ≡

a (partial) plan that
agent can execute and
guarantees achievement of goal(s).

46

Partial-order Planning

A Partial-order planner is a planning algorithm
that can place two actions into a plan
without specifying which comes first

47

Recent Progress
SAT-plan

Convert Planning Task to SAT problem; Send to SAT solver
WORKS very well!

GraphPlan
Create graph structure of states+actions
Find traversal, until levels out…
It works too!

More expressive descriptions, …
Action Description language (ADL)

Re-planning
Not “open loop”, but reactive
Stochastic outcomes…⇒ Markov Decision Process

… Reinforcement Learning

48

Comparison of Strips vs ADL

49

SummarySummary

Representations in planning
Representation of action:

preconditions + effects
Forward planning
Backward chaining
Partial-order planning

50

51

Limits of Strips-Based Planners
Hierarchical plans
“Prepare booster, prepare capsule, load cargo, launch"
then achieve each sub-part, recursively . . .

Complex conditions
Strips: Simple Proposition literals
Better: “Launch causes ALL items to go into space"
“If . . .THEN . . . "

Time
Strips: discrete, sequential,. . .
Better: deadlines, actions have durations, time windows,. . .

Resources
Global constraints on TOTAL resources allowed
. . . of allowed at instant,. . .

52

POPlaning Example:
Changing a Tire

53

Flat-Tire Domain

54

Tire – Planning #1

55

Tire – Planning #2

56

“Clobbering”

57

Protected Links

58

Where to add LeaveOvernight?

59

Problem... backtrack ...

60

Tire – Planning #3

61

Comments

62

POP: Partial Order Planner

63

Comments on POP

64

Dealing with Variables

65

RealWorld Planning

66

Comparison

	Planning
	Logical Agents
	Planning Agent
	Slide Number 4
	Updating State, Based on Action
	Planning in Situation Calculus
	Naïve Problem Solving
	Slide Number 8
	General Issues
	Key Ideas
	Goal of Planning
	Representations in Planning
	State Representation
	Goal Representation
	Action Representation
	Example
	Example
	Action Representation
	Summary of �STRIPS language features
	Summary of �STRIPS language features
	Semantics
	Expressiveness
	Example: �Air Cargo Transport
	Example: �Air Cargo Transport
	Planning with State-space Search
	Progression vs Regression
	Progression Planning Algorithm
	Progression (Forward) Planning
	Regression �(Backward Chaining)
	Backward Chaining
	Regression Algorithm
	Slide Number 32
	Heuristics for State-space Search
	Partial-order Planning
	Search the Space of Partial Plans
	Searching in Space of�“Partial Plans"
	Shoe Example
	Initial Partial Plan (Shoes)
	Shoe Plan #2
	Comments on Partial Plans
	Shoe Plan #3
	Partial Plans
	Partial- vs Total- Order Plan
	Constraints on PO-Plans
	Solution
	Partial-order Planning
	Recent Progress
	Comparison of Strips vs ADL
	Summary
	Slide Number 50
	Limits of Strips-Based Planners
	POPlaning Example:�Changing a Tire
	Flat-Tire Domain
	Tire – Planning #1
	Tire – Planning #2
	“Clobbering”
	Protected Links
	Where to add LeaveOvernight?
	Problem... backtrack ...
	Tire – Planning #3
	Comments
	POP: Partial Order Planner
	Comments on POP
	Dealing with Variables
	RealWorld Planning
	Comparison

