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Logical Agents

= Reasoning [Ch 6]
= Propositional Logic [Ch 7]
= Predicate Calculus

= Representation [Ch 8]
= Inference [Ch 9]

\. Implemented Systems [Ch 10]
= Situation Calculus [Ch 10.3]

= Planning [Ch 11]



i Typical Wumpus World
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i Simple Reflex Agent

= Rep'n: At time = £, specify
Percept([s,b,g,u,c],

where s € {Stench, -}, b € {Breeze, -}, ...
= Eg Tell(KB, Percept( [Stench, —,Glitter, —, —], 3) )

= Connect percepts directly to actions:

Vs, b, u, c, t Percept([s, b, Glitter, u, c], t)
= Action( Grab; t)

= Or, more indirectly:
Vs, b, u, c, t Percept([s, b, Glitter, u, c], t) = AtGold(t)
v t AtGold(t) = Action(Grab, t)

= Q1: Which is more flexible?
= Q2: Limitations of reflex approach?



Problem with Reflex Agents

>

Also. | .

Vvhen to Climb?

@ [1.,1], and have Gold

. but ...

agent cannot sense { being @ [1,1]

having Gold

May be @ [2,3] when hunting for gold
Then reach same [2.3] when returning

As SAME percepts both times
& reflex agent can ONLY
use percept to decide on action
agent must take SAME actions both times.

= oc—loop!

= Agent needs

INTERNAL MODEL of state/world



Tracking a Changing World

e Consider FINDING KEYS
...when "“Keys are in pocket”

... agent could keep percept history, & replay it

Better: just store this info!

Any decision based on past/present percepts
FACT: can be based on current “world state”

(...which is updated each action)

S0... perhaps KB should keep ONLY info about
current situation



Single-Time Knowledge Base

Time 0: Initial configuration

At(Agent, [1,1])
Facing (Agent, North)
Smell (No)

EEE

Time 1: Then take a step Action = Forward
NOW in new situation:

Eemove false statements
remove At(Agent, [1,1]), ...

Add in statement that are now true:
add At(Agent, [1.2]), ...

= use revised KB: Time 2: Turn to the right  Actions = TurnRight
At(Agent, [1,2]) = use revised KB:
Facing(Agent, North)

At(Agent, [1,2])
Facing(Agent, East)
Smell (Yes)

Smell (Yes)




Problems with Single-Time KBs

but ... mMmay need to reason about MANY tTimes

Eag: “WWas there a stenchin[1,2]and [2,3]7"

e NMNeed to

Maintain inTo from previous states
. . . labeled with state

e Kinda like *““time stamp'
... but “time"” is Nnot relevant
better to record SEQUENCE of ACTIONS!

Compare: |Having GOLD at time 4

with

Having GOLD after
Going rfrorward, then
Turning right, then
Going forward, then
Grabbing

— Sequence of actions = ‘“‘plan’!



ﬁ Situation Calculus

e Tag each “changable predicate” with “time":

Eg: At(Agent, [1,1], Sg)

At(Agent, [1,2], Result( Forward, Sg) )

At( Agent, [1,3], Result(Forward, Result( Forward, Sp)))

MNotice: all stay around!

e Only “label” predicates that can change.

As Pit doesn’'t move,

At (Pit,

(3,2))

Similarly, just [2+2=4], ...

e "Time" only wrt actions
Snapshot of SITUATION. ..

World represented as

SERIES OF SITUATIONS

connected by actions

sufficient



Updating State, Based on Action
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= Result( Forward,
Result( TurnRight,
Result( Forward, Sao ) ) ) 10
Result:. Action X State +— State



Computing Location

e Can compute location:

vi,j,s At(Ag,[i.7],8) A~ Facing(Ag, North,s) =
At(Ag, [i.7+ 1],Result(Forward, s))

wi,j,s At(Ag,[i,7],8) ~ Facing(Ag,East,s) =
At(Ag,[i — 1,j],Result(Forward, s))

e Can compute orientation:

vi,j, s Facing(Ag, North, s) =
Facing(Ag, East, Result( TurnRight, s) )

11



i Interpreting Percepts

e Extract Individual Percepts

¥b,g,u,c,t Percept([Stench, b, g, u, c], t)
== Stench(t)

v b,u,c st Percept([s, Breeze, g, u, cl, t)
== Breeze(t)

¢« Combine with State to make Infer-
ences about Locations

Ve, At(Agent,{,s) A Stench(s) = Smelly(¥)
v, 5 At(Agent,f,8) A Breeze(s) = Breezy(¥)

e Combine with Causal Rules to Infer
Locations of Wumpus, Pits
V¢ Breezy(f) <& [dxz PitAt(xz) A Adj(€, x)]

v ¢ Stench({) <= [dx WumpusAt(xz) A Adj(€,x)]
v ¢ OK(£) & (—WumpusAt(f) A —PitAt({))

12



Deducing Hidden Properties

e Squares are breezy near a pit:

— Diagnostic rule — infer cause from effect
% { Breezy(f) = dx Pit(x) ~ Adj({,x)

— Causal rule — infer effect from cause
Vi, x Pit(x) ~ Adj({, ) = Breezy(¥)

— PMeither is complete. ..
Eaq, the causal rule doesn’'t say whether squares

far away from pits can be breezy

— Definition for Breezy predicate:
v { Breezy(f) < [dz PitAt(xz) ~ Adj(L, x)]

e Squares are stenchy near the wumpus:
V¢ Stench({) < [z WumpusAt(x) ~ Adj({,x)]

13



ﬁ Using Information

e After {:n::mcluc:ling
—ﬁtench([ 1.1] —lsten-.:h([ 1,2]) Stench([2,1])

Ve Adj ) = 2.1] v £=[1,2])
Ve Adj ) = 1,1l v £=[2,2]' v ¢=
v adj(] 1 2] 0 = t‘—[l 1] F=[E,2] Vo=

e Can derive
—[d2 WumpusAt(z) A Adj([1,1],2)]
Y Adj([1,1].2) = —WumpusAt(x)
—WumpusAt([1,2]), —WumpusAt([2,1])

—[dx WumpusAt(z) ~ Adj([1,2],x)]
—WumpusAt([1,1]), —WumpusAt([2,2]), —WumpusAt([3,1])

[dz WumpusAt(xz) A Adj([2,1],x)]
WumpusAt([1,1]) v WumpusAt([2,2]) v WumpusAt([1,3])

.. = WumpusAt([1,3])



Connecting Inferences to Actions

s Rate Each Action

vV r;, S WumpusAt(r,) & LocationAhead(Agent, s) =,
— Deadly( Forward, s)

vV r,s OK(r;s) & LocationAhead(Agent,s) = r; & —Visited(r, ,S)
= Good(Forward, s)

vVr,s Gold(r,s) = Great( Grab, s)

= Choose Best Action
V a, s Great(a, s) = Action(a, S)
Vv a, s Good(a, s) & (—3 b Great(b, s)) = Action(a, s)

= Now, for each situation S,
Ask( KB, Ja Action( a, S) )
...find a s.t. KB = Action( a, S)

15



Propagating Information

Effect Actions: Ir agent Grabs, when in room
with gold, he will be holding gold.

v¢,s Glitters(¢) A At(Agent, ¢, s) = AtGold(s)
v¢,s AtGold(s) = Holding(Gold, Result(Grab, s) )
So, if Glitters([3,2]), At(Agent,[3,2], Se).

then  Holding(Gold, S7)
where S7 = Result( Grab, Sg)

What about NEXT situation?
eg, Sg = Result(TurnRight, S7)7

Want to derive
Holding( Gold, Result(Turn Right, S7) ),

This requires ...

16



ﬁ Frame AxXioms

® Ya,r, s Holding(x, s) A (a # Release)
=  Holding(x,Result(a,s) )

Ya,s —Holding(Gold,s) A (a = Grab v —AtGold(s)
=  —Holding( Gold, Result(a, s) )

true afterwards —
Gen'l: [an action made it true v
(true already & no action made it false)]

Here: Wa,s Holding(Gold,Result(a,s)) =
[ (@ = Grab » AtGold(s)) WV
( Holding(Gold,s) A a 7= Release ) ]

Similarly: Va.d,p,s At(p, {, Result(a,s) ) =
[ (a = Forward ~ £ = LocAhead(p,s) » —Wall(f))
v (At(p, £,8) A a #= Forward) |

e "'Successor State Axiom"

Lists all ways predicate can become true/false



i Frame, and Related, Problems

= Representational Frame Problem
= Encoding what doesn't change, as actions take place
= Solved via “success-state axioms”

s Inferential Frame Problem
= ... deal with long sequences of actions, ..

= Qualification Problem

= dealing with all qualifications

= ... gold brick is not slippery, not screwed to table, ...
= Ramification

= When picking up the gold brick, also pick up the
associated dust . . .



Goal-Based Agent

= These rules sufficient to FIND gold

Then what?

= Need to change strategies:
= Was “Find gold”

= Now: “Get out!”
Vs Holding(Gold, s) = GoallLocation([1,11],s)

Need to incorporate... How?

19



How to Plan?

Planning agents seek
plan = sequence of actions
that achieve agent's goals.
Inference: Let logical reasoning system perform search:
Ask(KB, 1 a,, a,, as, a,, as, t
t = Result(as;Result(a,;Result(a,;Result(a,;Result(a;; Sp)))))
& Holding(Agent; Gold; t) & At(Agent;Outside; t) )
Problematic, as
= Not easy to heuristically guide reasoning system. . .
= What if > 5 actions required?

Search: View actions as operations on KB,
Goal = “KB includes Holding(Agent, Gold, t), At(Agent, Outside, t) )"
Planning: Special purpose reasoning systems... 20



i Logical Agents

React to what it perceives
= Extract abstract descriptions of current state from percepts
= Maintain internal model of relevant aspects of world

.. even those not directly observable

= Express and use info about desirability of
actions In circumstances

= Use goals in conjunction with knowledge
about actions to construct plans

= As all domain-specific knowledge is encoded as logical
formulae, agent is completely generic!

21



i Logic, Uncertainty, and Utility

Advantages of Logic-Based Agents
= High-level language for tracking environments.

= Permits modular decomposition of state
representation.

Limitations of Simple Logic-Based Agents
s Cannot track stochastic environments.

= Cannot represent and reason with utilities —
can't make tradeoffs

22



Limitations of Situation Calculus

= Situation Calculus works well for Wumpus World
But...

= “Discrete Actions”
Can't handle continuous actions

= Flow of Electrons

= Control of factory

= Action at an “Iinstant”
What if actions have duration?

= One action at a time
= What if multiple agents?
= What if world changes spontaneously?

23



i Time and First-Order Logic

Representing & reasoning
with dynamic / changing world

IS not strong point of first-order logic
= Work on different logics:
Eg dynamic logic / nonmonotonic logic

= Nonmon: long struggle
Yale shooting problem:
= Actions:
load gun / point gun / wait 5 seconds / fire gun
= Question:
Is target dead? (was gun loaded when fired)
= > 100 research papers since 1986; still not fully resolved

= First-order Logic better at “static” information

24
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