Al
» C
JQ3 /)Q'Ofef

!'_ Situation Calculus



Logical Agents

= Reasoning [Ch 6]
= Propositional Logic [Ch 7]
= Predicate Calculus

= Representation [Ch 8]
= Inference [Ch 9]

\. Implemented Systems [Ch 10]
= Situation Calculus [Ch 10.3]

= Planning [Ch 11]



i Typical Wumpus World

4

S SS9
Stench *’g -~ Breeze —
~— | Rl
o
fEFEEZ‘*-—i"{ <~ Breeze —
S SSS S eeze —
Stench = PlT
sV,
~/Golda\ \~
S SSS S P -
—~ Breeze —
Stench > —oreeze =
~ Bréeze — <~ Breeze —
START



i Simple Reflex Agent

= Rep'n: At time = £, specify
Percept([s,b,g,u,c],

where s € {Stench, -}, b € {Breeze, -}, ...
= Eg Tell(KB, Percept( [Stench, —,Glitter, —, —], 3) )

= Connect percepts directly to actions:

Vs, b, u, c, t Percept([s, b, Glitter, u, c], t)
= Action( Grab; t)

= Or, more indirectly:
Vs, b, u, c, t Percept([s, b, Glitter, u, c], t) = AtGold(t)
v t AtGold(t) = Action(Grab, t)

= Q1: Which is more flexible?
= Q2: Limitations of reflex approach?



Problem with Reflex Agents

>

Also. | .

Vvhen to Climb?

@ [1.,1], and have Gold

. but ...

agent cannot sense { being @ [1,1]

having Gold

May be @ [2,3] when hunting for gold
Then reach same [2.3] when returning

As SAME percepts both times
& reflex agent can ONLY
use percept to decide on action
agent must take SAME actions both times.

= oc—loop!

= Agent needs

INTERNAL MODEL of state/world



Tracking a Changing World

e Consider FINDING KEYS
...when "“Keys are in pocket”

... agent could keep percept history, & replay it

Better: just store this info!

Any decision based on past/present percepts
FACT: can be based on current “world state”

(...which is updated each action)

S0... perhaps KB should keep ONLY info about
current situation



Single-Time Knowledge Base

Time 0: Initial configuration

At(Agent, [1,1])
Facing (Agent, North)
Smell (No)

EEE

Time 1: Then take a step Action = Forward
NOW in new situation:

Eemove false statements
remove At(Agent, [1,1]), ...

Add in statement that are now true:
add At(Agent, [1.2]), ...

= use revised KB: Time 2: Turn to the right  Actions = TurnRight
At(Agent, [1,2]) = use revised KB:
Facing(Agent, North)

At(Agent, [1,2])
Facing(Agent, East)
Smell (Yes)

Smell (Yes)




Problems with Single-Time KBs

but ... mMmay need to reason about MANY tTimes

Eag: “WWas there a stenchin[1,2]and [2,3]7"

e NMNeed to

Maintain inTo from previous states
. . . labeled with state

e Kinda like *““time stamp'
... but “time"” is Nnot relevant
better to record SEQUENCE of ACTIONS!

Compare: |Having GOLD at time 4

with

Having GOLD after
Going rfrorward, then
Turning right, then
Going forward, then
Grabbing

— Sequence of actions = ‘“‘plan’!



ﬁ Situation Calculus

e Tag each “changable predicate” with “time":

Eg: At(Agent, [1,1], Sg)

At(Agent, [1,2], Result( Forward, Sg) )

At( Agent, [1,3], Result(Forward, Result( Forward, Sp)))

MNotice: all stay around!

e Only “label” predicates that can change.

As Pit doesn’'t move,

At (Pit,

(3,2))

Similarly, just [2+2=4], ...

e "Time" only wrt actions
Snapshot of SITUATION. ..

World represented as

SERIES OF SITUATIONS

connected by actions

sufficient



Updating State, Based on Action

—

[—
[
o
Iy
— e Q)
] iu;ﬁ ]
| I e
i - I
[, | ""-._:-‘-‘HH""--.._______' S-r
E x““"‘m a“--.___
— @
—— ﬁ' | Forward
T~ B A
"““-m..‘ r— "“‘--.,H__"__‘H 2
[ ] h |
= | (R —L-
- ] "--.___S TurnBighs
T —
s Formward
S\'J
51 = Result({ Forward, Sgp )
S> = Result( TurnRight, S1 )
= Result( TurnRight, Result{(Forward, Sp) )
S3 = Result( Forward, So )

= Result( Forward,
Result( TurnRight,
Result( Forward, Sao ) ) ) 10
Result:. Action X State +— State



Computing Location

e Can compute location:

vi,j,s At(Ag,[i.7],8) A~ Facing(Ag, North,s) =
At(Ag, [i.7+ 1],Result(Forward, s))

wi,j,s At(Ag,[i,7],8) ~ Facing(Ag,East,s) =
At(Ag,[i — 1,j],Result(Forward, s))

e Can compute orientation:

vi,j, s Facing(Ag, North, s) =
Facing(Ag, East, Result( TurnRight, s) )

11



i Interpreting Percepts

e Extract Individual Percepts

¥b,g,u,c,t Percept([Stench, b, g, u, c], t)
== Stench(t)

v b,u,c st Percept([s, Breeze, g, u, cl, t)
== Breeze(t)

¢« Combine with State to make Infer-
ences about Locations

Ve, At(Agent,{,s) A Stench(s) = Smelly(¥)
v, 5 At(Agent,f,8) A Breeze(s) = Breezy(¥)

e Combine with Causal Rules to Infer
Locations of Wumpus, Pits
V¢ Breezy(f) <& [dxz PitAt(xz) A Adj(€, x)]

v ¢ Stench({) <= [dx WumpusAt(xz) A Adj(€,x)]
v ¢ OK(£) & (—WumpusAt(f) A —PitAt({))

12



Deducing Hidden Properties

e Squares are breezy near a pit:

— Diagnostic rule — infer cause from effect
% { Breezy(f) = dx Pit(x) ~ Adj({,x)

— Causal rule — infer effect from cause
Vi, x Pit(x) ~ Adj({, ) = Breezy(¥)

— PMeither is complete. ..
Eaq, the causal rule doesn’'t say whether squares

far away from pits can be breezy

— Definition for Breezy predicate:
v { Breezy(f) < [dz PitAt(xz) ~ Adj(L, x)]

e Squares are stenchy near the wumpus:
V¢ Stench({) < [z WumpusAt(x) ~ Adj({,x)]

13



ﬁ Using Information

e After {:n::mcluc:ling
—ﬁtench([ 1.1] —lsten-.:h([ 1,2]) Stench([2,1])

Ve Adj ) = 2.1] v £=[1,2])
Ve Adj ) = 1,1l v £=[2,2]' v ¢=
v adj(] 1 2] 0 = t‘—[l 1] F=[E,2] Vo=

e Can derive
—[d2 WumpusAt(z) A Adj([1,1],2)]
Y Adj([1,1].2) = —WumpusAt(x)
—WumpusAt([1,2]), —WumpusAt([2,1])

—[dx WumpusAt(z) ~ Adj([1,2],x)]
—WumpusAt([1,1]), —WumpusAt([2,2]), —WumpusAt([3,1])

[dz WumpusAt(xz) A Adj([2,1],x)]
WumpusAt([1,1]) v WumpusAt([2,2]) v WumpusAt([1,3])

.. = WumpusAt([1,3])



Connecting Inferences to Actions

s Rate Each Action

vV r;, S WumpusAt(r,) & LocationAhead(Agent, s) =,
— Deadly( Forward, s)

vV r,s OK(r;s) & LocationAhead(Agent,s) = r; & —Visited(r, ,S)
= Good(Forward, s)

vVr,s Gold(r,s) = Great( Grab, s)

= Choose Best Action
V a, s Great(a, s) = Action(a, S)
Vv a, s Good(a, s) & (—3 b Great(b, s)) = Action(a, s)

= Now, for each situation S,
Ask( KB, Ja Action( a, S) )
...find a s.t. KB = Action( a, S)

15



Propagating Information

Effect Actions: Ir agent Grabs, when in room
with gold, he will be holding gold.

v¢,s Glitters(¢) A At(Agent, ¢, s) = AtGold(s)
v¢,s AtGold(s) = Holding(Gold, Result(Grab, s) )
So, if Glitters([3,2]), At(Agent,[3,2], Se).

then  Holding(Gold, S7)
where S7 = Result( Grab, Sg)

What about NEXT situation?
eg, Sg = Result(TurnRight, S7)7

Want to derive
Holding( Gold, Result(Turn Right, S7) ),

This requires ...

16



ﬁ Frame AxXioms

® Ya,r, s Holding(x, s) A (a # Release)
=  Holding(x,Result(a,s) )

Ya,s —Holding(Gold,s) A (a = Grab v —AtGold(s)
=  —Holding( Gold, Result(a, s) )

true afterwards —
Gen'l: [an action made it true v
(true already & no action made it false)]

Here: Wa,s Holding(Gold,Result(a,s)) =
[ (@ = Grab » AtGold(s)) WV
( Holding(Gold,s) A a 7= Release ) ]

Similarly: Va.d,p,s At(p, {, Result(a,s) ) =
[ (a = Forward ~ £ = LocAhead(p,s) » —Wall(f))
v (At(p, £,8) A a #= Forward) |

e "'Successor State Axiom"

Lists all ways predicate can become true/false



i Frame, and Related, Problems

= Representational Frame Problem
= Encoding what doesn't change, as actions take place
= Solved via “success-state axioms”

s Inferential Frame Problem
= ... deal with long sequences of actions, ..

= Qualification Problem

= dealing with all qualifications

= ... gold brick is not slippery, not screwed to table, ...
= Ramification

= When picking up the gold brick, also pick up the
associated dust . . .



Goal-Based Agent

= These rules sufficient to FIND gold

Then what?

= Need to change strategies:
= Was “Find gold”

= Now: “Get out!”
Vs Holding(Gold, s) = GoallLocation([1,11],s)

Need to incorporate... How?

19



How to Plan?

Planning agents seek
plan = sequence of actions
that achieve agent's goals.
Inference: Let logical reasoning system perform search:
Ask(KB, 1 a,, a,, as, a,, as, t
t = Result(as;Result(a,;Result(a,;Result(a,;Result(a;; Sp)))))
& Holding(Agent; Gold; t) & At(Agent;Outside; t) )
Problematic, as
= Not easy to heuristically guide reasoning system. . .
= What if > 5 actions required?

Search: View actions as operations on KB,
Goal = “KB includes Holding(Agent, Gold, t), At(Agent, Outside, t) )"
Planning: Special purpose reasoning systems... 20



i Logical Agents

React to what it perceives
= Extract abstract descriptions of current state from percepts
= Maintain internal model of relevant aspects of world

.. even those not directly observable

= Express and use info about desirability of
actions In circumstances

= Use goals in conjunction with knowledge
about actions to construct plans

= As all domain-specific knowledge is encoded as logical
formulae, agent is completely generic!

21



i Logic, Uncertainty, and Utility

Advantages of Logic-Based Agents
= High-level language for tracking environments.

= Permits modular decomposition of state
representation.

Limitations of Simple Logic-Based Agents
s Cannot track stochastic environments.

= Cannot represent and reason with utilities —
can't make tradeoffs

22



Limitations of Situation Calculus

= Situation Calculus works well for Wumpus World
But...

= “Discrete Actions”
Can't handle continuous actions

= Flow of Electrons

= Control of factory

= Action at an “Iinstant”
What if actions have duration?

= One action at a time
= What if multiple agents?
= What if world changes spontaneously?

23



i Time and First-Order Logic

Representing & reasoning
with dynamic / changing world

IS not strong point of first-order logic
= Work on different logics:
Eg dynamic logic / nonmonotonic logic

= Nonmon: long struggle
Yale shooting problem:
= Actions:
load gun / point gun / wait 5 seconds / fire gun
= Question:
Is target dead? (was gun loaded when fired)
= > 100 research papers since 1986; still not fully resolved

= First-order Logic better at “static” information

24



	Situation Calculus
	Logical Agents
	Typical Wumpus World
	Simple Reflex Agent
	Problem with Reflex Agents
	Tracking a Changing World
	Single-Time Knowledge Base
	Problems with Single-Time KBs
	Situation Calculus
	Updating State, Based on Action
	Computing Location
	Interpreting Percepts
	Deducing Hidden Properties
	Using Information
	Connecting Inferences to Actions
	Propagating Information
	Frame Axioms
	Frame, and Related, Problems
	Goal-Based Agent
	How to Plan?
	Logical Agents
	Logic, Uncertainty, and Utility
	Limitations of Situation Calculus
	Time and First-Order Logic

