
1

Implemented Systems

RN, Chapter 10

2

Logical Agents
Reasoning [Ch 6]
Propositional Logic [Ch 7]
Predicate Calculus

Representation [Ch 8]
Inference [Ch 9]

Implemented Systems [Ch 10]
DataBase Systems
Prolog + Extensions (MRS)
General Theorem Provers
Frame Systems
Description Languages
Truth Maintenance – Retractions

Planning [Ch 11]

3

Properties of Derivation Process

4

Degenerate ⊦α

5

Degenerate ⊦α

6

Fundamental Limitation

For any sufficiently complicated domain
(as complex as arithmetic)

NO ⊦α can be
SOUND, COMPLETE, DECIDABLE!!

. . . related to “Halting Problem”
Not Predicate Calculus' fault:
Reasoning is inherently undecidable,
no manner what formalism used.

7

Responses
Deals only with WORST-Case!

“Typical” case can be better
TradeOffs (to increase efficiency):

? Sacrifice SOUNDness?
? Very severe ??

? Sacrifice COMPLETEness?
Reasonable... Specific proposals:

Use only (incomplete set of) Inference Rules
Use complete set of Inference Rules,
but limit depth (stop applying rules...)

? Sacrifice EXPRESSIVEness?
[EXPRESSIVEness ≈

what can be distinguished]
Common approach!
(After all, Logic's distinctions caused problems!)

Disallow “v" “¬” “∃” ...

8

Implemented Systems
DataBase Systems
≈Sound, Complete, Limited Expressiveness

Prolog
≈Sound, Complete, Limited Expressiveness
+ Extensions: Constraints, MetaLevel aspects:

Control, Procedural Attach, Equality, Caching, Direction
General Theorem Provers

Sound, Complete, Complete Expressiveness
Production System (Emycin, OPS)
≈Sound, ≈Complete, Limited Expressiveness

Frame Systems
?Sound?, ?Complete?, Limited Expressive

Description Languages
Sound, Complete, Limited Expressiveness

Truth Maintenance – Retractions

9

DataBase Systems

≈

10

Comments on DataBase Systems
Basically set (&) of Positive Ground Atomic Literals

Hard to Express Partial Knowledge
“FooBarInc makes either bicycles or rockets”
“FooBarInc does not make torpedos”
“FooBarInc does make something”
“Some company makes LegBands”
“Bicycles cost between $100 and $1000”

No (explicit) General Knowledge
“Every large company has a president.”
“Every large company has a president with salary over $500,000”

Efficient Reasoning
. . . as Reasoning Fetch + And + Or
[Cost metric is # of swaps, not retrievals. . .]

11

Standard DB Assumptions
Closed World Assumption

Q: “Does McDonalds makes Tanks?"
A: No.
. . . is really “Unknown". But CWA:

If σ is a positive literal that could be in DB, but σ is not in DB,
then conclude ¬σ

EG: As makes(mcD tanks) ∉

DB, conclude ¬makes(mcD tanks)

So, unknown(σ) means ¬σ

!
Unique Names Assumption

Q: “How many companies make FrenchFry?"
A: 2.
. . . could be 1, if McD=BurgKing !
But UNA:

different names refer to different things.
So… “How many products does McDonalds make?"

< 2 unless UNA
> 3 unless CWA

12

13

Prolog
Refutation Resolution

so Sound, Complete … but …

Only deals with Horn clauses
(≤1 positive literal per clause ⇒

no REASONING by Cases)

Fixed Search Strategy:
Depth first: Prefer resolvant from prior step
Left to Right on conjunctions (antecedents)
Then chronological, by input (FIFO)

Efficient in general, but ∞ loops, . . .
Only Backward Chaining

(No Forward Chaining)
No Meta-Level control
Difficult to cache, re-use justification, . . .

14

Prolog’s Decisions

Q1: Which two clauses?
A1: Set-of-Support (Backward)

One clause is query, or descendant;
Other is from KB

Q2: At any time, “Frontier” of Subgoals.
Which one to work on?
A2: DEPTH-FIRST.
Q3: Within subgoal G = { f1, …, fk}, which
literals?
A3: Ordered resolution … just f1
Q4: Which rule/fact?
A4: Chronological!

Resolution:
Find two clauses
w/”matching literals” and
smash them together.

15

Derivation Process…

a(X), b(Y,X), c(Y) q(7,X), b(4,5)

b(19,Q)
a(7)
q(W,4)
b(s(0), 19)
a(52)
…

New

to

Old

b(Y,7), c(Y)

Depth first
p(91)

Ordered
Resolution

Chronological

16

Limitation of Horn Clauses

Question: ∃ X, Y: on(X, Y) & red(X) & green(Y) ?
Yes:

b is either red or green
If b is red, then { X/b, Y/c }
If b is green, then { X/a, Y/b }

. . . not in Prolog..
Cannot express ∀X: red(X) v green(X)

17

Efficiency Tricks
No OccursCheck … so p(X) unfies w/ p(f(X))
Why?

Unification w/o OccursCheck is O(n) (n = size of clause)
Unification w/ OccursCheck is O(n2)

⇒ Too many clauses match
⇒ Too many conclusions reached
⇒ may conclude [] incorrectly ⇒ Not sound!
Compilation… avoid explicit run-time “Fetch”
Parallelism:

OR-parallelism: different rules
AND-parallelism: different literals w/in rule

Direct binding (single value/variable, on path)
⇒

> 1M LIPS (Logical Inference per Second)

18

Prolog's “Impurities"
Negation as Failure

%% Knowledge Base:
bach(X) :- male(X), not(married(X)).
male(fred).
%% Query:
?- bach(fred).
Yes

Prolog tries to prove “married(fred)”
and fails.

So concludes “not(married(fred)) ”
Control Information – “Cut” !

Tells Prolog NOT to backtrack
Complicated to explain... see Cmput325

19

Extensions to Prolog #I:
Constraints

Constraint Logic Programs
triAng(X,Y,Z) :- (X>0), (Y>0), (Z>0),

(X+Y>Z), (Y+Z>X), (X+Z>Y)
Use#1: confirm triAng(3,4,5).
Use#2: Constrain triAng(X,4,5)?

Prolog: fail
But. . . { X > 1 & X < 9}

Later use, to constrain other predicates
triAng(X,4,5) & prime(X) & ...
triAng(X,4,5) & X>100 & ...

20

Extensions to Prolog #II:
Search Control (for Efficiency)

Even within Resolution Strategy, ... still decisions:
When to use which literals/clauses?
For SINGLE query:

depends on which variables bound / how
Structural information: “No (extra) answers in this path”
Conjunct (Rule) Order, How to Backtrack
Procedural Attachment, Equality

Consider DISTRIBUTION DQ of queries asked of (fixed) KB
Best FIXED ordering of rules/conjuncts
Best FIXED heuristics (“control rules")

⇒

Save part of derivation, for re-use
Caching
Explanation-based Learning (macros)
Direction of Rules

21

1a. Conjunct Ordering
“What is income of president's spouse?"

income(S,I) & married(S,P) & job(P, president)
Prolog: Enumerate all person/income 〈 S, I 〉 pairs

For each Sj in 〈 Sj, Ij 〉 ,
Find spouse(s) P
For each such P, check job(P, president)

Silly!
job(P, president) & married(S,P) & income(S,I)

is much more efficient
Only 1 P, then only 1 S, then only one I

⇒

MetaReasoning:
Determine #of solutions / literal… seek SMALLEST
“most constraining conjunct first"
NP-hard, but ∃ good heuristics .. fewest free variables

10^6 pairs?

22

1b. How to Backtrack?
“Who lives in same town as president?”

live(P, Town) & live(X, Town) & job(P, pres)
Prolog: Enumerate all person/town 〈 P, Town 〉 pairs
For each Townj in 〈

Pj , Townj 〉

,
For each x s.t. live(x, Townj)
Check job(Pj , pres)

If fail, take next x2 in Townj , . . .
SILLY:
If ¬job(Pj , pres), should take NEXT town!
ie, backtrack to 1st literal, not 2nd

Problem: Chronological backtracking
Better: Backjumping

Which variable led to problem?
Goto literal that sets that variable

“Dependency Directed Backtracking”
Store combination of variables that led to dead-end

23

1c. How to Compute (> 174 50)?
Challenge: Determine truth of (> 174 50)
Option 1: Explicitly store

(> 51 50) (> 52 50) (> 53 50) (> 54 50)
(> 55 50) (> 56 50) (> 57 50) (> 58 50)

(> 173 50) (> 174 50) (> 175 50) (> 176 50)

(> 2021 50) (> 2022 50) (> 2023 50) (> 2024 50)

and negative facts:
¬(> 41 50) ¬(> 42 50) ¬(> 43 50) ¬(> 44 50)
...
as well as

(> 1 0) (> 2 0) (> 3 0) (> 4 0) ...
(> 2 1) (> 3 1) (> 4 1) ...

(> 3 2) (> 4 2) ...
(> 4 3) ...

...

Requires ∞ storage!
Is there a better way?

24

Option 2: Procedural Attachment

To compute (> x y) ,
Use procedure FetchGT

where FetchGT returns Yes or No
FetchGT(σ: proposition)
if second[σ] > third[σ] then “yes”

else “no”

Eg: -> (FetchGT '(> 174 50))
yes
-> (FetchGT '(> 23 41))
no

25

Procedural Attachment: +
Find w s.t. (+ 10 65 w)
Explicit storage: ∞ space!
Procedure:
To compute (+ 10 65 w) , use procedure FetchPlus
where FetchPlus returns appropriate binding list:

FetchPlus(σ

: proposition)
(Match (cadddr) (+ (cadr) (caddr)))

;;; w 10 65
(FetchPlus (+ 10 65 w)) →

YES … w/75
(FetchPlus (+ 10 65 75)) →

yes
(FetchPlus (+ 10 65 921)) →

no

MRS Solution:
MetaTell (ToFetch (> &x &y) FetchGT)
MetaTell (ToFetch (+ &x &y &z) FetchPlus)
MetaTell (relnproc > >)
MetaTell (funproc + +)

26

Procedural Attachment

Why? (Space) inefficient to store
explicitly.
What? Use procedure to solve query.
Constraints: Sound procedure

?Only some bound-sets (directions)?
Eg: <, +, Sort, . . .
Gen'l: MRS allows user to define
how to answer arbitrary Asked
proposition

27

1d. Dealing with Equality
Given axioms
russ = profG
happy(russ)
poor(profG)
confused(X) :- happy(X), poor(X).

Expect to conclude
confused(russ)

Prolog would not:
Reduce confused(russ) to poor(russ) ,
but not match poor(russ) w/ poor(profG) .

? Could add rule:
poor(Y) :- poor(X), Y=X.

28

Comments on Equality

Sol'n: Need lots of control rules!

29

Wrap-Up wrt Equality

30

Family Primitive Relationships

31

Definition of (Other) Relations
R1: pa(C, P) :- mo(C, P).
R2: pa(C, P) :- fa(C, P).
R3: sib(E, S) :- pa(E, M), pa(S, M), not(E = S).
R4: sis(E, S) :- sib(E, S), female(S).
R5: bro(E, B) :- sib(E, B), male(B).
R6: aunt(C, A) :- pa(C, P), sis(P, A).
R7: aunt(C, A) :- pa(C, P), bro(P, U), husband(A, U).

female(F) F is Female.
male(M) M is Male.
mo(E, M) M is the MOTHER of E.
husband(W, H) H is the HUSBAND of W.
fa(E, F) F is the FATHER of E.
sis(E, S) S is a SISTER of E.
bro(E, B) B is a BROTHER of E.
sib(E, S) S is a SIBLING of E.

32

2a. Re-Using Information
Over Distribution of Queries

Cache (then re-use) Results
Eg: cache aunt(j, e)

Cache (then re-use) Rule-chains
Used 〈R6, R1, R4, R3, R1, R1〉 to solve aunt(j, e)
“Chain together” these rule into:

Rn: aunt(E, A) :- mo(E, M), mo(M, GM), mo(A, GM),
female(A), not(M = A).

“Chunking”, “Explanation-Based Learning”, . . .
“Derivation Path Heuristic"

Both R1 and R2 reduce (Pa k p) goal.
Spse R2 succeeded prior 200 times, and R1 failed?
Suggests only Fathers; so. . . Try R2 first, next time!

33

2b. When to do what?
Reasoning Agent

is Telled info
is Asked questions . . . based on info.

Here (like Prolog):
Tell trivial: simple storage
Ask does ALL the work.

“Backward Chaining”
But. . . (Production System):

Ask is trivial: check current KB
Tell does all the work

“Forward Chaining”
Which is better?

. . . Branching factors
Mixed strategies

34

Forward Chaining
Compute AUTOMATICALLY
Rather than wait for a question.
Useful when
(1) Same question will be posed many times.
(2) single query is expensive:

large (disjunctive) BACKWARD branching.

Recall Search Space can be
Exponential Backwards
Linear Forwards

35

Forward vs Backward Chaining
KB1

Zebra
Zebra ⇒ Medium
Zebra ⇒ Striped
Zebra ⇒ Mammal
Medium ⇒ NonSmall
Medium ⇒ NonLarge
Striped ⇒ NonSolid
Striped ⇒ NonSpot
Mammal ⇒ Animal
Mammal ⇒ Warm
...

Query: Animal ?

KB2
Zebra
Ant ⇒ Insect
Bee ⇒ Insect
Spider ⇒ Insect
Insect ⇒ Animal
Lion ⇒ Mammal
Tiger ⇒ Mammal
Zebra ⇒ Mammal
Mammal ⇒ Animal...

FC BC
KB1 9 2
KB2 2 8

36

Forward vs Backward Chaining
FC: KB ↦ KB’

Finds other truths
No specific query/objective/goal
Might conclude irrelevant statements
OPS, Interpretation Tasks

BC: KB x σ ↦ { T, F } (w/binding lists)
Determines if query is true
Might follow false leads
Prolog, Q/Aing, Diagnosis Tasks

≠

Order of Search
I.e., which rules to use, ...

37

Mixed Forward & Backward Chaining

38

Theorem Provers

39

Frame-based Systems

40

Notation for Frame Systems
Each Cluster is “Unit”
(aka “Frame”, “Script”, “Schema”, . . .)
Each label is “Slot"
(aka “Aspect”, “Attribute”, “Function”, . . .)
Value of each unit's slot is “Value"

Eg: Birds is Unit
Legs is Slot
2 is Value of Unit:Slot, “Birds:Legs”

Types of Units:
Penguins is “Class” type of Unit
Opus is “Instance” type of Unit

41

Use of Frame Systems

42

Use of Inheritance

43

Multiple Inheritance
Issue: Does Opus fly?

F as Opus ∈ Penguins
T as Opus ∈ Penguins ⊂ Birds

Which to use?
One found first (most specific): F

What about . . .

44

Wording Frame System
within Predicate Calculus

45

Expressiveness of Frame Systems

46

Semantics of Frames

47

Objectives of Frame Systems
Core ideas:

“Bundle” information together
(Store everything about Birds in one place)
Exploit “hierarchy” to obtain “default” answers

Cognitive Model
(ie, people store information in similiar form)

[. . . and so is appropriate language for
communicating with people (designers/users). . .]

Efficiency
Retrieval [“swap in" everything at once]
Inferencing [due to limited expressability]

≈

same as Semantic Nets...

48

“Complexity Cliffs”

Complexity Cliffs:

Be as expressive as possible within “tractable" side
Frames/SemanticNets tractable, but not very expressive
full Predicate Calculus is very expressive but not tractable

49

Description Logics

Uses: CLASSIC (AT&T)
Financial Management, Database Interfaces, Software Information Systems

50

Explanation

Necessary information:
Clauses (Rules, Facts, Constraints) used in derivation

They are needed for Derivation
(Often required for conclusion)
Store this info,
associated with conclusion
?? Convincing story

Just High Points … not all details
Why not another answer?

51

Retraction

52

Effects of Retraction

53

Truth Maintenance

54

Comments on Explanation

55

Summary
Reasoning cannot be

Sound, Complete & Efficient
in complex domains

Different tradeoffs:
Limited Expressibility:
Database, Prolog, Description Logics
Incomplete, Unsound

Which is best?
Depends on application, and goals
Good to EXPLICIT: why gave up what?

	Implemented Systems
	Logical Agents
	Properties of Derivation Process
	Degenerate ⊦
	Degenerate ⊦
	Fundamental Limitation
	Responses
	Implemented Systems
	DataBase Systems
	Comments on DataBase Systems
	Standard DB Assumptions
	Slide Number 12
	Prolog
	Prolog’s Decisions
	Derivation Process…
	Limitation of Horn Clauses
	Efficiency Tricks
	Prolog's “Impurities"
	Extensions to Prolog #I: Constraints
	Extensions to Prolog #II:�Search Control (for Efficiency)
	1a. Conjunct Ordering
	1b. How to Backtrack?
	1c. How to Compute (> 174 50)?
	Option 2: Procedural Attachment
	Procedural Attachment: +
	Procedural Attachment
	1d. Dealing with Equality
	Comments on Equality
	Wrap-Up wrt Equality
	Family Primitive Relationships
	Definition of (Other) Relations
	2a. Re-Using Information�Over Distribution of Queries
	2b. When to do what?
	Forward Chaining
	Forward vs Backward Chaining
	Forward vs Backward Chaining
	Mixed Forward & Backward Chaining
	Theorem Provers
	Frame-based Systems
	Notation for Frame Systems
	Use of Frame Systems
	Use of Inheritance
	Multiple Inheritance
	Wording Frame System�within Predicate Calculus
	Expressiveness of Frame Systems
	Semantics of Frames
	Objectives of Frame Systems
	“Complexity Cliffs”
	Description Logics
	Explanation
	Retraction
	Effects of Retraction
	Truth Maintenance
	Comments on Explanation
	Summary

