R
)
{0

!'_ Implemented Systems

Logical Agents

= Reasoning [Ch 6]
= Propositional Logic [Ch 7]

= Predicate Calculus
= Representation [Ch 8]

\ = Inference [Ch 9]

= Implemented Systems [Ch 10]
= DataBase Systems
= Prolog + Extensions (MRS)
= General Theorem Provers
= Frame Systems
= Description Languages

Truth Maintenance — Retractions
= Planning [Ch 11]

Properties of Derivation Process

e o is SOUND

2 Fao W = 2 =W
Produces only 'true” results

e o iIs COMPLETE

2 Fa W <= 2 =W
Produces all ‘“true’” results

e o is DECIDABLE

7
2 Fa W returns Y or N in finite time

Degenerate

e For any 2, WV C WFFs:
2 By W
2 p W

e Notice:

Degenerate

e For any 2. WV C WFFs:
>y W
2 Fp W

e Notice:

— —n Is SOUND
(everything it returns is logically entailed)
— —p is COMPLETE

(it returns everything logically entailed)

- ~n, Fp are DECIDABLE
(answer every question)

Fundamental Limitation

= For any sufficiently complicated domain
(as complex as arithmetic)

= NO F_ can be
SOUND, COMPLETE, DECIDABLE!!

= . .. related to “Halting Problem”

= Not Predicate Calculus' fault:
Reasoning is inherently undecidable,
no manner what formalism used.

Responses

= Deals only with WORST-Case!
“Typical” case can be better
TradeOffs (to increase efficiency):
= ? Sacrifice SOUNDNess?
? Very severe ??
= ? Sacrifice COMPLETENess?

Reasonable... Specific proposals:

= Use only (incomplete set of) Inference Rules

= Use complete set of Inference Rules,
but limit depth (stop applying rules...)

= ? Sacrifice EXPRESSIVEness?

[EXPRESSIVENess = what can be distinguished]

Common approach!

(After all, Logic's distinctions caused problems!)

= Disallow “v" “—” “3”

Implemented Systems

= DataBase Systems
=Sound, Complete, Limited Expressiveness

= Prolog
=Sound, Complete, Limited Expressiveness
+ Extensions: Constraints, Metalevel aspects:
Control, Procedural Attach, Equality, Caching, Direction

s General Theorem Provers

Sound, Complete, Complete Expressiveness
= Production System (Emycin, OPS)
=Sound, =Complete, Limited Expressiveness

= Frame Systems
?Sound?, ?Complete?, Limited Expressive

= Description Languages
Sound, Complete, Limited Expressiveness
= Truth Maintenance — Retractions

i DataBase Systems

Comp. Product Cost/Unit

McD BigMac $1.35

McD FrenchFry $0.80

McD Ketchup $0.01

BurKing | FrenchFry $0.80

Lego Blocks $15.00

Army Tanks $50,000.00

Army Bullets $1.00

Navy Destroyers | $100,000,000.00

Navy Torpedos $1000.00
Makes(mcD, bigMac) AN CostUnit(bigMac, $1.35)
Makes(mcD, frenchFry) A CostUnit(frenchFry, $0.80)
Makes(mcD, ketchup) A CostUnit(ketchup, $0.01)

::: Makes(lego, blocks) A CostUnit(blocks, $15)
Makes(army, tanks) A CostUnit(tanks, $50K)
Makes(army, bullets) A CostUnit(bullets, $1)
Makes(navy, destroyers) A CostUnit(destroyers, $100M)
Makes(navy, torpedos) A CostUnit(torpedos, $1000)

Comments on DataBase Systems

= Basically set (&) of Positive Ground Atomic Literals

= Hard to Express Partial Knowledge
“FooBarInc makes either bicycles or rockets”
“FooBarlnc does not make torpedos”
“FooBarlInc does make something”

“Some company makes LegBands”
“Bicycles cost between $100 and $1000”

= No (explicit) General Knowledge
= “Every large company has a president.”
= “Every large company has a president with salary over $500,000”

= Efficient Reasoning
. as Reasoning Fetch + And + Or

[Cost metric Is # of swaps, not retrievals. . . |
10

Standard DB Assumptions

Closed World Assumption
= Q: “Does McDonalds makes Tanks?"
= A: No.
. . . Is really “Unknown". But CWA:
« /o Is apositive literal that could be in DB, but o Is not in DB,
then conclude —o

EG: As makes(mcD tanks) ¢ DB, conclude —makes(mcD tanks)

so, unknown(c) means —c'!

Unique Names Assumption
= Q: “How many companies make FrenchFry?"
s A 2.
... could be 1, if McD=BurgKing !
= But UNA:

different names refer to different things.

So... “How many products does McDonalds make?"
s < 2 unless UNA
= > 3 unless CWA

11

HOM SAID 1 OANT &0 CAfTSIDE

[FYoU' MELP We, LU BE
JONE FASTER. WHAT'S

a1

N

WHTIL T FINISH WY HOMEORK. | ¢

\,\T?mssmw

THEN W1

"L DON
KNCH

IE
v

1
i

'HE'{ TS A |

TRUE ANSKER,
BNT T]

Ch IR Ty)

e EE!TER Hh-.’E l'. lﬁﬁﬂ 0
GR PRODIGYS HOMEMRX

12

i Prolog

Refutation Resolution
so Sound, Complete .. but ...
= Only deals with Horn clauses
(=1 positive literal per clause = no REASONING by Cases)

= Fixed Search Strategy:
= Depth first: Prefer resolvant from prior step
= Left to Right on conjunctions (antecedents)
= Then chronological, by input (FIFO)

= Efficient in general, but « loops, . . .
= Only Backward Chaining
(No Forward Chaining)
No Meta-Level control
= Difficult to cache, re-use justification, . . .

13

Resolution:

w/”matching literals” and
smash them together.

i Prolog’s Decisions | Find two clauses

s Q1: Which two clauses?

Al: Set-of-Support (Backward)

One clause Is query, or descendant;
Other is from KB

= Q2: At any time, “Frontier” of Subgoals.
Which one to work on?
A2: DEPTH-FIRST.

w Q3: Within subgoal G = { 1,, ..., 1.}, which
literals?
A3: Ordered resolution ... just £,

s Q4: Which rule/fact?
A4: Chronological! 14

Derivation Process...

Ordered
Resolution

Depth first /

a(Xx), p(Y.X), c(Y)
|

l

b(Y,7), c(Y)

~

p(91)

q(7,X), b(4,5)

Chronological

b(19,Q) New
° ”A to
b(s(0), 19)

a(52) Old

15

i Limitation of Horn Clauses

a [+— red
on(a, b)

b on(b, c)
red(a)

c |+ green green(c)
vYX.red(X) V green(X)

= Question: 3 X, Y: on(X, Y) & red(X) & green(Y) ?
= Yes:
= Db Is either red or green

« Ifbisred, then { X/b, Y/c }
= If bis green, then { X/a, Y/b }

= ...hotin Prolog..
Cannot express VX: red(X) v green(X) 16

Efficiency Tricks

No OccursCheck ... so p(X) unfies w/ p(f(X))
Why?
= Unification w/o OccursCheck is O(n) (n = size of clause)
= Unification w/ OccursCheck is O(r¥)

= — T00 many clauses match
— Too many conclusions reached
— may conclude [] incorrectly = Not sound!

= Compilation... avoid explicit run-time “Fetch”

= Parallelism:
= OR-parallelism: different rules
= AND-parallelism: different literals w/in rule

= Direct binding (single value/variable, on path)
— > 1M LIPS (Logical Inference per Second)

17

Prolog's “Impurities”

= Negation as Failure
%% Knowledge Base:
bach(X) :- male(X), not(married(X)).
male(fred).
%% Query:
?- bach(fred).
Yes

= Prolog tries to prove “married(fred)”
and fails.
So concludes “not(married(fred)) ”

= Control Information — “Cut” !
= Tells Prolog NOT to backtrack
= Complicated to explain... see Cmput325

18

Extensions to Prolog #I:

i Constraints

= Constraint Logic Programs
triAng(X,Y,2) :- (X>0), (Y=>0), (Z=0),
(X+Y>2), (Y+Z>X), (X+Z>Y)
Use#1: confirm triAng(3,4,5).
Use#2: Constrain triAng(X,4,5)?
Prolog: falil
But. . . {X>1& X<9}
= Later use, to constrain other predicates
triAng(X,4,5) & prime(X) & ...
triAng(X,4,5) & X>100 & ...

19

Extensions to Prolog #l1:
i Search Control (for Efficiency)

= Even within Resolution Strategy, ... still decisions:
When to use which literals/clauses?
= For SINGLE query:

= depends on which variables bound / how

= Structural information: “No (extra) answers in this path”
= Conjunct (Rule) Order, How to Backtrack

= Procedural Attachment, Equality

= Consider DISTRIBUTION D, of queries asked of (fixed) KB

= Best FIXED ordering of rules/conjuncts
= Best FIXED heuristics (“control rules")
— Save part of derivation, for re-use

=« Caching

= Explanation-based Learning (macros)

= Direction of Rules
20

la. Conjunct Ordering

= “What is income of president's spouse?"
Income(S,1) & married(S,P) & job(P, president)

= Prolog: Enumerate all person/mcome (S, 1) palrs .
For each S; in (S,
Find spouse(s) F% W
For each such P, check job(P, president)
= Silly!
job(P, president) & married(S,P) & income(S,I)
IS much more efficient
= Only 1P, thenonly 1S, then only one |

— MetaReasoning:

= Determine #of solutions / literal... seek SMALLEST
= “most constraining conjunct first"
= NP-hard, but 3 good heuristics .. fewest free variables 21

1b. How to Backtrack?

“Who lives in same town as president?”

—
Iive(@ Town) & live(X, Town) & jobpres)

Prolog: Enumerate all person/town (P, Town) pairs
For each Town;, in (P;, Town,),
For each x s.t. live(x, Town,)
Check job(P;, pres)
If fail, take next x, in Town,, . . .

SILLY:
If —job(P;, pres), should take NEXT town!

ie, backtrack to 1st literal, not 2nd
Problem: Chronological backtracking
Better: Backjumping

= Which variable led to problem?

= Goto literal that sets that variable

“Dependency Directed Backtracking”
Store combination of variables that led to dead-end

22

1c. How to Compute (> 174 50)?

= Challenge: Determine truth of (> 174 50)
= Option 1: Explicitly store
(> 51 50) (> 52 50) (> 53 50) (> 54 50)
(> 55 50) (> 56 50) (> 57 50) (> 58 50)

(> 173 50) (> 174 50) (> 175 50) (> 176 50)
(> 2021 50) (> 2022 50) (> 2023 50) (> 2024 50)

and negative facts:
—(>4150) —(>4250) —(>4350) —(>4450)

as well as
(>10(>20((>=30(F40)...
>21)(>31)(>41) ..
(>32)(>=42)...
(>43) ...

= Requires oo storage!
= Is there a better way? 23

Option 2: Procedural Attachment

= To compute (> xVy),
Use procedure FetfchGT
where FetchGT returns Yes or No
s FetchGT(o: proposition)

If second|[c] > third[c] then “yes”
else “no”

Eg: -> (FetchGT '(> 174 50))
yes
-> (FetchGT '(> 23 41))
no

24

Procedural Attachment: +

= Find ws.t. (+ 10 65 w)
= Explicit storage: « space!
= Procedure:

To compute (+ 10 65 w) , use procedure FetchPlus
where FetchPlus returns appropriate binding list:

FetchPlus(c : proposition)
(Match (cadddr) (+ (cadr) (caddr)))
e w 10 65
(FetchPlus (+ 10 65 w)) — YES ... w/75
(FetchPlus (+ 10 65 75)) —» vyes
(FetchPlus (+ 10 65 921)) —» no

= MRS Solution:
= MetaTell (ToFetch (> &x &y) FetchGT)
MetaTell (ToFetch (+ &x &y &z) FetchPlus)
= MetaTell (relnproc > >)
MetaTell (funproc + +)

25

Procedural Attachment

= Why? (Space) inefficient to store
explicitly.
= What? Use procedure to solve query.
= Constraints: Sound procedure
?0nly some bound-sets (directions)?
s EQ: <, +, Sort, . ..

= Gen'l: MRS allows user to define
how to answer arbitrary Asked
proposition

26

1d. Dealing with Equality

= Glven axioms
russ = profG

happy(russ)
poor(profG)

confused(X) :- happy(X), poor(X).
= Expect to conclude
confused(russ)

= Prolog would not:
= Reduce confused(russ) to poor(russ) ,
= but not match poor(russ) w/ poor(profG) .

= ? Could add rule:
poor(Y) :- poor(X), Y=X.

27

Comments on Equality

russ = profG. happy(russ). poor(profG).

confused(X) :- happy(X), poor(X).

e Need rule for each relation, function, ...
e Rule

poor(Y) :- poor(X), X=Y.
would NOT work

Reduce confused(russ) to profG = russ,
NOT in knowledge basel

=Y :- ¥Y=X.
Fix: X=X.
X=Z :- X=Y, Y=Z.
or worse:
But... poor(billGates) russ=billGates
poor (russ), russ=billGates. russ=Y, Y=billGates
russ=billGates profG=billGates
billGates=russ profG=Y, Y=billGates
russ=billGates Y=profG, Y=billGates
billGates=russ russ=profG, russ=billGates

russ=billGates

s Sol'n: Need lots of control rules!

28

Wrap-Up wrt Equality

Note: £(A) does NOT unify with £(B),

even it A =B
Eg: Father(Russ) = Leonard

MorningStar = Venus
2+2 =
Option1: View ‘=" as std predicate

Ve . x=x
Ve, y. =y = y=2=x

Ve, 9,2 2=y N Yy=—z =

But also need. . .

T =

[y

Ve, y: x=y <+« Pi(x) =Pi(vy)
Ve, y: m=1y <= Pa(x) = P2(y)

VITaA.TR.YA.UB @ TaA =Tp\NYy =Yg =

Fi(xa4,y4) = Fi(xr.yn)

for every predicate
—+ search control praoblems. . .

Demodulation: For any terms =, y, =z where

Unify(x.z) = &:
r=g, (-..=...)

(...8ubst(0,y)...)

Paramodulation: ...do not
but only "=y VvV P(x)"

know o

29

ﬁ Family Primitive Relationships

@

i @T':T%E

@Téuefbéém'« N ® © [S
< VD O

®_

femalel(F) F is FEMALE.
male (M) M is MALE.
mo(E, M) M is the MO THER of E.

husband(W, H) H is tThe HUSEBEAND of W.

Definition of (Other) Relations

r1:pa(C, P) :- mo(C, P).

r2: pa(C, P) :- fa(C, P).

R3:sib(E, S) :- pa(E, M), pa(S, M), not(E =S).
R4:SIS(E, S) :- sib(E, S), female(S).

R5: bro(E, B) :- sib(E, B), male(B).

R6: aunt(C, A) :- pa(C, P), sis(P, A).

R7: aunt(C, A) :- pa(C, P), bro(P, U), husband(A, U).

female(F) F is Female.

male(M) M is Male.

mo(E, M) M is the MOTHER of E.
husband(W, H) H is the HUSBAND of W.
fa(E, F) F is the FATHER of E.
sis(E, S) Sis a SISTER of E.
bro(E, B) B is a BROTHER of E.

sib(E, S) Sis a SIBLING of E.

31

2a. Re-Using Information
Over Distribution of Queries

= Cache (then re-use) Results

= EQ: cache aunt(j, e)
= Cache (then re-use) Rule-chains
= Used (R6, R1, R4, R3, R1, R1) to solve aunt(j, e)
= “Chain together” these rule into:
Rn: aunt(E, A) :- mo(E, M), mo(M, GM), mo(A, GM),
female(A), not(M = A).
= “Chunking”, “Explanation-Based Learning”, . . .
“Derivation Path Heuristic"
= Both R1 and R2 reduce (Pa k p) goal.
= Spse R2 succeeded prior 200 times, and R1 failed?
Suggests only Fathers; so. . . Try R2 first, next time!

32

2b. When to do what?

= Reasoning Agent
= IS Telled info
= IS Asked questions ... based on info.

= Here (like Prolog):
= Tell trivial: simple storage
= Ask does ALL the work.
“Backward Chaining”

= But. .. (Production System):
= Ask is trivial: check current KB
= Tell does all the work
“Forward Chaining”

= Which Is better?

= ... Branching factors
= Mixed strategies

Forward Chaining

= Compute AUTOMATICALLY
Rather than wait for a question.
= Useful when
(1) Same question will be posed many times.
(2) single query Is expensive:
large (disjunctive) BACKWARD branching.

= Recall Search Space can be
= Exponential Backwards
= Linear Forwards

34

Forward vs Backward Chaining

Query:

KB,
KB,

Animal ?

FC

BC

~
o
iy

Zebra

Zebra = Medium
Zebra = Striped
Zebra = Mammal
Medium = NonSmall
Medium = NonLarge
Striped = NonSolid
Striped = NonSpot
Mammal = Animal
Mammal = Warm

o
N

Zebra

Ant = Insect

Bee = Insect
Spider = Insect
Insect = Animal
Lion = Mammal
Tiger = Mammal
Zebra = Mammal
Mammal = Animal...

_~—Small
Med =
~ —Large
/ _~ —Spot
Z — Str =
N " . solid
~~ Warm
Mam<
~ Animal

A~

B—rI
\
T—*M/

z-

Animal

35

i Forward vs Backward Chaining

s FC: KB —» KB’
= Finds other truths
= No specific query/objective/goal
= Might conclude irrelevant statements
= OPS, Interpretation Tasks

» BC:KBXo — {T,F } (w/binding lists)
= Determines if query is true
= Might follow false leads
= Prolog, Q/Aing, Diagnosis Tasks

+ Order of Search
|.e., which rules to use, ...

36

ﬁ Mixed Forward & Backward Chaining

Label each rule as FC or EC or both
(Ea: Rr1, rR2, R2 all FC, others are BC.)

IT all rules matching (if 7) are FFC,
as are rules for antecedents,
then use Fetch Tor p:
(MetaTell ‘{(ToAnswer ,p Fetch))
[Otherwise: Tull BCS]

Eg: AIll (Pa ---) Tacts ALREADY present
(MetaTell * (ToAnswer (Pa &k &p) Fetch))

In general, specity:
— Rule: FC and/or BCT7

— Ground clause: whether to FC when Telled”
.. or just store’’

— Query: whether to BEC on Asked querwy?
.. or just Fetch’” 37

ﬁ Theorem Provers

Goal: Sound, Complete, Complete Expressiveness

FProving theorems from fixed data;
Nno Tells,

Inferencing: General, Difficult to Control

- Many like Prolog but. . .
Add “OccursCheck" (tt::- be Smund}
— Include *““rewrites' : o + 0 +— X'
— Allow real negation —FP
— Iterative Deepening (not DFS)
Linear Resolution 4+ Locking

W hy? Often used as PROOF-Checkers

For wveritying
-+ hardware circuits (16-bit adder, CPU [timing],
+ software (RSA, B-M string matching, .. .)

For svynthesis
— automatic programmming . . . very hardl

(Domains with complete correct axiomitization)

Frame-based Systems

Animals
—— Rel{Alive Animals, T)
T Rel(Flies,Animals, F)
F
i . .
< *«5‘% Birds < Animals
@}/ o Mammals < Animals
Birds Mammals Rel({Flies,Birds,T)
Rel({Legs,Birds,2)
2 .
Legs: | 4 Rel{Legs ,Mammals,4
. (Leg)
1 FPenguins < Birds
W o Sty Cats < Mammals
& 8 'y
- & Bats < Mammals
Rel{Legs,Bats,2)
F i Rel(Flies,Bats,T)
Opus € Penguins
= z k= Bill € Cats
E E E Pat = Bats
- = Mame({Opus,"Cpus™)
Opus Bill Pat Name(Bill,"Bill")
Mame: Opus Mame: Bill Mame: Pat Friend{Opus,Bill)
Friend: . Friend: Friend(Bill,Opus)
MName({Pat,"Pat")
(a) A frame—-based knowledge base (b) Translation into first—order logic

39

Notation for Frame Systems

s Each Cluster is “Unit”

(aka “Frame”, “Script”, “Schema”, . . .)
= Each label is “Slot"
(aka “Aspect”, “Attribute”, “Function”, . . .)

= Value of each unit's slot is “Value"
Eg: Birds is Unit

Legs is Slot

2 I1s Value of Unit:Slot, “Birds:Legs”

= Types of Units:
= Penguins is “Class” type of Unit
= Opus is “Instance” type of Unit

40

Use of Frame Systems

1. Begin with skeleton

including “general frame knowledge'"

adding new unit
2. Add information by adding new slot
filling in value of slot

[+ sometimes by deleting a unit or a slot

or bw changing a wvalue]

System may “forward chain” to
add other wvalues. ..
(Usually via ‘“When-Added" procedure)

3. Pose questions by
asking tTor value of slot of unit.
Finding answer may involve

simply RETRIEVING value, Or
COMPUTING by “backward chaining''
‘“MTnheritance" Or

COMPUTING via “If-Needed'" procedure. 41

Use of Inheritance

e [TO answer questions like:
vivyhat is name of |[Pat|?

Just ook up value on Name slot of |[Pat)|.

Mote: Opus unit does NO'T hawve explicit slot
Flies, Legs

e [TO answer questions like:
Does Opus Tly7

How many legs does Opus hawve?

use INHERITANCE

2. How many legs does Opus have™?

AL 2
..as Opus is member of Penguins,
which are subset of Birds,

which (tvpically) hawve 2 legs.

42

i Multiple Inheritance

= Issue: Does Opus fly?

= F as Opus € Penguins

= T as Opus € Penguins < Birds

= Which to use?

One found 7irst (most specific):

= What about . . .

Vocalization
Speech |-

Animate

7

F

Cartoon
Character

YWooalzation

Squawks

Wording Frame System
within Predicate Calculus

e (Most) Information in ClassUnits
translates to rules.
(Eg, “Birds:Covering — Feathers" —

wx. (Bird x) = (Covering x Features))

e (Most) Information in InstanceUnits

translates to ground atomic facts.
Eag. “Tweety:Age = 3" ~d (Age Tweety 3)
“Tweety:Flies = Yes'" -~ (Flies Tweety)

e Overall inTormation is
CONJIJUNCTION of these ‘“‘Tacts'.

Some exceptions:

e VWhile Birds is ClassUnit wrt Tweety
it is an InstancelUnit wrt Species.

e Meta-Information
last access time? who created me?

)

44

Expressiveness of Frame Systems

e Easy tO express: Conjunctions ofr

— Rules of form
vx. (Class x) = (Slot x Value)

— Unary, Binary relations
(Ega, (Flies Tweety)

(Child Tweety BT)
(Age Tweety 3))

e Difficult to express

— Other atomic relations
(Eg ""(Between Rock Tweety HardPlace)')

— Partial Knowledge

4, —, A
45

Semantics of Frames

Link Tyvpe Semantics Example

A Subrer B AC B Cars — Mammals
A Member B Ach Bill = Cars

A = B R(A, B) Bill Aes, 12

A E g ¥x xEA = R(x, B) Birds 2
AElp vx 3y x€A = yeB A Rx¥) Birds E==tll Birds

MNote: All Birds fly, but
Penguins (which are birds), do not.

e Semantics: | RHlink Trom A To B:
Every member of A must have
an ER-relation to B
unless 3 intervening A" where Rel(R, A", B")

“"default value"
nonomonotic infTerance

e Issues:

—+ Can “‘fake” within Predicate Calculus. ..

— Multiple inheritance

Objectives of Frame Systems

= Core ideas:
= “Bundle” information together
(Store everything about Birds in one place)
= Exploit “hierarchy” to obtain “default” answers
= Cognitive Model
(ie, people store information in similiar form)
[. . . and so is appropriate language for
communicating with people (designers/users). . .]
= Efficiency
= Retrieval [“swap In" everything at once]
= Inferencing [due to limited expressability]

~ same as Semantic Nets...

47

“Complexity Cliffs”

undecidable
T & Turing equivalent

= Complexity Cliffs:

e

FORG

N

clauzal form

™

Hom dauses

decidable

function-fres fope

propositional calowhes \
definite clavsas
propositional clawses
¢ NP-hard ‘:’*””F \ ;I
| N F
) 2CNF propositional-definite
peaky nepmiial

propoesitional database

= Be as expressive as possible within “tractable" side
= Frames/SemanticNets tractable, but not very expressive
= full Predicate Calculus is very expressive but not tractable

48

Description Logics

¢ Undecidable if ¥, 4, =, v, A

e Just use "“tractable” subset
eqg, avoid =, only some types of v, ...

e Define concepts

HappyMother =
Woman whose children are all RICH, and all
married to pediatricians.

SuccessfulParent = PERSON whose DAUGHT ERS
are married to doctors.

“Subsumption” questions like:
Is every HappyMother a SuccessfulParent?

What if. ..
at least 3 daughters?
either MDs or Profs?

s Uses: CLASSIC (AT&T)
Financial Management, Database Interfaces, Software Information Systems 49

i Explanation

Necessary information:

Clauses (Rules, Facts, Constraints) used in derivation
They are needed for Derivation

(Often required for conclusion)

Store this info,

assoclated with conclusion

?? Convincing story
= Just High Points ... not all details
= Why not another answer?

50

Retraction

e Tell adds new fact .

What if » turns out to be wrong?
...or iIf want to reclaim space?
... or if world has evolved, making ¢ irrelevant?

= MNeed to Retract statement

e Retract(yw) Z Tell(—w):

After Tell(yw), Tell(—y)
KB is INCONSISTENT

After Retract(yw)
KB is CONSISTENT, and Ask(y) = 77

51

Effects of Retraction

e ATter Tell(P) and Tell(P = Q),
agent may (forward-chain to) assert O

Glitter and Glitter = Gold

assert Gold

If then Retract(FP),
should also Retract(Q).

e Mavbe. ..

Spse also
Tell(R) and Tell(R = Q)7

Now INDEPENDENT reason to believe Q
= should NO'T retract @

= Need to maintain REASONS for
believing @

52

Truth Maintenance

e Identity with each conclusion Q)
Tthe ““reason’” for believing Q

Explain(@, {P P = Q})

e IN general, explanation is SET of SETS

Explain(Q?, { E ;’; = ;?SQ:_}Q) }}

Each element could be
+ Telled fact/clause/rule/. ..
+ assumption
-+ fact reached by forward chaining

e Note after Tell (W), have Explain(¥W , { W 1})

e Each set is “"explanation”
Retracting any member of an explanation
removes that explanation

IT remove ALL of »'s explanation
Retract () 53

Comments on Explanation

e “Explain(yp, ...)" explains why
agent believes

e INn general, “"explanation” can include
-+ Tfacts in KB
-+ statements NO'T in KB (defaults)

Eg: As x is bird, then x flies, unless abnormalg,,.
Given Tweety is bird, conclude Tweety flies.

Bird(Tweety)
Explain{ Fly(Tweety), Bird(x) A—Abry(x) = Fly(x) J
“—Ab s, (Tweety) "

Then learn Tweety is penguin (Ab sy,)
= retract Fly(Tweety). ..

e Maintain SETS of consistent worlds
T hen specify specific world using “in/out”

= Assumption-based Truth Maintenance Systems

o4

i Summary

= Reasoning cannot be
= Sound, Complete & Efficient
= In complex domains

= Different tradeoffs:
= Limited Expressibility:
Database, Prolog, Description Logics
= Incomplete, Unsound

= Which iIs best?

= Depends on application, and goals
= Good to EXPLICIT: why gave up what?

95

	Implemented Systems
	Logical Agents
	Properties of Derivation Process
	Degenerate ⊦
	Degenerate ⊦
	Fundamental Limitation
	Responses
	Implemented Systems
	DataBase Systems
	Comments on DataBase Systems
	Standard DB Assumptions
	Slide Number 12
	Prolog
	Prolog’s Decisions
	Derivation Process…
	Limitation of Horn Clauses
	Efficiency Tricks
	Prolog's “Impurities"
	Extensions to Prolog #I: Constraints
	Extensions to Prolog #II:�Search Control (for Efficiency)
	1a. Conjunct Ordering
	1b. How to Backtrack?
	1c. How to Compute (> 174 50)?
	Option 2: Procedural Attachment
	Procedural Attachment: +
	Procedural Attachment
	1d. Dealing with Equality
	Comments on Equality
	Wrap-Up wrt Equality
	Family Primitive Relationships
	Definition of (Other) Relations
	2a. Re-Using Information�Over Distribution of Queries
	2b. When to do what?
	Forward Chaining
	Forward vs Backward Chaining
	Forward vs Backward Chaining
	Mixed Forward & Backward Chaining
	Theorem Provers
	Frame-based Systems
	Notation for Frame Systems
	Use of Frame Systems
	Use of Inheritance
	Multiple Inheritance
	Wording Frame System�within Predicate Calculus
	Expressiveness of Frame Systems
	Semantics of Frames
	Objectives of Frame Systems
	“Complexity Cliffs”
	Description Logics
	Explanation
	Retraction
	Effects of Retraction
	Truth Maintenance
	Comments on Explanation
	Summary

